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А Н Н О Т А Ц И Я . Sharp estimates for some multifunctional analytic expressions and 
multilinear operators are given, generalizing the corresponding estimates for a 
single function or for a linear operator. 

1. I N T R O D U C T I O N 

Recent years have seen of study of various multifunctional expressions and multilinear 

operators in Rn. The purpose of this paper is to develop sharp results for multifunctional 

analytic expressions and multilinear operators in the area of holomorphic function 

spaces in the unit disk and in higher dimensions. The papers by Grafakos and Torres 

[5, 6], Muscalu, Thiele and Tao [9] are the prototypes. Two direct approaches will 

be indicated in this note. The first leads to new results in higher dimension by 

modification of the proof of the known "one functional "case; the second yields sharp 

estimates for multifuntional analytic expressions using classical strong factorization 

theorems. We note that all our results are known in the particular case of one function 

and the unit disk on the complex plane. All proofs in higher dimension can be done 

simultaneously in the polydisk and unit ball in C n . In the recent work of the second 

author [11J the problems of this type were considered by purely one dimensional 

methods in the unit disk using classical properties or inner and outer functions. Some 

results of this paper extend that results from one to higher dimensions for certain 

values of the parameters. 

In Section 2 we will obtain results on Carleson measures in the polydisk and the 

unit ball of C n by using multiple functions. In Section 3 we apply some factorization 

theorems to obtain characterizations of certain Carleson measures on the unit disk 

by multiple functions. In Section 4 we generalize some well-known estimates of the 
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Poisson transform and the Cauehy-Szego projection to the multilinear cases. Throughout 

the paper, C will denote positive constants. 

Let D = {z : \z\ < 1} be the unit disk, T = {z : \z\ = 1} be the unit circle. 

For 0 < p < ro, let Hp denote the Hardy space which contains analytic functions f 
D 

Let թ be a positive Borel measure on D, X be a Banach space of analytic functions 

on D. Given q > 0 we say that ^ is an ( X , q)-Carleson measure, if there is a constant 

C > 0 such that for any f G X, 

An (Hp, p)-Carleson measure is the classical Carleson measure. The Carleson 

measure was introduced by Carleson [lj in his study of the problem of interpolation 

by bounded analytic functions and the famous corona problem. It became a very 

useful tool in the study of function spaces and operator theory. It is known that բ is 

a Carleson measure if and only if 

(i) there is a constant CI > 0 such that, for every a G D, 

S(I) = {z G D : 1 -\I\ < \z\ < 1, z/\z\ G I} 

is the Carleson box based on I , and \I\ is the normalized length measure on 

T 

2. S O M E S H A R P I N E Q U A L I T I E S F O R 

M U L T I F U N C T I O N A L H O L O M O R P H I C 

E X P R E S S I O N S IN HIGHER DIMENSION 

or 

(ii) there is a constant C2 > 0 such that for any arc I G T, 

K S ( I ) ) < C2\I\, 

where 
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Let D n = D x D• • • x D be the polydisk and Tn = {C = (CI, •••,Cn) e D n : \ = 

1,j = 1, 2 , . . . , n} the torus. We will write dm2n to denote the Lebesgue measure on 

D n and dmn to denote the Lebesgue measure on T n . 

Let a > 1. Let Га(() = {z e D : \1 - Zz\ < a(1 — \z\)}. Following [4], for 

0 < p < <x, we define the analytic tent space A^Hp which consists of analytic 

functions f on D n satisfying 

Wf VA^HP = S U P •• • S U P \f (z)\ p dmn(Z) < <x>. 
J T n z!erai (Zi) zneran(Zn) 

T h e o r e m 1. Let բ1} ..., /лп be positive Borel meas ures on D .If 0 < pi,qi < <x, 

i = 1,... ,m satisfy 

U P i ) ֊ ՝ • 

then the following conditions are equivalent: 

(i) There is a constant C1 > 0 such that n I 10 lit 

(2.1) / T\\fi(z1,z2,...,zn)\ q* d^(z1) ••• d^n(zn) < C T T WfiWA HPi ; 
• j D n i=1 i=1 

(ii) There is a constant C2 > 0 such that 

ր N 1 _ a I 
( 2 . 2 ) sup TT- _  K d^1 z ) ••• d^N(zN) < 

AEDn J Dn K=1 \ 1 —  AKzK \ 

where a = (a1, a2, .. ., an); 

(iii) The measures ..., /лП are Carleson measures. 

n=2 

It is clear that conditions (ii) and (iii) are equivalent. 

Let (iii) hold. We write 

A^(f )(Z ) = sup \f (z)\, C1(M)(C ) = sup —f dp(z). 
ZERA (Z) ZEI \ 1 \ J S ( I ) 

It is well-known that, if բ is a Carleson measure then for any complex-valued 

f D 

(2.3) / \f (z)\dp(z) < C [C1(M)(C)][A^(f )(Z)] dm1(Z), 
D T 
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(See Proposition 3 in [4], or Theorem 2.1 in [10])- We have to prove (2.3) in the bidisk 

D2 = D x D. First applying (2.3) in z1, then using Fubini's theorem, and applying 

(2.3) again in z2 we get that for any complex-valued function p on D2 , 

\ p ( z i , z 2 ) \ d p i ( z i ) d^2(z2) 

< C f f (AX)Z1 (p)(Ci,z2)Ci(vi)(Ci) dmi(Zi) d ^ ) 
J D J T 

< C ( f (ATO)zi (p)(Zi,z2) dM2(z2)Ci(Mi)(Ci) dmi(Zi) 
T D 

C 

C 

f T  2  
( p ) C I ( M 2 ) ( C 2 ) d m I ( Z 2 ) Ci(M i)(Ci) dmi(Zi) 

s u p 4 [ d^I(z) sup — [ d^(z) 
IET \ I \ J S ( I ) \ YIET \ I \ J S ( I ) 

( A T O ) Z 1 ( A T O ) Z 2 (p) dmI(ZI) dmI(&) 
T 2 

Applying this to p = \fi\ q i • • • \fm\ q m we immediately get that (iii) implies 

/ \f i(zi , z2 )\ q i • • • \fm(zI, z2)\Q M d^I(zI) d^2(z2) 
D2 J 

< C ( [(ATO)Z1 ( A T O ) Z 2 \ f i \ q i ] • • • [(ATO)Z1 ( A T O ) Z 2 \ f m \ q m ] dm2(ZI,Z2)-
T 2 

A simple application of Holder's inequality yields (2.1). 

Finally, suppose (i) holds. Let for г = 1 , 2 , . . . ,m 

I/pi 

f i ( z ) 
1 — \a\ 

(1 — az)2  

where 

1 — \a\ = П ( 1 — \ak\), (1 — az)2 = Д (1 — ak zk ) 2 . 
k=i k = i 

Using the classical theorem on p. 180, Chapter 8 in [8j, we get that f i G Ax։H P i  

Substituting in (2.1) we get 

sup n k = I ( 1 — \ak\) 

0,eDn JD" П k = I \ 1 —  ak zk\2 

So we get (ii), and the proof is complete. 

d ^ I ( z I ) • • • d^n(zn) < ro. 

x 

X 
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R e m a r k 1. A result of this type was first obtained by the second author in [11], 

for the Hardy spaces Hp on the unit disk D. The proof in [11], however, is based on 

properties of outer and inner functions and hence is purely one-dimensional. 

If we define a "mixed-norm"space M^,HV, 0 < p < ж, as the space of analytic 

functions f on D n such that the norm Wf\\M^,Hp is given by the following 

/ sup ••• sup \f (z1, z2,. .., zn)\p dm 1(^1) ••• dm^n)} 
JTz^eTan(in) JTz1erai ( a ) J 

1/p 

where a.i > 1, i = 1, 2,... ,n, then we get a result similar to Theorem 1: 

T h e o r e m 2. Let ... ,n be positive Вorel measures on D. Leէ 0 < pi: qi < ж , i = 

1,... ,n be such thaէ J2i=1(qi/pi) = 1- Then the following conditions are equivalent 

(i) There is a constant C1 > 0 such that 

qid,, ֊. z v . . d z ) < с I 111 f 1 \qi 
ր I 10 lit 

/ T\\fi(z1,z2,...,zn)\ q i d,1(z{) ••• d,n(zn) < CTT n) \  Z1) • • •  zn) < c լ լ \\Ji\\MxHPi> 
i=1 

(ii) There is a constant C2 > 0 such that 

f n 1 _ \a \ 
s u p T T Й = 1 9 d , 1 (z1) ••• d,n(zn) < ж, 

aeDN J Dn k=1 \ 1 _  a k  z k \ 

where a = (a1, a2, .. ., an); 
, 1, . . . , , n 

Sketchy proof: It is enough to prove that ( i i i )=^( i ) = ^ ( i i ) . Let (iii) hold. First 

applying (2.3) in z15 then applying (2.3) again in z2 we get 

\p(zh z2)\d,1(z1) d,2(z2) 

1 
C sup՜ 1 I d,1(z) sup— I d,2(z) 

iET \ 1 \ J S ( I ) J |_IET \ 1 \ J S ( I ) 

x (A^)z2 ( A ^ z i (ф) dm1 ((1) dm 1(^2). 
T T 

Applying this to the function ф = \f1\ q i • • • \fm\ q m on D 2 , and repeatedly applying 

Holder's inequality, we get 

I[\fi(z1,z2)\Q I d,(z1)d,(z2) < с Ц \ I M ^ H p i 

i=1 

X 
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Therefore we get (i). To prove that ( i )=^(i i ) , we apply the same testing functions 

in the proof of Theorem 1. 

As a consequence of Theorem 1, we give the following result. 

T h e o r e m 3. Let s > 0 p > 0 q > 0 satisfy s + q/p = 1. Then the following 

statements are equivalent: 

n 1 — |ak | 
N ) | Q 

)q n |  

П (i) f \f (zi,... ,z, 
JD" 

(ii) / \f(zi,...,z, 
J D " 

(iii) The measures ..., are Carleson measures. 

k=i \1 — ak zk\ 2 

П 1  — \ ak \ 

k=i \1 — ak zk\ 2  

d^i(zi) • • • d^n(zn) < C\\f \\ qA 
H p՛ 

d ^ i ( z i ) • ••  d^n  ( zn  ) <  C \ \ f \ \ M^o HP ; 

Proof: The result can be similarly proved as in [11]. Suppose (i) is true, that is, /ui, 
. . . , are Carleson measures. In Theorem 1 (i) we let m = 2, qi = q, q2 = s, pi = p 
and p2 = 1, and 1 et f i = f , and 

zn) = П ( k k ? ) • 

Then we easily get (iii). The implication (ii i)=^(i) follows immediately by putting 

(1 — \ak\) ) i / P  
f  ( z i , . . . , z n  ) = Л (1 — ak zk )2 

k = I 

and using Theorem 1 (ii). Similarly, applying Theorem 2 we get ( i i )^^(i i i ) . The 

proof is complete. 

R e m a r k 2. We note that the key result (2.3) holds for the unit ball B n of C n , see, 

Theorem, 2.1 in [10]. Therefore, complete analogies of Theorem, 1, Theorem, 2 and 
Bn 

Let S n be the unit sphere in C n . For z = ( z i , . . . , zn) and w = (wi,..., wn) in B n , 

let (z,w) = zIwaI + • • • + znWn a n d \z\ = \ J { z , z) = • We will 

denote by D(a, r) the Djrbashian metric ball in B n with center at a and radius r. It 

is well-known that for z G D(a,r), \1 — {a,z)\^ 1 — \z\2 « 1 — \a\2, see, for example, 

dm 
measure on B n and da to denote the area measure on S n . 
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T h e o r e m 4. Let բ be a positive Borel mea sure on B n . be է 0 < pi, qi < ж, 0 < r < 1, 

a > —1, i = 1, 2,... ,m. Suppose 

^ 1 

£ 1 = ' . 

Then there is a sequence of points {ak} in B n such that 

Yl\fi(z)\ p i dp(z) 
i=i 

C 
qi 

E / \fi(z)\ P l (1 — \z\) a dm(z) 
i/qi 

(2.4) 

if and only if 

(2.5) 

for every k. 

' Ж / � ՝N 
E / \fm(z)\ P m(1 — \z\)° dm(z) 
k=I \J D(aK,2r) 

i /qm 

H(D(ak,r)) < C(1 — \ a k \ ) ( n + i + a)m 

The following lemma can be found in p. 58, [12]. 

L e m m a 1. There exists a positive integer N such that for any r < 1, there exists с 

sequence {ak} in B n satisfying the following conditions: 
Ж 

(1) Bn = (J D(ak,r); 
k=i 

(2) D(ak, r /4) Ո D(am, r/4) = 0 if k = m; 

(3) Any point in B n belongs to a,է most N of the sets D(ak, 2r). 

Proof of Theorem 4: Supposing that (2.5) holds we take a sequence {ak} in B n 

satisfying the conditions in Lemma 1. Then by Lemma 1 (1) 

/ \fI(z)\P l • • • \ F m ( Z ) \ P M dM(z) 
JK" 

< ^ J 2 ^ ( D ( a k , r ) ) sup \f i(z) 
\zeD(ak,r) k=i 

sup \ fm ( z) 
,z£D(ak ,r) 

X 

Q 

X 

P 
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By Lemma 2.24 in [13] the above term is bounded from above by 

• • • x ( [ I fm(w) |p- (1 - | w | ) a dm(w) J 
\ J D ( a k ,2r) J 

and from (2.5) this is bounded from above by 

* П E / I fi(w) IP i (1 - I wI) a dm(w) 
k = 1 \ J D ( a k , 2 r ) , 

1/qi 

so we get (2.4). 

Conversely, let (2.4) be true. Let 

(1 - I o,k 1 2 ) n + 1 + a ^ 1 l P i 

fi(z) (1 - (ak, z)) 2 ( n+ 1+ a )  

i = 1, 2,... ,m. Then 11 - (ak ,z) I « 1 - I z 12 « 1 - I ak 12 for every z G D(ak, r) 
implies 

Г Г (1 - Խ, \ 2)m{n+ 1+a )  

L I Ш Г • •  ) P M z ) ^ Dak„ I 1 + M z ) 
> y (D ( ak , r ) )  

՜ (1 - I ak I  2)m(n+ 1+a ) • 

Using properties of {ak } and Theorem 1.12 in [13] we can show that the right-hand 

side of (2.4) is less than or equal to 

* ( [ (1 - I ak I ) " + 1 + " ( 1 - I z I ) a d ( \ m 

* —м ; , I դ { ... ՝—dm(z) < * < 
\ h n I 1 - ( a k , z ) 1 2 ( n + 1 + a ) ֊ 

Combining this with the above inequality we get (2.5). 

R e m a r k 3. A result similar to Theorem, 4 holds for D n . We leave the proof to the 
readers. 

Propos i t ion 1. Given 0 < qi < pi < leէ X = ^՝iL1(qi/pi) < 1• For any positive 
Borel measures ji.i on B, i = 1,... ,n we have 

q 
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/ \fi(zi, z 2 , . . . , zn)\ q i d j I ( z I ) • • • dj n  ( z n )  

D" i=I 

m 
< C

 П 
•hiÂ Ĥ  

Vi=I 

1 
1 � A 

Ս և ) Щ ՜ 

1-Х 

Proof: Recall that, for C G T, Га(С) = {z G D : \1 — az\ < a (1 — \z\)}. Now 

for a fixed z G D, let Ia(z) = {C G T : z G Г а ( £ ) } . So it is easy to see that 

\Ia(z)\ = JT (z) dmi(C) ~ 1 — \z\2. Therefore, by Fubini's theorem we get 

f <p(z) dj(z) < C ( y ^ L [ dmI(C) dj(z) 
J D J D 1 — \ z\2 J Ia(z) 

(2.6) = C J J Պ Ա Ձ dmI(C), 
J T J RA(£) ( 1 — \ z \ ) 

Let z = (zi,..., zn) and dj(z) = d / i ( z i ) • • • d/n(zn). Applying (2.6) to each 

variable zi,... ,zn, we get 

Д ! Ш i * dj(z) 

< - I , p * ? • ՛ dmn(c) 
n |  T " J F a ( t i ) J r a ( e n )  ( 1  — \ z i \ ) • • •  ( 1  — \ zn\ )  

< C / sup • • • sup П \fi(z)\qi 

JT" \ z i E T a ( £ i ) z"ETa(^") i=i J 
Г Г dji(zi) ••• djn(zn) 

dmn(C) 
- a 

q-. 
lrA(Ei) Խ " ( 1  — \ z i \ ) • • • ( 1 — \ Z N \ y ՜ N 

< C П sup • • • sup \fi(z)\ 
JT" i = ^ z i e r „ ( 5 i ) z"еТА(£") J 

( П Г d ^ A dmn(C). 
\ k = I J R * ( i k ) ( 1 — \ z k \ ) J 

Because (1 — A) + Y^ r[=I qi/pi = 1, it remains to use Holder's inequality to get what 

we need. The proof is complete. 



74 R O M I S H A M O Y A N A N D R U H A N ZHAO 

Propos i t ion 2. Given 0 < qi < pi < ж, leէ X = ^՝i=1(qi/pi) < 1• For any positive 

Borel measures ^ on B , i = 1,... ,n we have 
� m 

/ Ո I fi(z1, z2,..., zn)I q i d^1(z1) • • • d^n(zn) 
i=1 

<* fiWMv! ж H p i 

\i=1 
П d^k (zk) \ 

T N \ K = ^ R A { $ K ) 1 - I Z K \ ) 
dmn(£) 

1 - Л 

Proof for the case n = 2: (for general n the proof is similar). Let z = (z1,z2) and 

С = (ե, ե)- Because (1 - X) + ^ ՝ = 1 qi/pi = 1 by repeated application of (2.6) and 

of Holder's inequality we get 

П I fi(z1, z2)I  qI d^1(z{) d^2(z2) 
i=1 

< С Լ (A^)Z2 Լ (A^)Z1 ( П I fi I x 

x f ^ r dm1(b) dm1 (Հ2) 
\t=1 JRK(tK )  1  -  I  zk \ ) 

m ( ր \ qI/pI 

< С (A^)Z2n / (A^)Z11 fi IPI dm^)) x 
i=1 

П d ( ) V ^ V ^ 1 - I kI j dm1(C1)\ dm 1(^2) 

i=1 

qilPi 

' T \k=1 RK  (iK) 

< * П ( T (A<x>)z2 Լ (Ax)zi I fi IPI dm1(&) dm1(B)) x 

1Ц1-Л) 
d^k (zk)A 

X ' I T J T \ j = J R k ( ( k ) 1 - I  zk \ J 

<* fiWMv!xHPi 
\i=1 

П 
T 2 ) 1 - I Z K \ ) 

dm 1(^1) dm^) 

1 

^ ( z K A dm2(0 

1 - Л 

1 - Л 

The proof is complete. 

R e m a r k 4. (2.6) is in fact true for the unit ball Bn (see p. 138 of \2\). Therefore 

Propositions 1 and 2 hold for the unit ball Bn. 

1 
1 - A 

X 
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3. S H A R P E S T I M A T E S F O R M U L T I F U N C T I O N A L A N A L Y T I C 

E X P R E S S I O N S VIA S T R O N G F A C T O R I Z A T I O N 

T H E O R E M S IN T H E U N I T D I S K 

Let X , X ^ d X2 be subspaces of H(D), the space of analytic functions on D, 

with quasinorms \\ • \\x , \\ • \\Xl and \\ • \\X2. We say that X с H(D) admits strong 

factorization if X = Xi • X2, that is, for any f G X , there exist functions f i G Xi 

and f 2 G X2 such that f = f i f 2 ; and conversely, for any f i G X ^ d f 2 G X2 we 

have f = f i f 2 G X . Therefore, if X = Xi • X2, then 

I' \ f \ q d/(z) < C\\f \\qx 
D 

J 

I' \ fI \ q \ f2 \q d / ( z ) < C f x \ \ f 2 \ \ X 2 , 
D 

where 0 < q < ж . For example, it is known that for the Hardy spaces, if 0 < 

p, q,pI,p2 < ж, and 
1 = 1 1 
p pI p2 

then Hp = HP1 • HP2. Thus if / is a (Hp, q)-Carleson measure, i.e., if 

/ \ f (z) \q d/(z) < C\\f \\HP, 
D 

J 
\ f I ( z ) \q \ f 2 ( z ) \q d / ( z ) < C\\fI\\ HPI \\F2\\H P2. 

D 

By similar steps we can get that, if 
1 = 1 1 
p pI pn 

then / is a (Hp, q)-Carleson measure if and only if 

f \ fI \q ••• \ fn \q dj < C\\fI\\HPi •••Wfn \ \H P" , 
D 

where p,q,pi,... ,pn < ж. Therefore, we get an easy proof of a special case of 

Theorem 1 in [11]. 

This approach can be developed further following [3], where several strong factorization 

theorems were given. 

For f (z) = 5̂ Ж=О akzk, we denote by D s f (z) = ^k=O(k + 1 ) s a k z k the fractional 

derivative of f . For s > 0 , 0 <p < ж , let Hp = {f G Hp : D sf G Hp} be the Hardy-

H P
 s = {D sf : f G HP} 
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functions in Hp. We write BMOAs = {f : D sf e BMOA} and BMOA-s = {D sf : 

f e B M O A } . For s = 0 we denote Щ = H p , and BMOA0 = BMOA. 

For s < 0 and 0 < p,q < ж , let Fpq be the holomorphic Triebel-Lizorkin space 

which consists of holomorphic functions f on D such that 

ԼԱօ \ f (rZ)\  q(1 — r 2 ) - q s - i dr^  / dmi(Z). 

for s < 0 ԲԼ2 = Hp ai 

In [3] it has been proved that, for s < 0 

It is known that for s < 0 Fp2 = Hp and F™2 = BMOAs. 

and more generally, 

HP = Щ • H\ ֊ = ֊ + 1 , 

p r t 

HP = Hp • BMOA^ 

FP = F ж . up 
s ,q s,q * 

The following result is a consequence of the first two strong factorizations and 

H p = HP1 • Hp2 (1/p = 1/p1 + 1 /p2). 

Propos i t ion 3. Let s < 0, let 0 < p,q < <ж. Leէ /л be a positive measure on D. Then 

the following statements are equivalent. 

(i) / is an (Hp, q)-Carleson measure; 

(ii) For 0 < r < <x and 0 < pi < ж i = 1,... ,m satisfying 1/p = 1/r + 1/pi + 

Ւ 1 / p m , 

/ \ fi(z) \ q • • • \ fm(z) \ q \ f (z) \q d/(z) < C\\fi\\qHn • • • \\fm\\%Рт \\f ГНг , 
J D s 

for any f i e Hp% i = 1,... ,m, and any f e HI; 

(iii) For 0 <pi < < i = 1,... ,m, satisfying 1/p = 1/pi + • • • + 1/pm, 

I' \ f i ( z ) \q • • • \ fm(z) \q \ f ( z ) \q d / ( z ) < C\\fi\\ qHP1 • • • WfmWHm \\f WBMOAs. 
D 

for any f i e Hp i (i = 1,... ,m) and any f e BMOAs. 

The same result can be obtained using Fpq = F!,q • Hp and other factorizations. 

For the weighted Djrbashian space consisting of Mialytic functions f on D 

satisfying 
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A = = f I f (z)I p(1 - I z 12)a dm2(z) < ж, 
J D 

where 0 < p < ж Mid -1 < a < ж, Horowitz [7j obtained the following strong 

factorization result. For a > 0 and 0 < p,p1,... ,pm < ж , with 1/p = 1/p1 + • • • + 
1 /p m 

AP I A . 
i=1 

Using this, we get a result on Carleson measures on weighted Djrbashian spaces. 

P r o p o s i t i o n 4. Let0 < p,p1,... ,pm, q < ж satisfy p = p- + • • •+ ,let0 < a < ж. 
p  p1  p m 

Let թ be a positive meas ure on B. The n թե a n (Aa,, q)-Carleson measure if and only 

I f1(z) I q ••• I fm(z) I q dp(z) < С\\h\\ qAP1 f M \ AV R L 

for any fi G Aa (i = 1, .. ., m). 

4. I N E Q U A L I T I E S F O R M U L T I L I N E R A R 

P O I S S O N A N D C A U C H Y - S Z E G O 

T R A N S F O R M S 

Our intention now is to prove some multilinear results for multilinear Poisson and 

Cauchy-Szego transforms and also for operators of multilinear type in the unit ball 

B n . More precisely, we estimate in S n and B n the multilinear operator 

T (f1,f2 ,...,fm)(z) = Ш) ••• fm (Հ) 
11 - (z,01 n  

da(£), z G B n , 

where f i G L 1(Sn,da) and then follow the path proposed in Zhu's book [13] to 

obtain estimates from above for the corresponding multilinear Poisson transform 

P (f1,f2 ,...,fm)(z)= ! №) ••• fm (C)P (z,£) da(0, 
J sn 

and Cauchy-Szego projection 

С (f1,f2 ,...,fm)(z)= I №) ••• fm (С)С (z,t) da(0, 
J Sn 

Recall that 

P (z,0 
2 \ n 

(1 - I z 12) 
I 1 - ( z , t ) 1 2 n  
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and 

C M = (1 — MY 
are Poisson and Cauchy-Szego kernels. 

/ 

S n . Let \ / \ denote the total variation of / so \ / \ becomes a positive Borel measure 

on S n . For z,w e B n , let d(z,w) = \ 1 — (z,w) \ 1 / 2 . For Z e S n and S > 0, let 

Q = Q(Z, S) = {n e Sn : d(Z, n) < S}. Thus Q(Z, n) is the nonisotropic metric ball at 

Z S d 

(Mf )(Z) = sup ( Q ( 1 Z I' f (z) da(z), 
S>0  - ( Q ( Z , S ) ) JQ(C,S) 

and 

Ma (f ) ( Z ) = SUp \ f (z) \ , 
zeDa{z) 

where 
a 

D a ( 0 = {z : \ 1 — (z,0 \ < —(1 — \ z \)}. 

The following results can be found in Chapter 4 and Chapter 5 in Zhu's book [13]-

(A) For 0 < p < ж , a > 1 and f e Hp, 
I' \ (Mf )(z) \p da(z) < C\\f \\Hp. 

J sn 

(B) For 1 <p< ж and f e L p(Sn,a), 

I' \ ( M f ) ( z ) \ p d a ( z ) < C\\f \\pLp. 
J sn 

(C) For 1 <p < ж, a > 1 mid f e L p(Srt,-), 

I' \ (MaP (f ) ) ( z ) \ p d a ( z ) < C\\f \\pLp. 
J Sn 

(D) For 1 <p < ж , a > 1 and f e L p(Sn, Ծ), 

С (MaC(f)(z)) p dԾ(z) < C\\f \\pLp . 
J Sn 

(E) For z e B n z = 0, let 

Qz = Q(z/\z\, у/Т—Щ) = {Z e Sn \ 1 — (z/\z\, Z)\ < 1 — \ z\}. 

If / is а Carleson measure, then for any 1 < p < ж and f e L p(Sn, Ծ), 

sup - Q I \ f \ " ծ \ d/(z) < C\\f \\Lp. 
Q  - ( Q ) JQ J Q °\Q) JQ 

where the supremum is taken over all d^al ls Q in S n such that Qz С Q. 
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We now get the multifunctional versions of these inequalities. First we generalize 

(A) in the following way. 

P r o p o s i t i o n 5. Let 0 < pi: qi < i = 1, 2,... ,m and a > 1.1f0 < s < ж satisfies 

1/s = Y^i=i(qi/pi)> ^hen there is a positive constant С such that, for f i G Hp i, 

i = 1, .. . ,m, 

M J H I fi I 9 

i=1 
< СП1 fiWHlPi • 

i=1 

Proof: For m = 1, the result is known from Theorem 4.24 in [13] - Let m > 2. Then 
m 

Pi = fry* Գլ > i 

sqi qi = Pi ՝ 

Hence, we can apply Holder's inequality and Theorem 4.24 in [13] to obtain 

MAW I fi(z) 
m 

da(z) < T[Ma( | fi(z)I s qI) da(z) 
•JSN i=i 

< П ( / (MaIfi(z)I) ( p q i / q ) [ (- p i ) / ( s q i ) da(z) 
( s q i ) / ( p i ) 

i=1 v  Sn 

m / , • \ ( s q i ) / ( p i )  m  

= П[ Ma( Ifi(z) IP i) da(z)) < СПШЦп ) s  

i=1 V  J s n / i=i 

implying the proposition. 

Here we point out some special cases of the above result. 

1. As Yim=i(qi/Pi) = 1 then s = 1 and so we have 

\ ^^ 

f [ l fi (z) I  q0 da(z) < СП WfiWHipi • 
i=1 i=1 

2. As qi = p^ then 1/s = ^m= 1 1 = m. Thus 

M a [ n I fi I � 
<С fiWHlPi • 

L l/m 

3. If 1/p = Y1  m=1(1/Pi) and qi = p, i = 1 , . . . , m , then 1/s = J2՝m=1(qi/Pi) = 

PE m =1(1/Pi) = 1 and so 

f [ l fi(z) I  p da(z) < СП I 
i=1 i=1 

Using (B), we can get the multifunctional analog of (B). 

ЫНPi • 

L 

s 

Q 



80 ROMI SHAMOYAN AND RUHAN ZHAO 

Propos i t ion 6. Let 1 < pi < ж an d 0 < qi < ж , i = 1, 2,... ,m. If 0 < s < ж 

satisfies 1/s = Y1 'i=i(qi/pi)> then there exists a positive constant C such that, for 

fi e HP i, i = 1,...,m, 

M ( Y [ \ fi \ q < С П l i i ^ f f P i . 
1 

f \qi 

Propos i t ion 7. (multifunctional versions of (C) and (D)). Let 1 < a,pi < ж, 

i = 1, 2 , . . . ,m and 1/p = Y1 ՝m=I(1/pi)^f 1 < P < ж, then 

(i) there is a positive constant С1 such that, for f i e Lp i (Sn, a), i = 1,... ,m, 

= 1 

\\MaP (fI,...,fm)\\br < Ci J J | 
i=1 

(ii) there is a positive constant C2 such that, for f i e LP i (Sn, da), i = 1,... ,m, 
m 

\\MaC (fI,...,fm )Խ < С2П1 m i * i . 
= 1 

Proof: Both of these inequalities follow from the boundedness of the operators MaP 

and MaC on L p(Sn, da) (see, Corollary 4.11 and Theorem 4.35 in [13]) and the Holder 

inequality. We omit the details. 

Propos i t ion 8. (multifunctional version of (E). Let 1 < pi < ж and 0 < qi < ж, 

i = 1 , 2 , . . . ,m. Let 0 < s < ж satisfy 1/s = ^m m=1(qi/pi\ Let թ be a Carleson 

measure. Then there is a positive constant C such that, for f i e Lp i (Sn,da), i = 

1, . . . , m 

1 m \ s \ 1 / s m 

Q a ( Q ) J Q Ц \ f i \4 i da J d v ( z ) J < C n \ f i \ l p i 

where the supremum is taken over all d-balls Q in Sn such that Qz С Q. 

Proof is similar to that of Proposition 5. 

Now let us go back to the multilinear operator T ( f , . . . ,fm)(z) defined in the 

beginning of the section. For the case of one function, the following estimate is known, 

see, for example, Lemma 4.44 in [13]. 

L e m m a 2. Let 1 < p < q < ж. There exists a positive сonstant C such that 
\ I/q 

Ա \T(f )(rn)\ q da(n^  4 < C(1 ֊ r 2 ) 

for all f e L p ( S n , da) and 0 <r < 1. 

2) n ( 1 / q - 1 / p )\\f \p 
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P r o p o s i t i o n 9. Let 1 < pi < ж , i = 1, • • • ,m, le t1/p = Y1 ՝i=1(1 /pi) • V 1 < P < q < 

ж, then there exists a positive constant С such that 

f e \ 1 / q  m  

/ IT(f1,...,fm)(rn) Iq da(V)) < С(1 - r 2 ) n ( 1 / q - 1 / P ^ WfiUPi 
\ J S n / i=1 

for all f i G LP i (Sn, da), i = 1,... ,m, an d 0 < r < 1. 

Proof: Let f = f 1 • • • f n . By Holder's inequality f G Hp, and 
m 

(4 .1) Wf WHp <l[WfiWHPi • 
i=1 

By Lemma 2 

Ա IT (f)(rn) I q  4 < С (1 - r 2r ( 1 / q - 1 / P )Wf ЦР. 

Combining with (4.1), we get the proposition. 

Clearly, for multilinear Poisson transform and Cauchy-Szego projection we have 

(4.2) | P(f1,...,fn)(z)| < 2n | T ( f 1 , . . . , f n ) ( z ) I 

and 

(4.3) | С (f1,...,fn )(z) | < | T (f1,..., fn)(z) |. 

Hence the following result. 

Corollary 1. Let 1 < pi < ж i = 1,... ,m, and 1/p m=1(1/Pi)- < P < q < ж, 

С 
1/q 

< С (1 R 2 ) n ( 1 / q - 1 / P ) T l Wj i n p 

f C \ 1 / q  m  

/ IP(f1,...,fm)(rn) lq da(V)) < С(1 - r 2) n ( 1 / q - 1^ p^\{\ 
\ J S n J = 

and 
f r \ 1 / q  m  

Ա IС (f1,...,fm)(rv) I q da(v)) < С (1 - r 2) n ( 1 / q - 1 / P )  

for all f i G LP i (Sn, da), i = 1,... ,m, an d 0 < r < 1. 

In fact, some better estimates are known as, for example, Theorem 4.46 and 

Corollary 4.47 in [13]. 

P r o p o s i t i o n 10. Let 1 < p < q < ж. Then there exists a positive constant С such 

that 
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/ \ T (f ) ( z ) \q ( 1 ֊ \ z \2 ) q n ( 1 l p - 1 l q ) - 1 d v ( z ) < C\\f \\p 
\JBn J 

for all f e L p(Sn,da). 

Applying Proposition 7, we get by (4.1): 

Proposition 11. Let 1 < pi < ж, i = 1,... ,m and 1/p =Y1 i=1(1/pi)- Ա 1 < p < 
q < ж C 

n\\Pi 

F t - \1 /q  m  

/ \T(fi,...,fm)(z) \ q (1 ֊ \z \ 2 ) q n( 1 l p - 1 l q ) - 1 dv(z) < C ] J \ 
\J«n j i=1 

for all f i e Lp i (Sn, da), i = 1,... ,m. 

>From this result, using (4.2) and (4.3) we can get the corresponding estimates 

for the Poisson transform P (f1,..., fm) and Cauchy-Szego projection C ( f 1 , . . . , fm). 
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