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АННОТАЦИЯ. T h e paper investigates the invariance and integrability propert ies 
of Hi ro ta -Sa t suma equations . Painleve analys i s for the general s imilarity reduced 
ordinary differential equat ion is performed. Using Rung-Kut ta -Merson method 
in shooting and matching technique, the nonlinear ordinary differential equat ions 
a re solved that were numerically converted from similarity reduction. 

1. I N T R O D U C T I O N 

In 1981, R. Hirota and J. Satsuma first proposed the well-known Hirota - Satsuma 

KDV equation [1]. This equation describes an interaction of two long waves with 

different dispersion relations. 

It is well known that the nonlinear partial differential equations are widely used 

to describe many important phenomena in physics, biology, chemistry, etc. This 

equations play a crucial rule in applied mathematics and physics and have many 

applications in physics and Engineering. 

For the past two decades the Lie group method has been applied to solve a wide 

range of problems and to explore many physically interesting solutions of nonlinear 

phenomena [2]–[5]. In recent years several extensions and modifications of the classical 

Lie algorithm have been proposed in order to arrive at new solutions of PDE [6]. 

The present paper gives a systematic investigation of the invariance and integrabi-

lity properties of Hirota-Satsuma coupled KDV equation. This enables us to obtain 

similarity reductions and allows us to derive a great variety of particular solutions 

which have not been reported for Hirota – Satsuma KDV equation. 

An ordinary differential equation (ODE) is said to be Painleve type or to have the 

Painleve property if all its solutions are free from movable critical points. A critical 

point is a branching point or a singularity in the solution of the ODE. It is movable if 
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its location depends on the initial values. The most well known ode of Painleve type 

are the so-called Painleve equations, PI-PVI [7]. 

The connection between complete integrability and Painleve property was first 

noticed by Ablowitz – Segur [8], who observed that the similarity reductions of 

nonlinear PDE solved by inverse scattering transform give rise to nonlinear ODEs. 

First, we introduce a generalized nonlinear Hirota-Satsuma KDV equation in the 

following form: 

(1.1) ut = 1 Uxxx - 3uux + 3(vw)x, 

( 1 . 2 ) Vt = -Vxxx +3uvx, 

(1.3) wt = -wxxx + 3uwx. 

This paper is arranged as follows. In Section 2, we briefly describe the invariance 

analysis and obtain the reduction system for equations (1.1)–(1.3). In Section 3, we 

describe the improved Painleve analysis and obtained new solutions of equations' 

(1.1)–(1.3). In Section 4, Shooting Method is used to study the reduction similarity 

system of Hirota-Satsuma KDV equation. 

2. I N V A R I A N C E A N A L Y S I S 

Let us consider one-parameter Lie group of infinitesimal transformations of the 

form: 

x —> X = x + e^i(x, t, u, v, w) + O(e 2), 

t —> T = t + c^2(x, t, u, v, w) + O(e 2), 

u —> U = u + ճֆւխ, t, u, v, w) + O(e 2), 

v —> V = v + (x, t, u, v, w) + O(e 2), 

(2.1) w —> W = w + ефз^, t, u, v, w) + O(e 2), e << 1, 

depending one infinitesimal parameter e. This Lie-Group based similarity method 

has already been applied successfully to construct and classify all possible classes of 

similarity solutions. 
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Applying the infinitesimal Lie-group technique [5], a straightforward calculation 

yields the following generators of the e Lie group: 

2 

Փl = - 3 կո, 

Փշ = kiv, 
ՓՅ = - 3(3ki + 4 k A ) w , 

£ i = k2 + 3 kAx, 

(2.2) £2 = кз + k4t, 

where ki,k2,k3 and kA are arbitrary constants. 

The extremal Lie group of transformations, admitted by (2.2), is thus seen to 

depend on four arbitrary group constants (ki, k2, k3, k4). Consequently, the infinitesi-

mal generators are: 

Xi = v^ w—, ov aw 

( 2 . 3 ) X ^ ^ ՚ 

д д 
д 

д_ 
дх 
д 

( 2 . 4 ) X3 ^ 

. , 1 д д 2 д 4 д 
( 2 . 5 ) X 4 = 2 х д Х + - 3 и д и - 3 w a W 
The commutation relation between these generators are given in the following table: 

Xi X2 X 3 X 4 
X i 0 0 0 0 
X 2 0 0 0 3 X2 
X 3 0 0 0 X 3 
X 4 0 - 3 X2 -X3 0 

Group-invariant solutions can be found by solving the characteristic equation: 
(2 g) dt dx du dv dw 

' £2 £i Pi P2 P3 
After solving the characteristic equation (9) associated with the infinitesimal sym-
metry (2.2), one obtains: 

3k2 + k4x 
(2.7) z = 1 , 

(k3 + k4t) 3  

and 

^i(z) = (k3 + k41) 2 u 

^ ( z ) = (k3 + k4t)  k 4 v, 
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/ 4 I \ 

(2.8) u3(z) = (k3 + k 4 t ) (  3 + '4  )w, 

where z is the similarity variable and wi(z),w2(z),w3(z) represent the similarity 

functions. 

Substituting (2.7) and (2.8) into equations (1.1)–(1.3), we obtain an ordinary 

differential equations of the form: 

3k2 w'{'(z) + 2 zw'1 (z) + 4w 1 (z) 

(2.9) - 18w 1(z)w i (z) + 18w3(z)w2 (z) + 18w2(z)wi, (z) = 0, 

3k 
(2.10) 3 k 2 < ( z ) - zw2(z) + — w2(z) - 9w1(z)w2(z) = 0, 

4 2 2 k4 2 

3 k 1 
(2.11) — zw'3 (z) ;— w3(z) — 9wi(z)w3 (z) — 4w3(z) = 0, 

k4 

where 
t dwi n d 2wi /// d 3wi 

wi =  wi = d l a n d w = d f ( г = 1 ՛ 2 3 ) -
In the following sections we solve the ordinary differential equations (2.9)–(2.11) by 
two different methods. 

3. P A I N L E V E A N A L Y S I S 

Following [9], we outline the WTC algorithm for testing ODEs for the Painleve 

property. Each of the three main steps of the algorithm is illustrated by the system 

(2.9)–(2.11). 

We assume a Laurent series solution 

(3.1) wi(z)= g a i(z)J2 wi,k(z)g k(z), г = 1, 2, 3, 
k=0 

where the coefficients wi^k(z) are analytic functions of z with wito(z) = 0 in a 

neighborhood of the manifold. 

3.1. S t e p 1 ( D e t e r m i n a t i o n of the D o m i n a n t B e h a v i o r ) . To investigate the 

singularity structure analysis (2.9)–(2.11), we apply a local Laurent expansion in a 

neighborhood of a noncharacteristic singular g(z) = 0. 

Assume that the leading orders of the solutions of system (2.9)–(2.11) have the 

form 

(3.2) wi (z) = Xi g a i (z), г = 1,2,3, 
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wi(z) = X i g a i (z), 

w2(z) = X2 g"2 (z), 

(3.3) w3(z) = X3 g a 3 (z), 

where Xi , X2 and X3 are constants. 

We substitute (3.3) into the equations (2.9)-(2.11) to determine the leading expo-

nents a.i. Balancing between the highest order term and the non linear terms, we 

get: 

a i = a 2 = a 3 = - 2 . 

The traditional Painleve test requires that all a i , a 2 and a3 be integers and at least 

one of them be negative. 

If one or more exponents a i , a 2 and a3 remain undetermined, we assign integer 

values to the free ai(i = 1, 2, 3) so that every equation in (2.9)-(2.11) has at least 

two different terms with equal lowest exponents. 

For each solution a i , we substitute 

wi(z) = wi,o(z)g a i(z), i = 1, 2, 3, 

i.e. 

wi(z) = ao (z)g - 2(z), 

w2(z) = bo(z)g - 2(z), 

(3.4) w3(z) = co (z)g - 2(z) 

(where a0(z),b0(z) and c0(z) do not vanish) into (2.9)-(2.11). We then solve the 

nonlinear equation for wi,o, found by balancing the leading terms with the lowest 

exponent of g(z). 

If any of the solutions contradicts the assumption wito(z) = 0, then that branch of 

the algorithm fails the Painleve test [10]. 

If an ai is non-integer, all the ai are positive, or the assumption wito(z) = 0 fails, 

then that branch of the algorithm terminates and does not pass the Painleve test. 

We substitute (3.4) into (2.9)-(2.11). Requiring that the leading terms be g - 5(z), 

and balancing at g - 5(z) we obtain 
4k4 

(3.5) ao(z) = 4k|g / 2(z), bo(z) = - k - g / 4(z), 
co(z) 

where co(z) is arbitrary function. 

or 
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3.2. S t e p 2 ( D e t e r m i n a t i o n of the re sonance ) . For each ai and wi o(z), we 

calculate the ri < . . . < rm for which wik(z) are arbitrary functions (3.1). We 

substitute: 

(3.6) Wi(z) = Wi,o(z)g a i (z) + Wi,r(z)g a i+ r (z). 

or 

wi(z) = 4k 2g'  2(z)g - 2(z) + a,r (z)g r - 2(z), 
4kA , 

W2(z) = g  4(z)g - 2(z) + К(z)g r - 2(z), 
co(z) 

(3.7) wi(z) = co(z)g - 2 (z) + գ (z)g r - 2(z). 

into (2.9)-(2.11) and equate the coefficients of the dominant (with g r - 5(z)). We get 

the resonances values are: 

r i = -2, r2 = —1,гз = 0, Г4 = 2,r5 = 3, re = 4,r7 = r% = 7, rg = 8. 

3.3. S t e p 3 (F ind ing the C o n s t a n t s of In tegra t ion and Check ing C o m p a t i b i -

lity Condi t ions ) . By convention, the resonance ri = —2 is ignored since it violates 

the hypothesis that g - 2 (x,t) is the dominant term in the expansion near g(z) = 0. 

Furthermore, this is not a principal branch since the series has only eight arbitrary 

functions instead of the required nine (as the term corresponding to the resonance 

ri = —2 does not contribute to the expansion). Thus, this leads to a particular 

solution, while the general solution may still be multivalued. 

The constants of integration at level k are found by substituting the system of 

ordinary differential equations possessing the Painleve property. The arbitrariness of 

wir(z) must be verified up to the resonance level. This is done by substituting (3.5) 

into (3.1). We get 

(3.8) wi(z)= g a i(z)J2 wi,k(z)g k(z), г = 1, 2, 3. 
k=o 

Therefore 
8 

wi(z) = Y^ ak(z)g k - 2(z), 
k=o 

w2(z) = J2 bk(z)g k - 2(z), 
k=o 

(3.9) w3(z) = J2 ck(z)g k - 2(z) 
k=o 
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From equation (3.5) and (3.9) we obtain: 

wi(z) = 4k^g  2(z)g - 2(z) + ai(z)g - 1(z) + a,2(z) + a3(z)g(z) + a4(z)g 2(z) 

+a5(z)g 3(z) + a6(z)g 4(z) + ar(z)g 5(z) + a8(z)g 6(z), 
4k 4  

w2(z) = g  4(z)g - 2(z) + bi(z)g - 1(z) + b2(z) + b3(z)g(z) + bA(z)g 2(z) 
co(z) 

+b5(z)g 3(z) + b6(z)g 4(z) + br(z)g 5(z) + b8(z)g 6(z), 

w3(z) = co(z)g - 2(z) + ci(z)g - 1(z) + C2(z) + C3(z)g(z) + 04(z)g 2(z) 

(3.10) +c5(z)g 3(z) + C6(z)g 4(z) + cr(z)g 5(z) + a8(z)g 6 (z). 

We now substitute (3.10) into equations (2.9)–(2.11) and group the terms in the same 

powers of g(z). So, we get the coefficients of g k - 2(z) at level k. 

To find the functions ai(z),bi(z) and ci(z), we equate the coefficients by g - 4(z) 

to zero at level k = 1. By solving the equations, we obtain: 

ai(z) = —4k 2g" (z), 

4( k 
b1(z) = — 

4(—k 4c0(z)g i 3(z) + 3co(z)k 4g i 2(z)g"(z)) 

(3.11) c1(z) = — 

c 20(z) 

c'o(z)g i(z) — co(z)g i i(z) 
g i 2(z) 

To find the functions a2(z),b2(z) and c2(z) we equate the coefficients by g - 3(z) to 

zero at level k = Г4 = 2. By solving the equations, we obtain: 

zg i 2(z)+9k 2g i' 2(z) — 12k4°g i(z)g i i i(z) 
a2(z) = — 

9g  2(z) 

4k 4g i 4(z)՜ 18co(z)k 2g4z) [  c2(z) = — ЩФШ — ^ - T ֊ 1 ^ (4zc 2o(z)g i 2(z) — 18k 2c' 2 (z) 

+g i 2(z) + 72co(z)k 2c'o(z)g i(z)g i i(z) — 63c 2(z)k 2g i i 2(z) 

(3.12) —12c2 4(z)k 2g i(z)g iՂz)), 

where the function b2(z) is arbitrary. 

To find the functions a3(z), b3(z) and c3(z), we equate the coefficients of g - 2(z) to 

zero at level k = Г5 = 3. Solving the equations, we obtain: 
1 

3coo(z)g i 2(z)՝ 

— 14k 4c'o 3(z)g i 3(z) + 6a3(z)4(z)k2g i4(z) + 24co(z)k 4c'o(z) 

+g i 3(z)cJi(z) + 60co (z)k'4c iQ(z)g i 2(z)g i i(z) — 30c 2(z)k 4g i 2(z) 

+c ii(z)g i i(z) — 42c^(z)k\c'o (z)g i(z)g i i 2(z) + 9c 30(z)k 4g i i 3(z) 

b3(z) = t ^ w ^ T (—3c4(z)b2(z)g i(z) + c3(z)kik4g i 3 (z) 
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—4co(z)k4g' 3(z)co"(z) — 32c 2o(z)kc'o(z)g l 2(z)'"g(z) 

+38cl(z)ky(z)g" (z)g"'(z) + 13cl(z)kig / 2 (z)g'" (z), 

co(z) = 3 6 c o ( z ) k 4 g / e ( z ) ( 9 c o ( z ) b 2 ( z ) g / ( z ) + 18b2(z)c 30(z)c'o(z)g'(z) c o 

— 3c 3o(z)k4g / 0(z) + 4co (z)k 2 g / 0(z) + 8zc 2(z)k 2 c'o(z)g / 0(z) 

+ 36k4co0 (z)g / 0(z) + 18ao(z)c0)(z)k4ig / 4(z) + 72co(z)k\ 

+ c'o(z)g / 0(z)c'/(z) — 36b2(z)c io(z)g / /(z) — 16zc 0o(z)k44g / 2(z)g / /(z) 

+ 72co(z)ktc' 2 (z)g / 2(z)g / /(z) + 90c 2 (z)k\ g / 2(z)c!{_/ (z)g / / (z) 

— 432c 2(z)k4c'o(z)g /(z)g / / 2 (z) + 387c 0 0 (z)k^g / / 0 (z) 

+ 12c 20(z)k4g / 0(z)c!o(z) + 72c 2(z)k4c'o(z)g / 2(z)g / / /(z) 

(3.13) — 90c 3o(z)k4g /(z)g / /(z)g / / /(z) — 33c0(z)k4g / 2(z)g / / / /(z)), 

where the function a3(z) is arbitrary. 

To find the functions a4(z), b4(z) and c4(z), we equate the coefficients of g - 1(z) to 

zero at level k = re = 4 and solve the equations. 

To find the functions a^(z), b$(z) and c5(z), we equate the coefficients of go(z) to 

zero at level re = 5 and solve the equations. 

To find the functions ae(z),be(z) and ce(z), we equate the coefficients of g(z) to 

zero at level k = r7 = 6 and solve the equations. 

To find the functions a7(z), b7(z) and c7(z), we equate the coefficients of g2(z) to 

zero at level k = r8 = 7 and solve the equations. 

To find the functions a8(z), b8(z) and c8(z), we equate the coefficients of g0(z) to 

zero at level k = rg = 4 and solve the equations. 

Substitute from equations (3.11)-(3.13) into (3.10), we obtain wi,w2,wo. Consequ-

ently, (2.8) yields u, v, w. 

4. S E C O N D M E T H O D : S H O O T I N G M E T H O D 

We try to solve equations (2.9)-(2.11) by using shooting method. The boundary 

and matching conditions of the problem can be written as: 

w i = — 1 , wi = 1, w2 = —1, w2 = 1, w'2 = 0 , at z = —1, 

(4.1) wi = 1, w i = 3, w2 = 1, wo = 1 at z = 1. 
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Fig . 2. The relation between z,w1 in two cases of constants. 

4.1. Numerica l Solution. Equations (2.9)–(2.11) represent the governing equations 

of the problem under consideration. These equations are nonlinear and therefore, 



62 H. A. ZEDAN 

must be solved numerically by Runge-Kutta-Merson method within the shooting and 

matching technique [11]—[14]. 

Fig . 3. The relation between z, w2 in two cases of constants. 

Fig . 4. The relation between z,w'2 in two cases of constants. 
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Fig. 5. The relation between z,w3 in two cases of constants. 
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The system of nonlinear ordinary differential equations (2.9)—(2.11) can be written 

as follows: 

(4.2) ш'-l'(z) = ' (-2zw'i(z) - 4wi(z) + 18wx{z)Wl(z) - 18w3(z)w'2(z) 
3 k 4 

- 18w4(z)w'3 (z)), 

3k1 
2  ( z )  - ~j—  w 4  ( z ) +  9 w i  ( z ) w 4  ( z ) ) , 

k4 

3k1 
3 (z) + ֊T 1 w2(z) + 9wi(z)w'2 (z) + 4w3(z)). 

k 4 

wi = Yi, w2 = Y4, w3 = Y7, 

and hence equations (4.2)—(4.4) can be written as 

y; = Y2, Y4 = Y3, 

Y3 = щ ( - 2 z Y 2 - 4Yi + 18Y1Y2 - 18Y7I5 - 18Y4Y8), 

(4.3) Աշ (z) = 
1 

3 k4 

(4.4) ^3" (z) = 
1 

3 k4 

We take, 

Y4 = Y5, Y5 = Y6: 

1 3k 
Y 6 = Щ (zY5 - ֊ i Y 4 +  9 Y i Y 5 ) , 

Y7 = y8, Y8 = Y9, 

1 ՂՆ 

(4.5) Y9 = щ (zYs + —- Y7 + 9YY + 4Yr), 

subject to the boundary conditions 

Yi(-1) = - 3, Y2 (-1) = 1, Y4(-1) = -1, Y(-1) = 1, Y6(-1)=0, 

Yi(1) = \, Y2 (1) = 3, Y4(1) = 1, Y (1) = 1. 

To apply the shooting method we use the subroutine D02HAF from the NAG Fortran 

library which requires the supply of starting values of the missing initial and terminal 

conditions. We take two special cases for k i , k 4 : 

1) ki = 4, k4 = 1. The supplied values are 

Y 3 ( -1 ) = 5.36, Y7(-1) = .786, Y8(-1) = -4.75, Y9(-1) = 4.37, 

Y3(1) = -5 .3 , Y5(1) = 0.924, Y6(1) = -0.183, 

(4.6) Ys(1)=4.11, Y9(1) = 4.58. 
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2) k1 = 2, k4 = 1.5. The supplied values are 

Y3 ( — 1) = 1.86, Y7( — 1) =0.151, Y8( — 1) = —2.95, Y9( — 1) = 3.67, 

Y3 (1) = —4.74, Y5(1) = 0.46, Y6 (1) = —1.35, 

(4.7) Y8 (1) = 2.78, Y9(1) = 2.92. 

The subroutine uses Runge-Kutta-Merson method with variable step size in order to 

control the local truncation error, then it applies modified Newton-Raphson technique 

to make successive corrections to the estimated boundary values. 
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