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АННОТАЦИЯ. A solution is presented to the problem of uniform weighted poly-
nomial approximation on bounded simply connected domains in the complex 
plane, that is analogous to Mergelyan's solution to the classical Bernstein problem 
on the real line. 

To Sergei Nikitovich Mergelyan on his 80-th birthday 

1. I N T R O D U C T I O N 

Let Q be a bounded simply connected domain in the complex plane C, let QT O 

be the unbounded complementary component of its closure, and let w be a positive 

continuous function defined throughout Q. Denote by dA the two-dimensional Lebes-

gue measure (area measure) and for each p, 1 < p < ro, let Hp(Q, wdA) be the closed 

subspace of Lp(Q,wdA) that is spanned by the complex analytic polynomials. Since 

w is bounded away from zero on each compact subset of Q, it follows that 

Hp(Q, w dA) С Lpa(Q, w dA), 

the apparently larger of the two spaces consisting of functions in Lp(Q,wdA) analytic 

Q 

region Q or on the weight w in order that Hp(Q, wdA) = Lpa(Q, wdA). Whenever the 

two spaces coincide, the polynomials are said to be complete in La(Q, wdA). 

By analogy with uniform polynomial approximation on compact subsets of the 

plane, it would seem natural to assume from the outset that дQ = dQ T O , at least 

for w = 1. Regions for which dQ = дQTO are known as Caratheodory domains: 

they evidently include all regions bounded by a single Jordan curve, as well as 

many other non-Jordan regions. By 1923 Carleman [11] was able to prove that 

Hp(Q,dA) = La(Q,dA) for all p whenever Q is a Jordan domain, and a decade 

later Markushevich [18] and Farrell [13] obtained independently the corresponding 

theorem for Caratheodory regions (cf. also [26], p. 112). That left unresolved the 
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question of polynomial completeness on non-Caratheodory regions; regions for which 

the following are representative examples: 

(a) the crescent, topologically a region bounded by two internally 

tangent circles; 

(b) domains with boundary cuts, that is regions obtained from a 

Jordan domain by introducing cuts in the form of simple arcs 

extending outward to the boundary. 

In 1939, Keldysh [16] made the initial and somewhat surprising discovery: For a 

crescent Q the polynomials may or may not be dense in Lpa(Q, dA) depending on the 

thickness, or metric properties, of Q in the vicinity of the multiple-boundary point. 

Not until 1947-48 was a condition found that is both necessary and sufficient for 

completeness of the polynomials in that context. That was due to the combined efforts 

of Djrbashyan [12], who established sufficiency, and Shaginyan [30], who established 

necessity. They showed that if Q is a crescent lying between the է wo circles \z —1| = 1 

and \z — 1 \ = having its multiple-boundary point at the origin, and if l(r) is the 

total length of (\z\ = r) Ո Q then H p ( Q , dA) = Lpa(Q, dA) if and only if 

(1.1) / log l(r) dr = —ж, 
J 0 

provided l(r) is subject to certain additional and rather restrictive regularity conditi-

Q 

the possibility of a cusp at the multiple-boundary point, and is essential to the 

theorem (cf. [4], p. 142). Between the years 1968 and 1977 more precise criteria 

were found for completeness in a much wider class of crescent domains by Maz' ja and 

Havin [15], [20], [21] and the author [3], [4]. In addition to vastly weaker regularity 

restrictions, the intersection of the exterior and the interior boundaries of the crescent 

was no longer assumed to be a singleton. 

It had been noticed at a rather early stage that whenever the polynomials fail to 

be complete in a crescent domain that was due to, or at least accompanied by, the 

fact that every function in Hp(Q,dA) then admits an analytic continuation across 

diQ = dQ \ dQT O into the bounded region complementary to Q. If in a slit domain Q 

the total planar measure of the cuts is zero, then the polynomials are evidently not 

complete in Lpa(Q, dA) for essentially the same reason. 

However, for cuts sufficiently massive, Mergelyan and Tamadyan [29] have shown 

that even in a slit domain it can happen that H2(Q,dA) = L2a{Q,d,A), and their 

argument extends to all p > 1. In an attempt to fully explain the completeness 



O N A C O N J E C T U R E O F M E R G E L Y A N 3 

phenomenon when w = 1 Mergelyan [27] subsequently conjectured, at least for p = 2, 

that in order to have Hp(Q, dA) = Lpa(Q, dA), it is necessary and sufficient that for 

each point £ G дQ, and each e > 0 a polynomial P should exist, such that 

(1) \\P\\bp(n,dA) < e; 

(2) sup \P(z)\ > 1. 
\z ֊£\<e 

In other words, completeness fails if and only if at least for one point £ G дQ and a 

constant C > 0 the inequality 

P z 

of In particular, every function in Hp(Q,dA) must therefore admit an analytic 

continuation across дQ to a fixed neighborhood of Mergelyan's conjecture has 

since been confirmed, not only in its original form, but in many instances for weighted 

polynomial approximation as well (cf. [5], p. 418 and [8]). Moreover, it has turned out, 

rather unexpectedly, that (1.2) is equivalent to demanding merely that the inequality 

be satisfied for all polynomials P at a single point £ G дQ. Such points are generally 

referred to as bounded point evaluations (or B P E ' s for short), and they play a key role 

in connection with the dichotomy between completeness and analytic continuation as 

envisioned by Mergelyan (cf. [10]). 

In order to study the completeness question for the most general regions where 

boundary cuts are present, we consider a weighted measure wdA. We might expect 

that Hp(Q,wdA) = La(Q, wdA) if w(z) ^ 0 sufficiently rapidly at дjQ so that the 

underlying measure respects any and all cuts. 

w 

only on Green's function. More specifically, g(z, a) will denote Green's function with 

pole at some fixed point a G Q. We put g(z) = min (g(z,a), 1) and require that 

w(z) = w(g(z)) g(z) 

invariant, and every significant result concerning weighted polynomial approximation 

on open subsets of the plane, going back to Keldysh [17], is based on this or some 

roughly equivalent assumption. 

If, in addition, we assume that g log w(g) j —ro as g j 0 then Hp(Q,wdA) = 

La(Q, wdA) for all p, 1 < p < ro, whenever 

( 1 . 2 ) \P(z)\ < C\\P\\LP{n,dA) 

(1.3) \ P ( O K C\\P\\LP(n,dA) 

(1.4) 
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Moreover, if diQ contains an isolated smooth arc lying in the interior of Q then 

Hp(Q,wdA) = Lp(Q,wdA) whenever the integral in (1.4) converges and furthermore 

every function in Hp(Q, wdA) then extends analytically across the exposed arc, a fact 

consistent with Mergelyan's conjecture (cf. [8] and [6], p. 46). 
L p 

on in the context of uniform weighted approximation. Beurling [2] has considered, for 

example, the following generalization of the classical Bernstein problem for weighted 

polynomial approximation on the real line to approximation on open subsets in the 

plane: With Q and w as above, let Cw(Q) be the Banach space of all complex-valued 

functions f for which the product f (z)w(z) is continuous on Q and vanishes on dQ, 

the norm being defined by 

\\f\\w = s u p \ f \ w. 
Q 

Evidently, the collection of functions 

Aw (Q) = {f e Cw (Q) : f is analytic in Q } 

is a closed subspace of Cw (Q). The problem is to determine whether or not the 

polynomials are dense in Aw (Q). The present paper offers a solution in terms of 

suitably understood bounded point evaluations which is analogous to Mergelyan's 

solution [28] to the aforementioned Bernstein problem (cf. also [14], Chapter IV). 

w 

uniform weighted approximation by establishing the general principle that either the 

polynomials are dense in Aw(Q), от else, every function in Aw(Q) admits an analytic 

extension to a fixed neighborhood of some point £ e dQ. 

An extensive and in-depth discussion of the background and history of the comple-

teness problem in its various aspects can be found in the survey articles of Mel'nikov 

and Sinanyan [25] Mergelyan [26], [28] and the author [9], as well as in the monograph 

of Walsh [35]. 

2. T H E C A U C H Y I N T E G R A L A N D A N A L Y T I C C A P A C I T Y 

In order to show that one collection of functions is dense in another we argue 

by duality, taking into account the fact that in this case every continuous linear 

functional on Aw (Q) can be identified with a bounded complex-valued Borel measure 

բ on Q. Hence we are immediately led to questions concerning the behavior of the 
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Cauchy integral 

v z = 1 p i 
J Q С  -  z  

at points belonging to djQ, and ultimately to the notion of analytic capacity. 

The analytic capacity Y (X) of a compact planar set X is defined as follows: 

Y(X )=sup \f ' ( ж ) \ , 

where the supremum is taken over all functions analytic in CC \ X and normalized so 

that 

(a) \\f\Ա = sup \f\< 1, 
C\X 

(b) f (ж) = 0. 

Here CC is the extended complex plane от Riemann sphere. For an arbitrary set E we 

let Y(E) = sup Y ( X ) , the supremum now being taken over all compact sets X С E. 

It is of utmost importance that Y is equivalent to a second auxiliary capacity Y+ 

which is defined directly in terms of the Cauchy integral. For a compact set X we 

define 

Y+(X) = sup v(X) 
V 

to be the supremum over all positive measures v supported on X such that v e L(C) 

and \\v\\x < 1. Since v is analytic in CC \ X and \ V ) \ = v(X), the fanction v is 

also admissible for Y and so Y+(X) < Y(X). ^ s before, if E is an arbitrary planar set 

we let Y +(E) = sup Y+ (X) where X is compact and X С E. Tolsa [32] has shown 

that there exists an absolute constant C > 0 such that 

(i) Y +(E) < Y(E) < CY +(E) for all sets E С C 

(ii) Y(^nEn) < n Y(En) for any countable collection of Borel sets 

En, n =1, 2, 3, • • • 

Since Y+ is semiadditive in the sense that it enjoys property (ii), it follows that (i) 

implies (ii). These results of Tolsa have their roots in the work of Mattila, Mel'nikov 

and Verdera [19], [23] (cf. also [24] and [33]). 

The capacity Y + c a n be used in order to establish a certain lower semicontinuity 

associated with the Cauchy integral, a property essential for our main theorem. 

Given a finite, complex, compactly supported measure by ի we denote the Cauchy 

transform as defined above, and 

UM(z) = J ^ 
will be the corresponding Newtonian potential. 
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L e m m a 1. Let x0 be any point where U ( x 0 ) < ж. For each r > 0 leէ Br = B(x0, r) 

be the disk with center at x0 and radius r, and E be a set with the property that for 

every r > 0 there is a relatively large subset Er С (E Ո Br) on which U И is bounded; 

that is, 

(i) U И < Mr < ж on Er, 

(ii) Y(Er) > ej(E Ո Br) for some absolute constant e. 

I f , moreover, E is thick a,է x0 in the sense that 

, Ч , Y ( E Ո Br) (2.1) limsup ^ > 0, 
r—0 r 

then necessarily 

\j(x0)\ < l imsup \jV(z)\. 
z—>xo,z^E 

For a proof see [10], p. 224. Let us also emphasize that it is essential for our purpose 

that the conclusion of the lemma be valid at every point x0 were U  1И(x0) < ж, and 

not simply almost everywhere with respect to area. 

3. B O U N D E D P O I N T E V A L U A T I O N S A N D A N A L Y T I C C A P A C I T Y 

If Ф is a bounded linear functional on Aw (Q), by Hahn-Banach theorem there 

exists a finite Borel measure j on Q such that 

Փ(ք) = fw dj 
J Q 

for all f G Aw (Q). Throughout this section we shall assume that j is an annihilator 

for Aw (Q); that is 

/ fw dj = 0, 
Q 

whenever f G Aw (Q). By definition v = wj and V is its Cauchy transform. Thus, 

V = 0 in Q T O . Our results are based on the following elementary fact: 

L e m m a 2. If H  1(\v\dA) has a BPE at a point x0 G C, then the polynomials also 

have a BPE a,է x0 in the Aw (Q)-norm. 

P r o o f . By assumption there exists a function h G L^(dA) with the property 

P(x0) = J Ph\V\ dA 

for every polynomial P . Setting k = h for V = 0 and k = 0 otherwise, we have 
vV 

, and by an interchange in the order of integration 

P(x0) = PkV dA = - I Pkdv. 
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On the other hand, by Weyl's lemma Pk = Pk + F a.e.-dA where F is entire. But , 

Pk and Pk are continuous and so equality holds everywhere. Since, by assumption, 

v F 

It follows that 

P(XQ) = — J Pk dv = — J Pkw dի. 

\P(XQ)\ < C s u p \P\w = C\\P\ 
Q 

P C 

a B P E at Xq in the Aw (Q)-norm. • 

The question therefore arises: Under what conditions might we expect H1 (\v\dA) 

to have a B P E at a given point? In order to provide a satisfactory answer we adopt a 

scheme due to Thomson [31], which has its origins in the work of Mel'nikov [22] and 

Vitushkin [34]. 

n 

to the coordinate axes, and intersecting at those points with both coordinates integral 

multiples of 2 - n. The resulting collection of squares Gn = {Snj }jj=1 of side lengths 

2 - n is an edge-to-edge tiling of the plane. Its members will be referred to as squares 

of the n-th generation. Let Xq be any point in dQ at which Ulvl (Xq) < ж. Beginning 

with a fixed generation, the n t h say, pick a square S* e Gn with Xq e S*. For each 

Л > 0 let E\ = {z : \v(z) \ < Л} and denote by the collection of all n-th generation 

S 

(3.1) \EX Ո S\ > — \S\. 

Kn will denote the union of all squares in Օէ that can be joined to S* by a finite 

chain of squares also lying in If Kn is bounded or empty, then there exists a closed 

corridor, or barrier, Qn = ՝ O j S n j composed of squares from Gn abutting S* U Kn, 

separating the latter from ж , adjacent to one another along their sides, and such 

that for each j 

(3.2) \Ex Ո Snj \< — \Snj\. 

The polynomial convex hull of Q n is a polygon n n with its boundary r n lying along 

the sides of squares for which (3.2) is satisfied. Thus, \v\ > Л on a large portion of 

every square Snj meeting r n . B y adjoining to nn additional n-th generation squares 

we obtain a polygon Щ with boundary r n in such a way that 

(i) nn 2 ПП, 
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(ii) n22 - n < dist (ГП, Гп) < 3n22 - n. 

At this point let K n + 1 denote the union of all squares in G^+1 that can be joined to 

ПП by a chain of squares in and continue as before. In this way we obtain a 

nested sequence of polygons 

( 3 . 3 ) Пп С П п + 1 С . . . С Пп+ւ С • •• 

and compact sets Kj С ( П \ Ռ ք - : 1 ) , j > n, some of which may be empty, such that 

if Kj = 0, then 

(a) Kj is the union of squares in Gj connecting Г * - : to Qj՛, 

(b) \EX Ո S\> \S\/100 for each S С Kj-, 

(c) dist ( K j , j < dist ( K j , r j ) + dist ( r j , j < 4 j 2 2 - j . 

There are two mutually exclusive possibilities: either the sequence (3.3) 

(A) terminates after / steps and ж G Пп+1։, or 

(B) it continues indefinitely and ж G П for an у j . 

Q j 

polygonal curves Г j l e n d i n g outward from x0, and accumulating in a finite portion 

of the plane. This implies 

L e m m a 3. If there exists an infinite sequence of barriers Qj, j = n,n + 1,n + 

2, ••• surrounding a point x0, then there is a BPE at x0 for the polynomials in the 

L1(\v\dA)-norm. Hence, there is also a BPE at x0 in the Aw(Q)-norm. 

A complete proof can be found in [10], pp. 230-232. Moreover, a closer examination 

of the argument shows that each point £ in the region bounded by the initial barrier 

Qn corresponds to а В Р Е for Aw (Q) with norm depending only on dist (£, Qn ՝ ) . Thus, 

Q0 x0 (Q0, Qn) > 0 

C > 0 such that 

\P ( O K с s u p \P\w = C\\P\\w 
Q 

for all £ G Q 0 and all polynomials P . It follows that every function f in Aw (Q) must 

Q0 

integral of an annihilating measure is illustrative of a general principle associated with 

the analytic continuation of a given family of functions obtained in one or another 

completion process (cf. [7]). 
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4. T H E W E I G H T E D A P P R O X I M A T I O N P R O B L E M 

We are now in a position to consider the weighted approximation problem in 

Q 

domain, g(z, a) is Green's function for Q with pole at a fixed point a e Q, g(z) = 

min (g(z,a), and w(z) = w(g(z)) is a weight depending only on g(z). Moreover, 

ф : Q ^ D will be a conformal map of Q onto the open unit disk D with ф(а) = 0, 

and ф = ф՜1. For each point z e Q let 6(z) be the Euclidean distance from z to dQ. 

The following two Lemmas are corollaries of the Koebe distortion theorem (cf. [9], 

p. 15 for a reference). 

L e m m a 4. There exist constants C1 and C2, depending only on 6(a) = dist (a, dQ), 

z e Q 

n g ( z ) ^ I Aj ( n g ( z )  
C l Щ - \ ф  ( z ) \ -  C Щ . 

L e m m a 5. There exists a constant C such that for all z e Q 

g2(z) < C6(z). 

Beurling [2] has studied the completeness problem for Aw (Q) under the assumption 

that ф : D ^ Q extends continuously to D. This imposes a rather severe restriction 

Q 

(i) дQ is arcwise connected and 

(ii) dQx is a Jordan curve. 

The effect is to exclude from consideration any region for which either (i) or (ii) is 

violated; for example, the region Q obtained by removing from D the spiral z = тв г в  

defined by 

r = e - 1 / l o g  9, в> 2n + 1. 

Q 

exhibit an example where weighted Lp-completeness fails for weights having a slightly 

less than optimal rate of decay at dQ. The essential difficulty here lies in the fact 

that the rest of dQ is effectively shielded from dQx. Our goal is to establish a general 

criterion sufficient for the completeness of the polynomials in the A w (Q)-norm with 

Q 

For an arbitrary weight w ^ d одг point Z e dQ let 

Mw(Z) = sup \P(Z)\, 

the supremum being extended over all polynomials P for which \\P\\w < 1. Thus, the 

polynomials will have a B P E at Z in the Aw (Q)-norm if and only if Mw (Z) < + ж . In 
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addition to demanding that w ^ 0 at dQ we adopt a standing assumption, that 

w(f 1 0 , a s g 1 0 . 
g2 

w(g) 
For convenience in notation let w*(g) = — . 

g 
Our contribution to Mergelyan's conjecture is this: 

T h e o r e m 1. The polynomials are dense in Aw (Q) whenever 

Mw*(Z) = +ж for every Z G dQ. 

I f , conversely, the polynomials fail to be dense in Aw (Q), then every f G Aw (Q) 

that can be approximated by polynomials admits an analytic continuation into a fixed 

neighborhood U intersecting dQ. 

P r o o f . In order to establish the density of the polynomials in Aw (Q) it is sufficient 

Q 

polynomials. To see why, we first transfer the problem to the open unit disk, setting 

W = w(ф) and thereby obtain a weight W on D which depends only on the radius. 

For any f G Aw (Q) the function F = f (ф) belongs to AW(D) and if 0 < r < 1 the 

corresponding functions f r = F(гф) and Fr = fr(ф) are bounded and analytic in Q 

D 

= \\Fr - FН^, 

W 

as r ^ 1. Hence, \ \fr — f \\w ^ 0 as r ^ 1. Since, by assumption, f r lies in the closed 

span of the polynomials in Aw (Q), the same must be է rue of f . The conclusion is that 

the polynomials are dense in Aw (Q). 

Suppose now that Mw*(Z) = + ж for eve ry Z G dQ. Let բ be an annihilating 

measure for the polynomials; that is 

/ Pw d/j, = 0 
Jo. 

for all polynomials P . Consequently, v = 0 in QT O where v = w j . If Z G dQ it can 

then be inferred from Lemma 5 that 

U , „ I = Г  w ( z ) \ d j ( z ) \ < с sup wg < ж. 
Jo \ z  —  Z \ o g 

It follows from the semi-continuity of the Cauchy integral as described in Lemma 1 

that v = 0 on dQ^ (cf. [10], p. 236). Our first task is to prove that v = 0 on the 
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rest of дQ as well. It is here that те will make use of the fact that Mw*(Z) = at 

every point Z G dQ. B y assumption, for any polynomial P and any Z G дQ we have 

f P(z) - P(Z) 
Jo  z  -  Z  

dv (z) = 0. 

By an argument due essentially to Cauchy, 

_ L f P M . 
HZ) Jo z - Z 

provided v(Z) = 0. Since Z G dQ, Lemma 5 implies 

P(Z) dv (z) 

\P(Z)\ < 
1 

ГШ I (z)\< Csup \P\ Ղ Դ = C\\P\Ա. 
\v(Z)\ Jo \ z  -  Z\ o g2  

Because Mwt(Z) = this is a contradiction unless v(Z) = 0. Therefore, v = 0 on 

dQ. 

The next intermediate step is to establish the fact that the functions фпф', n = 

0 , 1 , 2 , • • • all lie in the closure of the polynomials in Aw (Q). To that end we have to 

prove that 

I $n$wdy, = 0, n = 0,1, 2, ••• 
o 

Given e > 0, let Q 6 = {z G Q : g(z) > e}, and ve be the restriction of the measure v 

to Q 6 . Note that for any point Z G dQ by Lemma 5 

(4.1) ш ) \ = \V(Z) - ЫС)\ 
r dv (z) 

>g<e  z  -  Z  

C 
w(e) 

Let n < e. By an interchange in the order of integration 

֊ 2 - f № d z = 1 Լ ( ֊ J = ф ф d ^ dv(Z) = - Լ փոփ՚1^Խ. 
I g=n JUe J g=n S " / J oe 

The contour integral on the left is independent of n when 0 < n < e and satisfies an 

estimate from above: 

— f фпф'ие dz 
2 n i Jg=n 

dz 

< f \ w \ \ p . 
Jg=V 2 n  

As n ^ 0 the measures \ ф' \ d 1 оn g = n converge wk - * to harmonic measure dw 

on dQ. B y (4.1) 

f фпф'чис1р1 < f \ve \ dw < сЩ1 
J o e Jeo  e  

Finally, letting e ^ 0 we conclude that 

/ фп ф' w d^ = 0, n = 0,1, 2, ••• 
o 

and therefore each of the functions фпф'', n = 0 ,1, 2, • • • lies in the closure of the 

polynomials in Aw (Q) as claimed. 

2 
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To complete the proof of the first half of the theorem let f e H  j(Q) and fix e > 0. 

P 

sup \f — P(ф) ф'\w = \\f — P(ф)ф'\и <e, 
ո 

the desired result will follow. To that end let us note that, by virtue of the Koebe 

distortion theorem (i.e. Lemmas 4 and 5), 

\f — P (ф)ф'\w = 
ф — P ( ф ) \ф'\w < C ф — P ( ф ) 

(g) 
g  

P C 

w^ < C\f \ w g . 
g g2  

Since f is assumed to be bounded, the right hand side — 0 as g — 0. Hence, the map 

ф : Q — D ht w M f r o m Q into a corresponding weight W on D, 
g  

f 
while — goes over to a function F e Aw(D) and we have ф' 

\f — P(ф)ф'\ю < C\F — P\W. 

Since W(r) I 0 as r | 1 the same argument with which we began this discussion 

ensures that the right hand side can be made arbitrarily small by a suitable choice of 

P . Therefore, under the stated conditions the polynomials are dense in Aw (Q). 

Conversely, suppose now that the polynomials are not dense in Aw (Q). It follows 

from the above argument that there exists an annihilating measure v = wի for the 

polynomials and at least one point XQ e dQ where v (XQ) = 0. Since UИ (XQ) <ж 

we can further conclude that there exists an infinite sequence of barriers relative to a 

set where \k\ is bounded away from zero, and surrounding the point XQ as described 

above in Section 3. 

Suppose for the sake of argument that this is not the case. For an arbitrary, but 

fixed, Л > 0 consider the set Ex = {z : \k(z)\ < Л}. B y assumption Ex must in a 

sense escape from XQ to ж . More precisely, we can find a connected set X linking XQ 

to ж such that X is the union of squares from some generation, the n-th say, and 

higher, and certain narrow rectangles Rj, j > n, where 

(1) \EX Ո S\ > — \S\ for each square S с X , 

(2) diam (Rj) « j 2 2 - j . 
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Given r > 0, let Br = B(x0,r). B y discarding certain superfluous pieces we can 

assume that X Ո Br is connected and joins x 0 to dBr. Thus, 

1 r 
Y(X Ո Br) > - diam (X Ո Br) > ֊ . 

4 8 

On the other hand, it follows from the countable semi-additivity of analytic capacity 

that 

r 
16 < Y(X Ո B r / շ ) < C Y(K) + ^ j 2 2 - j 2 

j=n 

where K is the union of squares in X for which (1) i s satisfied, and C is an absolute 

constant. Since we are free to begin with an arbitrary generation, we can let n ^ <x>. 

It follows that 

Y(EX Ո Br) > Cr 

(cf. [10], p. 233 for details). The upshot is 

lim sup Y E  Ո  B r ) > о, 
r—0 r 

and so Lemma 1 implies that 

\v(x0)\ < l imsup \V(z)\ < X. 
z—yxo,z^E\ 

Since this is valid for all X > 0, we must conclude, contrary to assumption, that 

v(x0) = 0. We come to the conclusion that for some X > 0 there exists an infinite 

sequence of barriers surrounding x0 that correspond to the set with \v\ > X. 

From the discussion following Lemma 3 it is now clear that there is a fixed 

neighborhood U of x0 such that every function f G Aw (Q) lying in the closure of 

the polynomials extends analytically to U. • 

To the best of author's knowledge there is at present no available criterion for 

deciding whether a given point Z G дQ is, or is not, a B P E for the polynomials in the 

Aw (Q)-norm. In certain cases, however, it is possible to nearly quantify the rate of 

decay of w required in order for the polynomials to be dense in Aw (Q). The following 

is a case in point and was obtained by Beurling [2], p. 413, under the slightly stronger 

assumption 

^ I 0, as g i 0. 
g 4 

We shall continue to assume only that  w ( g I 0 as g I 0. 
g 2 
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T h e o r e m 2. Assume that the conformal map ф : D ^ Q extends continuously to 

D. Then, the polynomials are dense in Aw (Q) whenever 

(4.2) / log log — — dg = +<x. 
J0 w(g) 

I f , conversely, the integral in (4.2) converges and diQ contains an isolated smooth arc 

lying in Q, then the polynomials are not dense in Aw (Q). 

P r o o f (outline) Assume that the integral in (4.2) diverges. Let j be any bounded 

Borel measure on Q such that 

/ Pw dj = 0 
Jo 

P 

f ( Z ) = ! ^ d j ( z ) 
Jo  z -  Z  

vanishes identically in QT O and converges absolutely at every point Z G dQ. The 

essential step is to verify that f = 0 on dQ, then the proof proceeds exactly as in 

Theorem 1. To accomplish that task let 

fe(Z ) = ! Щ dj(z), 
J 0 2 €  z  -  Z  

where as before Q2e = {z : g(z) > 2e}. It is a simple matter to check that for some 

C 

(i) \f (Z) - fe(Z)\< C w M if Z G dQ e2  
C 

(ii) \f (Z)\< ^ i f g(Z) <e. 

Both inequalities are consequences of the Koebe distortion theorem as embodied in 

Lemmas 4 and 5. The first has been noted in (4.1) above. To arrive at the second let 

z G Q 2 e , set De = ф(И€), and recall that by Lemma 5 

dist (z,dQe) > C d i s t (ф(z),dDe)2 > Ce2  

for all e sufficiently small, e < 1/2 say. This in effect is (ii). 

Letting e ^ 0 in (i) we see that f e ^ f uniformly on dQ, and sо f is continuous 

there. Under the conformal map we obtain the functions F = f (ф) and Fe = fe(ф) 

where F is continuous on dD while Fe is analytic in the region D \ De abutting dD. 

Our assumptions allow (i) and (ii) to be expressed in the form 

(iii) \F - Fe\< e - ch ( e ) on dD 

(iv) \Fe\< ֊^in D \ De, e2  

where h(e) | as e I 0 and f 0 log h(t) dt = Since F = 0 on a nontrivial 

dD F = 0 dD 
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The argument here goes back to Beurling [1], and even earlier to a series of lectures 

he presented during the summer of 1961 at Stanford University. The result is that 

f = 0 on dQ and the density of the polynomials follows. For the proof in the converse 

direction see [6j, p. 46. • 

In the case of a slightly more regular manner in which w ^ 0 at dQ, we are able 

to obtain a result similar to Theorem 2 valid for every bounded simply connected 

domain (cf. [8]). 

T h e o r e m 3. If g log w(g) l -ж as g I 0 and if 

f log log — — dg = +ж, 
J о  w ( g )  

then necessarily 

(1) Hp (Q, wdA) = LP (Q, wdA) for all p, 1 < p< ж 
(2) the polynomials are dense in Aw (Q). 

In addition to the ideas of Beurling already mentioned, the proof makes use of 

concepts from the theory of asymptotically holomorphic functions begun by Vol'berg 

and further developed by the author [8] (cf. also [9]). 
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