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BLASCHKE STRUCTURE FOR A SPECIAL AFFINE IMMERSION
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AnnoTtanps. In this paper we determine a Blaschke structure for affine immer-
sion of Euclidian and Hyperbolic type for plane equi-affine curve. In particular,
we consider this structure in the case where the Ricci tensor of affine immersion
is constant and give a necessary and sufficient condition for Ricci tensor to be
constant.

1. INTRODUCTION

The paper studies nondegenerate affine surfaces in affine space R>. Such surfaces
are endowed with an affine connection V, a symmetric bilinear form h which is called
the affine metric, and a volume form 6. The concept of affine immersion is presented in
Section 2. One of the big problems here is to understand those surfaces for which the
immersion is Blaschke. The purpose of this paper is to determine Blaschke structure
for affine immersion.

Patrick Lehebel investigated in [7] affine surfaces (and hypersurfaces) which are
affine rotation surfaces. In 3-space these surfaces can be characterized by the fact
that all affine normals (in the Blaschke sense) intersect a fixed straight line (the axis)
and the section with planes containing the axis are shadow boundries with respect to
parallel light. In case the axis is a proper line (not at infinity) there are three types
of surfaces: elliptic, hyperbolic, and parabolic. Friedrich Manhart in [8] investigated
the problem with the additional property of vanishing affine Gauss curvature. But
there is no classification of affine revolution surfaces, whose generators are equi-affine
curves, so in this work we consider those surfaces from this point of view.

This paper consists of five sections. In Section 2 we give some necessary prelimina-
ries. In Section 3 we introduce the concepts of an Euclidian {or Hyperbolic) affine
immersion with respect to a curve. Then we compute its Ricci tensor component,

second fundamental form, and its shape operator.
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In Proposition 2 using the concept of affine arc-length we give a necessary and
sufficient condition for Ricci tensor to be constant in terms of the components of the
base curve a. In Theorem 2 we describe those curves for which their related Ricci
tensor of immersion f is constant. Section 4 is devoted to transversal and the second
fundamental form, and points at a case where the related affine immersion into the

produced transversal is Blaschke .

2. PRELIMINARIES

In this section we introduce the general notion of affine immersion and some
terminology and definitions of affine differential geometry. We shall always assume
that the given affine connections have zero torsion.

We consider two differentiable manifolds with affine connections (M,V) and (M,V)

of dimensions m and n, respectively. Let K = m — n.

Definition 1. A differentiable immersion f : M — M is said to be an affine
immersion if the following condition is satisfied. There is a k-dimensional differenti-

able distribution N along f : v € M — N,, a subspace of T (M), such that
(2.2) (MrVx fo(Y))a = (fe(VxY))s + (a(X,Y))a,
at each point x € M where X, Y € X(M) and o(X,Y) € N,.

Since the given distribution € M — N, is differentiable, each point = has a local
basis, namely, a system of k differentiable vectors &1,&s,...,&; on a neighborhood U
of = that span N, at each point y € U. This distribution may be regarded as a bundle

of transversal k—space. Now we explain the main proposition of the affine immersion.

Note that for kK = 1, & is called a transversal vector field.

Proposition 1. For a hypersurface immersion f : M — R suppose we have a

transversal vector field € on M. Then we have a torsion-free induced connection V¢

satisfying
(2.3) Dx fo(Y) = f(VSY) +RE(X,Y)E (Gauss),
(2.4) Dx& = —f.(S5X) +75(X)¢ (Weingarten),

where h® is a symmetric bilinear function on the tangent space T,(M) and D is
the flat connection of R?, while S¢ is a tensor of type (1,1) called the affine shape

operator, and 7¢ is a 1-form, called the transversal connection form.



BLASCHKE STRUCTURE FOR A SPECIAL AFFINE IMMERSION 31
Proof: See [9]. O

Definition 2. For o hypersurface immersion f : M — R"T! qa transversal vector
field € is said to be equi-affine if Dx& is tangent to M for each X € T,M, z € M.

Definition 3. The Ricci tensor of connection V is defined by
Ric(Y, Z) = trace{X — R(X,Y)Z}.

Let f : M — R"™"! be a nondegenerate immersion. If we choose an arbitrary
transversal vector field &, then we obtain on M the affine fundamental form A, the
induced connection V, and the induced volume element #¢. By an appropriate choice
of £ we achieve the following two goals:

(1) (V,6%) is an equi-affine structure, that is V6 = 0;

(2) ¢ coincides with the volume element wy, of the nondegenerate metric hS.

Theorem 1. Let f : M — R be a nondegenerate hypersurface immersion. For
each point xo € M, there is a transversal vector field defined in a neighborhood of
xq satisfying the conditions (2.1) and (2.2) above. Such a transversal vector field is

unique up to sign.
Proof: See[9]. O

Definition 4. A transversal vector field satisfying (2.1) and (2.2) is called affine
normal field or Blaschke normal field. Locally, it is uniquely determined up to sign.
For each point x € M we take the line through x in the direction of the affine normal
vector &,. This line is independent of the choice of sign for &, and is called the offine

normol through .

3. EUCLIDIAN (HYPERBOLIC)
AFFINE IMMERSION IN R3

In this section we consider affine immersions f : M — R®, where M is two
dimensional affine space. In that case f is called a hypersurface immersion and M is
called a hypersurface.

Now let {u,v} be a flat coordinate system for affine space M :=R? with basis
Oy = % and 9, = %. Let £ = (cosw, sinu, 0) be a transversal vector field for affine

immersion f: M — R3 such that

flu,v) = (¢(v) cosu, C(v) sinw, n(v)), n #0.
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Definition 5. The affine immersion f is called Euclidian affine immersion with

generator o(v) = (C(v),n(v)).
Now suppose that
¢ = (cosh u, sinh v, 0)

is a transversal vector field for affine immersion f : M — R3 with
f(u,v) = (¢(v) coshu, {(v) sinhu, n(v)).

Definition 6. In the above notation f is called Hyperbolic offine immersion with

generator o(v) = (C(v),n(v)).

Lemma 1. For the Ricci tensor of the induced connection (determined by f and &)
are
Il T
Ry — 'n /C n
n

Proof: From Gauss equation we have

Do, f4(0u) = £ (V5. 04) + h(Ou, Du)E,
D8uf*(av) = f*(vguav) + h(au7 811)57

(3.1) , Rip =Ry =0, Ry =0.

and
Do, f(9) = f.(V5,0u) + h(Dy, 0, )E.
Therefore
(3 2) F%l =0, F%Z - C//C7 F%l =0, F%Z =0,
’ I3 =('/¢ T =0, I3, =0, I =9"/7,
where I'l;s are the components of V¥, that is,
V§,: 027 =TFoak
where ' := u and 2? := v. For calculations concerning I'}; we refer to [1, 4]. In

coordinates, the affine curvature and Ricci tensors of the connection V¢ are

ori. ot , ,
! _ 1j kj mi m i
R, = 92k ol 1 D — Uil
(3.3) Rij = Ry
andwe have L Y
Rlyy = Ry, = 100
Cn

For other cases
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therefore from Ricci equation (3.3)) we get

N W
Ry = S0 /C i

n
that completes the proof of lemma. |

Rip = Fs1 =0, Ry =0

In terms of Gauss formula for Euclidian immersion we have

'yl — !
(34) h§(8u7au) =, hs(amav) - %

and
W (D, By) = h5(Dy, D) = 0.
For Hyperbolic immersion the components of h¢ are the same as for Euclidian, except
h& (D, 0) = —C.
By Weingarten formula we have the components of the shape operator:
(3.5) S5 =1/¢, S5,=0,
and

(3.6) 55, = 85, = 0.

Corollary 1. The transversal vector field & both for Euclidian and Hyperbolic affine

immersions is equi-affine.

Definition 7. The parameter of differential curve o - I — R? s called affine arc-
length if |o/ AN a”| =112, 3].
In other words, for a(t) = (z(t),y(t)), then the parameter ¢ is affine arc-length if
2y — gy = 1.

Definition 8. A curve « is called equi-affine, if its parameter is arc-length parameter
2, 5].

Proposition 2. Let f be an Euclidion offine immersion with equi-affine curve gene-
rator o(v) = (((v),n(v)). Then the components of Ricci tensor dof immersion [ are

constant if and only if { and n satisfy the equation
(3.7) (n' =c#£0.

Proof: The parameter of the generator o for affine immersion f is the arc-length,
therefore ¢'n” — ¢’ = 1. From equation (3.1) if Ry, = k then {n' = 1/k = ¢, and

vice versa. O
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By equation (3.7) and the fact that « has an affine arc-length parameter, we have:
(3.8) —({')? = ("¢ =%

Theorem 2. If the components of Ricci tensor of Euclidian (or Hyperbolic) affine

immersion are constant, then we have
(3.9) (=+Vp, n= i//ﬂ*%p*/? dv.

Proof: Setting in the equation (3.8) ¢ = (%, we get
cp” + 20 = 0.
Under the assumption ¢ = 1/k, solving the above differential equations yields

@ =cicosV2k v+ cosinv2k v, k>0,
¢ = cycoshv—2k v + ¢gsinh v/ —2k v, k <0.

It is easy to show that

(3.10) (=+yp n—= / k112 gy,

4. BLASCHKE STRUCTURE

A well-known choice of relative normals, concerning the induced volume element 6%
and the second fundamental form h¢, comes from the fact, that there exists a unique

choice (up to a sign) of a relative normal £ that satisfies
96 = Wh,

where wy, is the volume element with respect to h%. In this case, one calls £ the affine
normal, h¢ the affine metric, and f a Blaschke immersion.

In this section we introduce the Blaschke structure for Euclidian and Hyperbolic
immersions that we defined in previous section. Accordingly to [9], we have to find

the affine normal field. We first do that procedure for Euclidian immersion.

Step 1.: We choose £ = (cosu, sinw,0) for a tentative transversal vector field.
As we computed in the previous section and from Proposition 1, necessarily
¢ =0.

Step 2.: From the computations of Section 2 and from the equation (3.4) we

conclude that the second fundamental form % is nondegenerate.
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Step 3.: For ¢ as in Step 1, the induced volume element 6% we write as

0 (8, B) = w(£(D0), £(D0), €),
hence
0% (9, ) = 0 (0)¢(0).
Step 4.: We introduce a unimodular basis { X1, Xo} with
05(X1, Xo) = 1.
(special case of the statement that we have established for Ricci tensor in

Proposition 2). This choice implies

Proposition 3. If
(4.1) n'(v){(v) =1,
then the basis {0y, 0y} is unimodular.
Proof: follows from the definition of unimodular basis. [l
Step 5.: Taking ¢ = | detge h|3, we obtain

o S =)
n

Now let £ = ¢€ + Z, where Z is to be determined from
1
75+ 5hﬁ(z 3+ dlogp = 0.
From the previous section 7¢ = 0, therefore this equation is simply h(Z, X) =

—X¢ for every X, so we choose a unimodular basis of Step 4 by taking

Z = ad, + bd, In this case we have
h&(ady + b0y, X) = —X .

First by taking

X = 0y,
we obtain
ah®(8y,d,) = al =0,
therefore,
a=0.
Secondly,
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80,
hs(aau + bam 811) - _8v¢7
1ot ol
bh5(8v78v) — 5M7
¢
b C(C e =
o 4 77/ 77/2 ’
therefore

7 = bd,.

Step 6.: Once we get the affine normal field £, it is easy to compute the affine
metric h = h%/, the affine shape operator S, and the induced connection
VE.

Theorem 3. Let f be an Euclidian(Hyperbolic) affine immersion with equi-affine
curve generator o, and &, hé be transversal and second fundamental form respectively.
The choice of ¢, Z and € = ¢ + Z renders f Blaschke immersion.

Proof: By Steps 1 — 6 and the fact that « is an equi-affine curve we obtain

As we saw in Step 6,

£= i/z/é#z.
n

By taking £ as above, f becomes a Blaschke immersion. [l
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