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AnHOTAIIMA. Sharp estimates for some multifunctional analytic expressions and
multilinear operators are given, generalizing the corresponding estimates for a
single function or for a linear operator.

1. INTRODUCTION

Recent years have seen of study of various multifunctional expressions and multilinear
operators in R™. The purpose of this paper is to develop sharp results for multifunctional
analytic expressions and multilinear operators in the area of holomorphic function
spaces in the unit disk and in higher dimensions. The papers by Grafakos and Torres
[5, 6], Muscalu, Thiele and Tao [9] are the prototypes. Two direct approaches will
be indicated in this note. The first leads to new results in higher dimension by
modification of the proof of the known "one functional"case; the second yields sharp
estimates for multifuntional analytic expressions using classical strong factorization
theorems. We note that all our results are known in the particular case of one function
and the unit disk on the complex plane. All proofs in higher dimension can be done
simultaneously in the polydisk and unit ball in C”. In the recent work of the second
author [11] the problems of this type were considered by purely one dimensional
methods in the unit disk using classical properties or inner and outer functions. Some
results of this paper extend that results from one to higher dimensions for certain
values of the parameters.

In Section 2 we will obtain results on Carleson measures in the polydisk and the
unit ball of C" by using multiple functions. In Section 3 we apply some factorization
theorems to obtain characterizations of certain Carleson measures on the unit disk

by multiple functions. In Section 4 we generalize some well-known estimates of the
65
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Poisson transform and the Cauchy-Szegd projection to the multilinear cases. Throughout

the paper, C' will denote positive constants.

2. SOME SHARP INEQUALITIES FOR
MULTIFUNCTIONAL HOLOMORPHIC
EXPRESSIONS IN HIGHER DIMENSION

Let D = {z : |2] < 1} be the unit disk, 7" = {z : |2| = 1} be the unit circle.
For 0 < p < o0, let H? denote the Hardy space which contains analytic functions f
defined on D such that

1 27 ;
191 = s 5= [ Lrtre)p an < .
0<r<1 &7 Jo

Let p be a positive Borel measure on D, X be a Banach space of analytic functions
on D. Given ¢ > 0, we say that pis an (X, ¢)-Carleson measure, if there is a constant
C > 0 such that for any f € X,

/D £ dulz) < CIFI%.

An (H?,p)-Carleson measure is the classical Carleson measure. The Carleson
measure was introduced by Carleson {1} in his study of the problem of interpolation
by bounded analytic functions and the famous corona problem. It became a very
useful tool in the study of function spaces and operator theory. It is known that p is

a Carleson measure if and only if
(i) there is a constant Cy > 0 such that, for every a € D,

1— 2
[2H <
D

|1 —az|?
or

(ii) there is a constant C > 0 such that for any arc I € T,

p(S(I)) < Colll,
where
SH={zeD:1-|l|< |zl <1, z/|z| € 1}

is the Carleson box based on I, and |/| is the normalized length measure on

T (see, for example, Section 8.2 in [12}).
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Let D" =D x D--- x D be the polydisk and T = {{ = ({1,...,¢n) € D™ 2 |§G] =
1,7 =1,2,...,n} the torus. We will write dma,, to denote the Lebesgue measure on
D™ and dm,, to denote the Lebesgue measure on T™.

Let @ > 1. Let Th(¢{) = {z € D : |1 -z < a1l — |2|)}. Following [4], for
0 < p < oo, we define the analytic tent space A, HP which consists of analytic

functions f on D" satisfying
Wi = [ sup o sup  [F)P () < oc.
Tm 21670, (Q1)  #n€lay (Cn)

Theorem 1. Let py, ..., pn be positive Borel measures on D. If 0 < p;,q; < 00,
1=1,...,m satisfy

> ()

pi

then the following conditions are equivalent:

(i) There is a constant Cy > 0 such that

(2.1) /nH|fi(217227...7zn)
i=1

(ii) There is o constant Cy > 0 such that

qidﬂl('zl) o dﬂn('zn) < CH ”fz qzoo
i=1

1 — Jay|
2.2 sup/ ————dp(z1) - dpn(2,) < 00,
(22) nH T (1) ()
where a = (a1, as, ..., an);
(ili) The measures p1, ..., b are Carleson measures.

Proof: For simplicity, we give the proof for the case n = 2 (the general case is similar).
It is clear that conditions (ii) and (iii) are equivalent.
Let (iii) hold. We write
1

Ao (N)Q) = sup [f(2)],  Co(pw)(C) = sup =

Fi du(z).
26T (C) cer HI Js(n

It is well-known that, if © is a Carleson measure then for any complex-valued

function f on D,

(2.3) /DIf(Z)IdM(Z) SC/T[Q(M)(C)][AOO(J”)(C)] dm1(),
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(See Proposition 3 in [4], or Theorem 2.1 in {10]). We have to prove (2.3) in the bidisk
D? = D x D. First applying (2.3) in z{, then using Fubini’s theorem, and applying

(2.3) again in 25 we get that for any complex-valued function ¢ on D?,

/D (21, 20)| dp (21) dpn(22)
<C// o) () (1, 22)C1 () (C1) dma (G1) dpia(22)

<C Ao )z (0)(C1, 22) dpa(22)Cr(p)(C1) dma (Cr)
TJ]D)

<c [ [ 4 (A (@)1 (02) 2 dmm@ﬂ () (C2) dima (C1)
T2

<C

sup —
rer || Jsn

1
sup — dps(z)
rer |1 Jsn

dm(Z)}

| [ ) (sl dmac) ()]

Applying this to ¢ = [f1]|? - - - | fr |9 we immediately get that (iii) implies

/ Foens 20)| - (1, 2)[P dpan (1) dpa(22)
]D)2

<C [(AOO)21(AOO)Z2|f1|q1] T [(AOO)ZI (A00)22|fm|qm] dmZ(Ch CZ)

T2
A simple application of Holder’s inequality yields (2.1).
Finally, suppose (i) holds. Let for ¢ = 1,2,...,m

filz) = (%)1/1%7

1—|a|:1_[(1—|ak|)7 (1—az)’ H 1 —agz)?
k=1

k=1

where

Using the classical theorem on p. 180, Chapter 8 in [8], we get that f; € A HP:.
Substituting in (2.1) we get

HZ:1(1 — |ag|)
sup o — 3
ach™ Jpn Hk:l |1 - akzk|

dpq(z1) -+ dpn (2n) < 00.

So we get (ii), and the proof is complete.
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Remark 1. A result of this type was first obtained by the second author in [11},
for the Hardy spaces HP on the unit disk D. The proof in [11], however, is based on

properties of outer and inner functions and hence is purely one-dimensional.

If we define a “mixed-norm"space Mo HFP, 0 < p < o0, as the space of analytic

functions f on D™ such that the norm || f||as., me is given by the following

1/p
(/ sup / sup |f<zl7227...7zn>|Pdm1<51>~~dm(fn)) 7
T 20€T o, (€n) T 2160, (1)

where a;; > 1,1 =1,2,...,n, then we get a result similar to Theorem 1:

Theorem 2. Let pq, ...y be positive Borel measures onD. Let 0 < p;,q; < 00, 1 =
1,...,n be such that >_;* (q;/pi) = 1. Then the following conditions are equivalent

(i) There is a constant Cy > 0 such that
[ ez duaten) - dunen) < CTL I
D™y i=1

(ii) There is o constant Cy > 0 such that

i .
MOOHPz'7

n

1 — Jay|
sup —————du(z1) - dpg(zy) < 0
swp [ ] 7o st dinen) < oo
where a = (a1, as, ..., a,);
(ili) The measures p1, ..., b are Carleson measures.

Sketchy proof: Tt is enough to prove that (iii)==-(i) ==(ii). Let (iii) hold. First
applying (2.3) in 21, then applying (2.3) again in 29 we get

[ et sl dun () dpa(a2)

<C

1 1
Sup — dpa(2)| [sup dpa(z)| x
rer ] Jsn rer ] Jsn

« /T (A)., /T (Aso)on () dims (1) dima (G2).

Applying this to the function ¢ = |f|? -- | fm|? on D?, and repeatedly applyin
g g

Holder’s inequality, we get

4z
Moo HP% *

[ ez

“ dp(z1)dp(z0) < CTT IS
i=1
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Therefore we get (i). To prove that (i)=-(ii), we apply the same testing functions
in the proof of Theorem 1.

As a consequence of Theorem 1, we give the following result.

Theorem 3. Let s > 0, p > 0, g > 0 satisfy s + q/p = 1. Then the following

statements are equivalent:

. 71— las

(1) / |f(217"'7 [H |1_akzk|2‘| d/,bl(Zl)d/,Ln(Zn) §C||f||(114ooHP7
.. To1- |ak| q .
6 f ezl \TL | diaten) - dinten) < CUP i
iii) The measures uq, ..., uy, are Carleson measures.
(iii) f1s 7u

Proof: The result can be similarly proved as in {11]. Suppose (i) is true, that is, 1,
.., n are Carleson measures. In Theorem 1 (i) welet m =2, g1 =¢, g = s, p1 =p
and po = 1, and let f1 = f, and

- 1 - |ak|
Then we easily get (iii). The implication (iii)=(i) follows immediately by putting
(=) N7
f(Z:l?"'? H( l_akzk ?

and using Theorem 1 (ii). Similarly, applying Theorem 2 we get (ii)<=>(iii). The

proof is complete.

Remark 2. We note that the key result (2.8) holds for the unit ball B, of C", see
Theorem 2.1 in [10]. Therefore, complete anaologies of Theorem 1, Theorem 2 and
Theorem 3 hold for the unit ball By, with similar proofs.

Let S,, be the unit sphere in C". For z = (21,...,2,) and w = (wy,...,wy,) in B,
let (z,w) = 2901 + --- + 2,10, and |2] = /(2,2) = /|21]> + -+ |2a]?. We will
denote by D(a,r) the Djrbashian metric ball in B,, with center at a and radius r. It

is well-known that for 2 € D(a,7), |1 — (a, 2)| = 1 — |2|* = 1 — |a|?, see, for example,
Lemma 2.20 in {13]. Following the notations in [13] we write dm to denote the volume

measure on B,, and do to denote the area measure on S,,.
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Theorem 4. Let i be a positive Borel measure onB,,. Let 0 < p;,q; < 00,0 <r <1,

£0)-

iz N

a>—1,i=1,2,...,m. Suppose

Then there is a sequence of points {ay} in B, such that

/ H|fz(2) Pi du(z)
Br i=1
i qiqYa
=€ ; </D(ak,2r) [f(Z) (= =) dm(2)> ‘| "
> gm L/ am

2.4 (AP — ) dim(
(2.4) x[;</[)(am|f<>| (1~ 2l) ()) ]
if and only if
(2.5) u(D(ag, 7)) <COA — |ak|)(’ﬂ+1+a)m

for every k.
The following lemma can be found in p. 58, [12].

Lemma 1. There exists a positive integer N such that for any r < 1, there exists a

sequence {ay } in B, satisfying the following conditions:

(1) By = | Dlaw.r);

k=1
(2} D(ak,r/4) N D(am,r/4) =0 if k#m;
(3) Any point in B,, belongs to at most N of the sets D(ay,2r).

Proof of Theorem 4: Supposing that (2.5) holds we take a sequence {a;} in B,

satisfying the conditions in Lemma 1. Then by Lemma 1 (1)

/ AP ()P dpa(2)
B,

<CY u(Dlar,r)) ( sup )|f1(2)|p1> ( sup Ifm(z)lp*"> :
k=1

z€D(ak,r z€D(ag,r)
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By Lemma 2.24 in [13] the above term is bounded from above by

- pw(D(ag,r)) 1 e
Ckz:; (1 — |ag|)(nt1+eIm </D(ak,2r)|fl(w)| (1 — w|)® dm( )) %
- </D(ak,2r) [ ()P (1 = o) dm(w))

and from (2.5) this is bounded from above by

g1 /%
Pe(1 = Jw|)” dm(w)> 1 ;

>0

> ( [

k=1

cll

i=1

80 we get (2.4).
Conversely, let (2.4) be true. Let

(1- |ak|2)n+1+a 1/ps
f’L(Z) - <(1 _ <ak7z>)2(n+1+a)> )
i=1,2,...,m. Then |1 — {ay,2)| ~ 1 — |2|? = 1 — |ag|? for every z € D(ay,r)

implies

(1 _ |ak|2)m(n+1+a)
>|2m(n+1+a) dM(Z)

/B RGP die) 2 /D

(ag,r) |1 - <ak7z

p(D(ay, 7))
- (1 _ |ak|2)m(n+1+a) :

Using properties of {ay, } and Theorem 1.12 in {13} we can show that the right-hand

side of (2.4) is less than or equal to

. ( / (L= Jag))™ 4o (1 = J2])e dm(2)>"‘ e

|1 = (ag, 2) Pt 1te)

n

Combining this with the above inequality we get (2.5).

Remark 3. A result similar to Theorem 4 holds for D™. We leave the proof to the

readers.

Proposition 1. Given 0 < q; < p; < o0, let A =7 (q;/p:i) < 1. For any positive

Borel measures pp; onD, i =1,...,n we have
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% dﬂl(zl) cee dﬂn('zn)

) [/ (H/r (&) Cllﬂ—k|zk|>llkdmn(£)] ”.

Proof: Recall that, for £ € T, T'n(§) = {z € D : |1 —&2| < ol —|z|)}. Now
for a fixed 2 € D, let In(2) = {£ €T : zeTT,(&)}. Soitis easy to see that
[La(2)| = [}y dmi(€) = 1 — |2|*. Therefore, by Fubini’s theorem we get

/“ 2) du(» <<7/'1_ ﬂi@ dma(€) du(2)

(2.6) C//F . 'W1_|C|l“| =) gy ©),

Let 2 = (21,...,2n) and du(2) = dui(z1) - dun(2,). Applying (2.6) to each

/]D) H|fz 217227~~~7Zn)

™ i=1

<C (H Ifll%
i=1

variable z1, ..., 2z, we get

# dp(z)

/1)

[ o [T 1 fi(2)|% du(z)
<C T"JFa(§1) '/Fa(En (1_|Zl|)(1_|zn|)d

cof (o e Tl
Tn

#1€Ta(€)  2n€lal€n) )
rae)  Jragen (T=1lz1l)---(1 = z])
qz
( sup ... sup |f¢(2)|>
Tr =1 z160 (51) 2n€la (En)

dpg (2,
(HA@14M>M“’

Because (1 —A\)+> ", ¢i/p; = 1, it remains to use Holder’s inequality to get what

IA
Q
=

we need. The proof is complete.
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Proposition 2. Given 0 < q; < p; < oo, let A =7 (q;/p:;) < 1. For any positive

Borel measures pp; onD, i =1,...,n we have

/WH|fi(217227...7zn)
=1

& dﬂl('zl) ce dﬂn('zn)

1

(L ) o]

Proof for the case n = 2: (for general n the proof is similar). Let z = (21, 22) and
€= (&, &). Because (1 —X) + 37", qi/p; = 1, by repeated application of (2.6) and

<C (H 1 £:l1%
i—1

of Holder’s inequality we get

¥ dpy (21) dpa(z2)

/. H|fz (o1, 22)

oo o )

2 d
x (H Mk ) dmq (&) dmq (&)

1 ¥ k(&)

m

<o [ a1 ( /T (Anc)o [P dm(a))m ><

T i=1

9 di(=2) 1/(1=X) 1=A
1o (25
g (/T (H /msk) 1- |Zk|> dml(&)) dmfee)

k=1

1 9:/ps
. CH </T(AOO)Z2 /T(AOO)Z1 |[fal"* dma (&) dm1(§2)> X
i1
1/(1=2)
(// ( /F(E Cllu_kti?) dm1(51)dm1(§2))
k=1 & (&)
L 1-2
dpur (25 T—x
) [/ (H/F (&) 1_|Zk|} dmZ(f)] .

1—X

<C (Hllfz

The proof is complete.

Remark 4. (2.6) is in fact true for the unit ball B,, (see p. 138 of |2]). Therefore
Propositions 1 and 2 hold for the unit ball B,,.



SHARP ESTIMATES OF MULTILINEAR OPERATORS 75

3. SHARP ESTIMATES FOR MULTIFUNCTIONAL ANALYTIC
EXPRESSIONS VIA STRONG FACTORIZATION
THEOREMS IN THE UNIT DISK

Let X, X; and X, be subspaces of H(ID), the space of analytic functions on D,
with quasinorms || - ||x, || - [|x, and || - ||x,. We say that X C H(D) admits strong
factorization if X = X; - Xo, that is, for any f € X, there exist functions f; € X3
and fo € Xy such that f = fifo; and conversely, for any f1 € X; and fo € Xy we
have f = fifo € X. Therefore, if X = X, - Xo, then

[ i) < s
if and only if
[ 1r1ar aue) < LA IRIL,
where 0 < ¢ < oo. For example, it is known that for the Hardy spaces, if 0 <
P, 4, p1,p2 < 0, and

P P om
then HP = HP1 . HP2 Thus if p is a (H?, ¢)-Carleson measure, i.e., if

/D N du(z) < ) flle,

1 1 1
+

then
/lel(Z)lqlfz(Z)lqdu(Z) < I fillden | f2ll Gms -

By similar steps we can get that, if
11 1
then p is a (H?, ¢)-Carleson measure if and only if

?

/ L1l i < Ol fillazon - o laroe
D

where p,q,p1,...,pn < oo. Therefore, we get an easy proof of a special case of
Theorem 1 in {11].

This approach can be developed further following [3], where several strong factorization
theorems were given.

For f(z) = 3.2 arz”, we denote by D*f(2) = 3.2 (k + 1)*ayz" the fractional
derivative of f. For s > 0,0 < p < oo, let HP = {f € H? : D*f € HP} be the Hardy-
Sobolev space, and H” _, = {D*f : f € H?} be the space of fractional derivatives of
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functions in H?. We write BMOA; ={f: D°f € BMOA} and BMOA_; ={D°f:
f € BMOA}. For s =0, we denote HY = HP, and BMOAy = BMOA.
For s < 0 and 0 < p,q < oo, let F¥, be the holomorphic Triebel-Lizorkin space

which consists of holomorphic functions f on D such that

/ ( / O — 2y dr)p/qdm(o.

It is known that for s <0, FY, = HE and F{4 = BMOA,.
In [3] it has been proved that, for s <0,
1 1 1
Hg):H;Ht7 - = + -,
p r

H? = H? . BMOA;,
and more generally,
Fro=F> - HE.
The following result is a consequence of the first two strong factorizations and
HY = HP - HP> (1/p = 1/p1 + 1/p2).

Proposition 3. Let s <0, let 0 < p,q < 00. Let p be a positive measure on D. Then
the following statements are equivalent.

(i) pis an (HP, ¢)-Carleson measure;
(ii) For 0 <r < oo and 0 <p; < oo, i=1,...,m satisfying 1/p=1/r+ 1/p; +
U,

/lel(Z)lq~~Ifm(Z)Iqlf(Z)lqdu(Z) < Ol - Nl arem LA N 5

forany fy €e HP: v =1,...,m, and any f € H];
(iili) For 0 <p; <oo,i=1,...,m, satisfying 1/p=1/p1+ -+ 1/pm,

/lel(Z)lq oD ()] dulz) < Clfillien - Nl b 1 F 1 B rr0 4, -
forany f; € HP (i=1,...,m) and any f € BMOA,.
The same result can be obtained using F? = F - H? and other factorizations.

For the weighted Djrbashian space AL, consisting of analytic functions f on D

satisfying
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g = [ 1P = (2P dma(e) < o
where 0 < p < o0 and —1 < a < oo, Horowitz |{7] obtained the following strong
factorization result. For a > 0 and 0 < p,p1,...,pm < 00, with 1/p=1/p1 + -+ +
1/pm,

m
Ar =TT A%
i=1
Using this, we get a result on Carleson measures on weighted Djrbashian spaces.

Proposition 4. LetO < p,p1,...,0Pm,q < 00 satisfy % = p%jL' . ~+Ii, let) < a < 0.
Let i be a positive measure on D. Then w is an (A%, q)-Carleson measure if and only

if

SR 1) daz) < Ol g
for any f; € A% (i=1,...,m).

4. INEQUALITIES FOR MULTILINERAR
POISSON AND CAUCHY-SZEGO
TRANSFORMS

Our intention now is to prove some multilinear results for multilinear Poisson and
Cauchy-Szeg6 transforms and also for operators of multilinear type in the unit ball

B,,. More precisely, we estimate in S,, and B,, the multilinear operator

Tl foreos o)) = | %w(g)? 2 €B,

where f; € L(S,,do) and then follow the path proposed in Zhu's book [13] to

obtain estimates from above for the corresponding multilinear Poisson transform

PUf1s fare o )2 /f1 (€)P(2,€) do(€),
and Cauchy-Szegd projection
CUf1s Foreos fu)2 / A1) Fn(©)C(5,€) do(),
Recall that
ploe) - LR

|1 - <Z7£>|2n
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and
1

CEO=a e

are Poisson and Cauchy-Szegé kernels.

Following Chapter 4 in Zhu’s book [13], let p be a complex Borel measure on
Sy.. Let || denote the total variation of p, so |u| becomes a positive Borel measure
on S,. For z,w € B,, let d(z,w) = |1 — (z,w)|"/?. For ( € S, and § > 0, let
Q=06 =1{nesS,:d(,n) <} Thus Q(¢,n) is the nonisotropic metric ball at

¢ with radius . We will call them d-balls. We define the following maximal functions.

1
(M)Q) = s1p s /Q RCLC!

and

Mo(£)(CQ) = sup [f(2)],

ZED&(C)
where

Dal€) = {=: 1= ()] < 51— 2D}

The following results can be found in Chapter 4 and Chapter 5 in Zhu’s book [13].
(A) For0<p<oo,a>1and f e HP,
/ M) dot) < O T
(B) Forl <p<ooand fe LP(S,,0),
/ MAEP doz) < NI
(C) Forl <p<oo,a>1and f e LP(S,, o),
/ MLPUNEI do() < O
(D) Forl<p<oo,a>1and f e LPS,, o),
/ (MLCE) do) < Ol
(E) For z€ B, 2 £0, let
Q- = Q(z/|2, V1 = 2]) = {C € Sn |1 = (2/]2], O)] < 1 — 2]}

If 11 is a Carleson measure, then for any 1 < p < oo and f € L?(S,,,0),

/Bn (S%p @ /Q 1 dff)p au(z) < CI 5.

where the supremum is taken over all d-balls @ in S,, such that Q, C Q.
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We now get the multifunctional versions of these inequalities. First we generalize

(A) in the following way.

Proposition 5. Let 0 < p;,q; <o0,i=1,2,... manda>1. If0 < s < oo satisfies
1/s = >0 (qi/pi), then there is a positive constant C such that, for f; € HP:,

i=1

Proof: For m = 1, the result is known from Theorem 4.24 in [13]. Let m > 2. Then

<CH||fZ

L=

8q; q9i =] Pi

Hence, we can apply Holder’s inequality and Theorem 4.24 in [13] to obtain

L [Ma (ﬁm(z) )] o
ﬁ(/ My |fi(2)]) P/ Dlpa)/ (33:)] da(2)>(5%>/(pi>

(sq:)/(pi)
Py das) ) <0H Tar

"

1( [ s 7
implying the proposition.

Here we point out some special cases of the above result.

1. As 307" (qi/pi) = 1, then s = 1 and so we have

/SMQ< |fi<z>%> <CH||J2
n i=1

2. As ¢; = p;, then 1/s =5 1 = m. Thus

M, (Hm %’) < CHHﬁ v
i=1

=1 Li/m
3.1t 1/p = 2211(1/191‘) and ¢; = p, 1 =1,...,m, then 1/s = 2111(%/191) =
Py (1/p;) =1, and so

| v <H|fi<z>|ﬁ> do(=) < CTT 1 fillo.
n i=1 i=1

Using (B), we can get the multifunctional analog of (B).

=
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Proposition 6. Let 1 <p;, <o and0 < ¢ < o0, 1 =1,2,....m. If 0 < s <
satisfies 1/s = 57" (qi/pi), then there exists a positive constant C such that, for
fie Hi i=1,....m,

%)

HM (Hlfi <cI]s
i=1 s i=1

Proposition 7. (multifunctional versions of (C) and (D)). Let 1 < a,p; < o0,
i=1,2,...,mand 1/p=>37",(1/p;). If 1 <p < o0, then

9z
HPi

L

(i) there is a positive constant Cy such that, for f; € LPi(S,,0),i=1,...,m,

i
LPi-

1Mo P(f1s s f)lle < C ]I
i=1

(i) there is a positive constant Co such that, for f; € LPi(S,,do), i=1,...,m,

IMaC(frs s fn)llie < Co T AN Foe-

i=1
Proof: Both of these inequalities follow from the boundedness of the operators M, P
and M,C on LP(S,, do) (see, Corollary 4.11 and Theorem 4.35 in [13]) and the Holder

inequality. We omit the details.

Proposition 8. (multifunctional version of (E). Let 1 < p; < 00 and 0 < ¢; < o0,
i=1,2,...,m. Let 0 < s < oo satisfy 1/s = > i (qi/p:). Let p be a Carleson
measure. Then there is a positive constant C such that, for f; € LPi(S,,do), i =

1

g, M,

m s 1/s m
! % do z i
(/Bn (sgp%/cgil_[lm d ) dp( )) SCE”ﬂ

where the supremum is taken over oll d-balls Q in S, such that Q. C Q.

i
Lpis

Proof is similar to that of Proposition 5.
Now let us go back to the multilinear operator T'(f1,..., fm)(z) defined in the
beginning of the section. For the case of one function, the following estimate is known,

see, for example, Lemma 4.44 in [13].
Lemma 2. Let 1 < p < g < oo. There exists a positive constant C such that

1/q
( / IT(f)(m)l"da(n)> < C(1 =2y ],
for all f € LP(S,,,do) and 0 < r < 1.
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Proposition 9. Let 1 <p; <oo,i=1,....m, let 1/p=>31" (1/p;). If 1l <p < q<

00, then there exists o positive constant C such that

Pi

1/q m
( [ ~7fm)(7"77)|qd0(77)> <o -2y m T I,
n =1

for all fi € LPi(S,,,do), i=1,....,m, and 0 <r < 1.

Proof: Let f = f1 -+ fn. By Holder’s inequality f € H?, and

(4.1) 1l < Tl
i=1

By Lemma 2

) 1o -
( [ e da<n>) < (1 = 2y 1D
Combining with (4.1), we get the proposition.

Clearly, for multilinear Poisson transform and Cauchy-Szegt projection we have

(4.2) [P(f1, -5 Fa) (R S 20T (frse oo fo)(2)]
and
(4.3) IC(f1, -5 F) (D < AT (frs -, Fa)(2)]-

Hence the following result.

Corollary 1. Let 1 <p; <oo,i=1,....,m, and 1/p = " (1/p:). If 1 <P < q < o0,

then there exists a positive constant C such thot

Pz

1/q m
( [ 1P gl da<n>) <o -2y m I
n =1

and

1/q om
([ 1t gntastn) <ot -2p@en T s,
n i=1
for all f; € LPi(S,,do), i=1,...,m, and 0 <r < 1.

In fact, some better estimates are known as, for example, Theorem 4.46 and
Corollary 4.47 in {13].

Proposition 10. Let 1 < p < ¢ < oo. Then there exists o positive constant C such
that
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1/q
(/ |T<f><z>|m—|z|2>q”<1/ﬁ1/q>1dv<z>) <l

n

for all f € LP(S,, do).
Applying Proposition 7, we get by (4.1):

Proposition 11. Let 1 <p; < o0, i=1,....,mand 1/p = 1o (1/p:). If 1 <p <

q < 00, then there exists a positive constant C such that

Pi

1/ m
(/ T (1, f)(2)]|4(1 — |22)en (/P 1/ )1 dv(z)) ' < CH I| £l
B, i=1
for all f; € LPi(S,,,do), i=1,...,m.

>From this result, using (4.2) and (4.3) we can get the corresponding estimates

for the Poisson transform P(fi,..., fm) and Cauchy-Szegd projection C(f1,..., fm).
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