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АННОТАЦИЯ. In this paper we determine a Blaschke s tructure for affine immer-
sion of Eucl idian and Hyperbol ic type for plane equi-affine curve. In part icular , 
we consider this s t ructure in the case where the Ricci tensor of affine immersion 
is constant and give a necessary and sufficient condition for Ricci tensor to be 
constant . 

1. INTRODUCTION 

The paper studies nondegenerate affine surfaces in affine space R 3 . Such surfaces 

are endowed with an affine connection V, a symmetric bilinear form h which is called 

the affine metric, and a volume form 9. The concept of affine immersion is presented in 

Section 2. One of the big problems here is to understand those surfaces for which the 

immersion is Blaschke. The purpose of this paper is to determine Blaschke structure 

for affine immersion. 

Patrick Lehebel investigated in [7] affine surfaces (and hypersurfaces) which are 

affine rotation surfaces. In 3-space these surfaces can be characterized by the fact 

that all affine normals (in the Blaschke sense) intersect a fixed straight line (the axis) 

and the section with planes containing the axis are shadow boundries with respect to 

parallel light. In case the axis is a proper line (not at infinity) there are three types 

of surfaces: elliptic, hyperbolic, and parabolic. Friedrich Manhart in [8] investigated 

the problem with the additional property of vanishing affine Gauss curvature. But 

there is no classification of affine revolution surfaces, whose generators are equi-affine 

curves, so in this work we consider those surfaces from this point of view. 

This paper consists of five sections. In Section 2 we give some necessary prelimina-

ries. In Section 3 we introduce the concepts of an Euclidian (or Hyperbolic) affine 

immersion with respect to a curve. Then we compute its Ricci tensor component, 

second fundamental form, and its shape operator. 
29 
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In Proposition 2 using the concept of affine arc-length we give a necessary and 

sufficient condition for Ricci tensor to be constant in terms of the components of the 

base curve a. In Theorem 2 we describe those curves for which their related Ricci 

tensor of immersion f is constant. Section 4 is devoted to transversal and the second 

fundamental form, and points at a case where the related affine immersion into the 

produced transversal is Blaschke . 

2. PRELIMINARIES 

In this section we introduce the general notion of affine immersion and some 

terminology and definitions of affine differential geometry. We shall always assume 

that the given affine connections have zero torsion. 

We consider two differentiable manifolds with affine connections (M,V) and (M,V) 

of dimensions m and n, respectively. Let к = m — n. 

Definition 1. A differentiable immersion f : M ^ M is said to be an affine 
к 

able distribution N along f : x G M ^ Nx, a subspace ofTf(x)(M), such that 

(2.1) Tf {x)(M) = f*(Tx(M)) e Nx, 

(2.2) ( M r V x f*(Y ))x = (f*(Vx Y ))x + (a(X,Y ))x, 

at each point x G M where X,Y G X(M) and a(X, Y) G Nx. 

Since the given distribution x G M ^ Nx is differentiable, each point x has a local 

basis, namely, a system of к differentiable vectors ..., Ա on a neighborhood U 
of x that span Ny at each point y G U. This distribution may be regarded as a bundle 

к— 
Note that for к = 1 is called a transversal vector field. 

Proposit ion 1. For a hypersurface immersion f : M ^ Rn+1, suppose we have a 
transversal vector field Հ on M. Then we have a torsion-free induced connection VՀ 
satisfying 

(2.3) Dx f*(Y) = f*(vX Y) + եՀ (X,Y )Հ (Gauss), 

(2.4) Dx Հ = —f*(S* X) + т«(X )Հ (Weingarten), 

where is a symmetric bilinear function on the tangent space Tx(M) and D is 
the flat connection ofM. 3,while S^ is a tensor of type (1,1) called the affine shape 
opera,tor, and тՀ is a 1-form, called the transversal connection form. 
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Proof: See [9]. • 

Definition 2. For a hypersurface immersion f : M ^ R n + 1 , a transversal vector 
field է is said to be equi-affine if DXէ is tangent to M for each X G TxM, x G M. 

V 

Let f : M ^ R n + 1 be a nondegenerate immersion. If we choose an arbitrary 

transversal vector field է, then we obtain on M the affine fundamental form h, the 

induced connection V, and the induced volume element 9Հ. By an appropriate choice 

of է we achieve the following two goals: 

(1) (V, 9^) is an equi-affine structure, that is V9Հ = 0; 

(2) 9Հ coincides with the volume element of the nondegenerate metric 

Theorem 1. Let f : M ^ R n + 1 be a nondegenerate hypersurface immersion. For 
each point x0 G M, there is a transversal vector field defined in a neighborhood of 
x0 satisfying the conditions (2.1) and (2.2) above. Such a transversal vector field is 
unique up to sign. 

Definition 4. A transversal vector field satisfying (2.1) and (2.2) is called affine 
normal field or Blaschke normal field. Locally, it is uniquely determined up to sign. 

x G M x 
vector This line is independent of the choice of sign for է, and is called the affine 

x 

In this section we consider affine immersions f : M ^ R 3 , where M is two 

f M 
called a hypersurface. 

Now let {u, v} be a flat coordinate system for affine space M :=R 2 with basis 

du := dU and dv := ^ Let է = (cos u, sin u, 0) be a transversal vector field for affine 

immersion f : M ^ R 3 such that 

Ric(Y,, Z) = trace{X ^ R(X, Y)Z}. 

Proof: See[9j. • 

3. EUCLIDIAN (HYPERBOLIC) 
R 3 

f (u, v) = (C(v) cos u, ((v) sin u,n(v)), Ո = 0. 
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f 

generator a(v) = (Z(v),n(v)). 

Now suppose that 

£ = (cosh u, sinh u, 0) 

is a transversal vector field for affine immersion f : M ^ R 3 with 
f (u,v) = (Z(v)cosh u,Z(v) sinh u,n(v)). 

f 

generator a(v) = (Z(v),n(v)). 

L e m m a 1. For the Ricci tensor of the induced connection (determined by f a,nd, £) 

are 

Z 'n'' — Z w (3.1) R 11 = 
Zn' 

R 1 2 = R 2 1 = 0, R 2 2 = 0. 

Proof: From Gauss equation we have 

Ddu f*(du) = Ա ՓԼди) + h(du, du)£, 

Ddu f*(dy) = Ш1 dv) + h(du, dv)£, 

and 

Therefore 

(3.2) 

Ddvf*(dv) = Ա(Vd dv) + h(dv,dv)£. 

Г 1 
Г 11 
Г 1 
1 21 

Г12 = Z'/Z, 
Z'/Z, Г22 = 0, 

Г 2 = 0, Г2  
Г 1 1  =  0 , Г 1 2 
Г 2 = 0, Г2  
Г 2 1  =  0 , Г 2 2 

0, 
: n''/n', 

where Г — are the components of VՀ, that is, 

i dx- = Гjdx k  
dx -  г3 

where x1 := u and x2 := v. For calculations concerning Г— we refer to [1, 4j. In 

coordinates, the affine curvature and Ricci tensors of the connection V^ are 

R 
дГj дГ k- I т^тт^г j^m т̂ г 

> li kmi, ki li 

(3.3) 

andwe have 

For other cases 

i j k dxk dxi  j  k j  lm  

R = Rk . 
r— —  R i k j . 

R1 = R2 = Z 'n'' — Z'' n' 
R 1 2 2 = — R 1 2 1 = Zn' 

Rjkl = 0 

0 
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therefore from Ricci equation (3.3)) we get 
Z у ֊ z V 

R l l = T-. , R 1 2 = R 2 I = 0, R 2 2 = 0 
zn 

• 
In terms of Gauss formula for Euclidian immersion we have 

Z''n' - Z'n" 
(3.4) ht(du, du) = Z , h(dv, dv) =  z  1 f  z  1 , 

Ո 
and 

h(du, dv) = h(dv,du)=0. 

For Hyperbolic immersion the components of h are the same as for Euclidian, except 

h^(du, du) = ֊ Z . 

By Weingarten formula we have the components of the shape operator: 

(3.5) S f1 = 1/Z, S i = 0 , 

and 

(3.6) S « 2 = S 2 1 = 0. 

է 

immersions is equi-affine. 

Definit ion 7. The parameter of differential curve a : I ^ R 2 is called affine arc-

length if \a' A a"\ = 1 [2, 3J. 

In other words, for a(t) = (x(t), y(t)), then the parameter t is affine arc-length if 

x'y" ֊ y'x" = 1. 

a 

p , 5]. 

f 

rator a(v) = (Z(v),n(v)). Then the components of Ricci tensor of immersion f are 

constant if and only if Z and n satisfy the equation 

(3.7) Zn' = c = 0. 

a f 

therefore Z'n'' ֊ Z''Ո՛ = 1. from equation (3.1) if R11 = к then Zn' = 1/k = c, and 

• 
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a 

(3.8) ֊ c ( Z ' ) 2 ֊ cZ''Z = Z2. 

T h e o r e m 2. If the components of Ricci tensor of Euclidian (or Hyperbolic) affine 

immersion are constant, then we have 

(3.9) Z = ±VP, n = ± J k - 1p - 1 / 2 dv. 

Proof: Setting in the equation (3.8) p = Z2, we get 

cp'' + 2p = 0. 

Under the assumption c = 1/к, solving the above differential equations yields 

p = c1 cos v + c2 sin v, к > 0, 

p = c1 coshy ֊2k v + c2 sinh V ֊2к v, к < 0. 

It is easy to show that 

(3.10) Z = ±VP, n = ± j k - 1p - 1 / 2 dv. 

• 

4. B L A S C H K E S T R U C T U R E 

A well-known choice of relative normals, concerning the induced volume element дՀ 

and the second fundamental form hՀ, comes from the fact, that there exists a unique 

choice (up to a sign) of a relative normal £ that satisfies 

дՀ = ահ, 

where wh is the volume element with гespect to h^. In this case, one calls £ the affine 

normal, h the affine metric, and f a Blaschke immersion. 

In this section we introduce the Blaschke structure for Euclidian and Hyperbolic 

immersions that we defined in previous section. Accordingly to [9], we have to find 

the affine normal field. We first do that procedure for Euclidian immersion. 

S tep 1.: We choose £ = (cos u, sin u, 0) for a tentative transversal vector field. 

As we computed in the previous section and from Proposition 1, necessarily 

т« = 0. 

S tep 2.: From the computations of Section 2 and from the equation (3.4) we 

h 
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S t e p 3.: For £ as in Step 1, the induced volume element 9$ we write as 

9$(du, dv) = u(f*(du),f*(dv),£), 

hence 

9$ (du,dv) = n' (v)Z (v). 

S t e p 4.: We introduce a unimodular basis {X1,X2} with 

9$ (X1X2) = 1. 

(special case of the statement that we have established for Ricci tensor in 

Proposition 2). This choice implies 

Propos i t ion 3. If 

(4.1) n'(v)Z (v) = 1, 

then the basis {du,dv} is unimodular. 

Proof: follows from the definition of unimodular basis. 

S t e p 5.: Taking ф = \ det0 j h\з, we obtain 

• 

ф = ^ Z (Z"n' — Z'n") 

Now let £ = ф£ + Z, where Z is to be determined from 

т« + 1 ht(Z, • ) + dlog ф = 0. 
փ  

From the previous section т^ = 0, therefore this equation is simply h(Z, X) = 

—Хф for every X, so we choose a unimodular basis of Step 4 by taking 

Z = adu + bdv In this case we have 

h$ (adu + bdv X ) = —Xф. 

First by taking 

we obtain 

therefore, 

Secondly, 

X = ди 

(du, d u ) = aZ = 0, 

a = 0. 

X = dv 
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SO, 

h(adu + bdv, dv) = ֊dvф, 

bh^(dv,dv)= bZ" n > ֊ Z ' n " , 

3 

b = ֊ 4 (Z Y 4 ( հո֊Ռ 
therefore 

4 V n' J V n 

Z = bdv. 

S tep 6.: Once we get the affine normal field £, it is easy to compute the affine 

metric h = h/ф, the affine shape operator S, and the induced connection 

f 

curve generator a, and £, h be transversal and second fundamental form, respectively. 
The choice of ф, Z and £ = ф£ + Z renders f Blaschke immersion. 

a 

ф = 4 
n' 

From Step 5 by a simple calculation we get Z = bdv, where 

b = ֊ 2 ( i ) (jf ' . 

As we saw in Step 6, 

С 
£ = 4 Z £ + z. n' 

By taking £ as above, f a immersion. • 
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