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АННОТАЦИЯ. T h e a im of this note is to introduce for point processes in R d the 
notions general position and reinforced general position, and to characterize these 
processes . A s a consequence we show that Poisson processes Pp with an infinite 
intensity measures p are in general posit ion iff p is diffuse in the sense that any 
affine subspace of dimension d — l is a p-nullset . M o r e o v e r , Pp is in reinforced 
general posit ion iff in addit ion any (d — l )-sphere is a p-nullset. 

Point processes; general positions; physical clusters. 

1. I N T R O D U C T I O N 

The starting point of this note is Krickeberg's characterization of simple point 
processes within the class of point processes in terms of their moment measures. (See 
[lj, theorem 3, corollary 2): If P is a point process in a basic phase space X of second 
order, then P is simple iff 

(1D2 • vp) • n - 1 = vp. 

Here vp,k = 1, 2, denote the first and second moment measures of P, D2 the diagonal 
of X2 and n : D2 ^ X, (x, x) ^ ж, the projection. If P is a Poisson point process Pp 

with intensity measure p then Pp is simple iff p is diffuse. 
The aim here is to strengthen this result. We are looking for characterizations of 

point processes which are in general or even reinforced general position. These notions 
will be made precise below. 

We analyse this problem in full generality as Krickeberg did it in the special case. 
But instead using moment measures we shall work with reduced moment measures. 

The motivation and point of departure is given by the observation that in the 
case of Poisson processes these results are always used implicitly in the domain of 
stochastic geometry, in particular for the construction of random tesselations, without 
mathematical justification. Exceptions are Krickeberg's work [lj as well as M0ller's 
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lectures [3] where already valuable indications with respect to this problem can be 
found. 
Acknowledgement: I am greatful to all students of my lecture „Stochastic Geometry" 
for several useful remarks. 

2. B A S I C C O N C E P T S 

The starting point is a measurable space (X, B) in which configurations of points 
will be realized, which are locally finite in the sense that only a finite number of points 
hit each member of a class B0 of "bounded"sets. Following Ripley [5j we assume that 
B contains all singleton subsets and that B 0 is a nonempty sub set of B which is 
hereditary, i.e. 

(B e Bo, C e B nB^ C e B o ) , 

closed under finite unions and a-bounded. The latter means that there exists an 
increasing sequence X1,X2,... in B0 coverin g X. We assume also that (X, B, B0) 
is countably separated, i. e. there exists a countable ^-system B0 in B0 separating 
the points of X. Such spaces (X, B, B0) are called phase spaces here. Examples of 
phase spaces are all separable metric spaces where B in the Borel ст-field and B0 the 
collection of all metrically bounded Borel sets. 

Given a phase space (X, B, B0), we then consider random locally finite measures բ 
on X, which are defined as follows: Let M = M(X) denote the set of all measures 
բ on (X, B) which are locally finite, i. e. finite on B0. Note that such measures are 
ст-finite because X is ст-bounded. M is endowed with the ст-field F, generated by all 
variables 

ZB : բ » v(B),B eB0. 

Important measurable subsets are 

M° = (թ e M \ բ diffuse}, 

M = {բ e M\ H(B) e N0 VБ e B0} (point measures), 
M = {^ e M"\ n>({x}) < 1 Vx e X} (simple point measures). 

The traces of F in these spaces are denoted by F°, F' , F'. Elements բ e M are 
X 

A random measure in X is a probability measure P on (M, F), write P e PM 
for short. Probabilities P on (M' ' , F' ) resp. (M, F') are called point processes resp. 
simple point processes in X , and we write P e PM ՝ resp. P e PM . 
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Given j G M, k > 1, jp denotes է he k-th power of j . If j G M " , the reduced 
k-th power of j is the measure on X p defined by 

j p ( / ) = J j ( d x i ) ( j - SX1 )(dx2)... ( j - SX1 - . . . - SXk-1 )(dxp)f (xi, ...,xp) 
Xk 

Here / G H+(X p), the space of all non negative measurable functions on X . 
Note that j ^ j p ( / ) and j ^ j i k ( / ) are measurable. If j G M then k!jlp counts 

the subsets of j of cardinality k. Given P G PM the following versions of the 

k 

C p(h) = j j h(xi,...,xp; j) j p(dxi,...,dxp) P(dj), 
M•• Xk 

C p (h) = j j h(xi,...,xp; j) jl  p(dxi ,...,dxp) P (dj). 
M • • Xk 

Here h G H+(Xp x M ) .If / G H+ (Xp) we write 

vp ( / ) = Cp (/ ® 1) and lp(f ) = Clp (/ ® 1). 

v p is called է he k-th moment measure and v p the reduc ed k-th moment measure. 

3. K R I C K E B E R G ' S C R I T E R I U M 

To prepare later refinements we first derive Krickeberg's characterization of simple 
X 

Observe first that simple point measures are characterized within the class of 
point measures as follows: j G M ' is simple, i. e. j G M iff jl2 (D2) = 0. Here 
D2 = {(x,x) G X2 jx G X} denotes the diagonal in X2. Since D2 G B(X) ® B(X) 
and j ^ ji2 (D2) is measurable, so is M . One immediately obtains 

Theorem 1. Let P G PM '. Then the following assertions are equivalent: 

(3.1) P G PM , i. e. P is simple; 

(3.2) v p (D2) = 0. 

This result contains Krickeberg's criterium in [lj stated at the beginning. 

p G M 

(3.3) Pp G PM ; 

(3.4) p2 (D2)=0; 

(3.5) p G M°. 
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Неге the equivalence (3.3) ^ ^ (3.4) is due to the fact that Vp^ = p2 , which in turn 
follows immediately from Mecke's characterization of the Poisson process by means 
of its Campbell measure. (See [2j.) The equivalence (3.4) ^ ^ (3.5) follows directly 
from 

P 2 (Dp) = J p (dx) p ( {x} ) . 

If X = R d and p the Lebesque measure on X then Pp e PM . Recall that in 
general Pp e PM ՝ . 

4. P O I N T P R O C E S S E S IN G E N E R A L P O S I T I O N 

( X, B , B0 ) X 
d 

addition are measurable operations. Our main example is X = R d . 
The aim is to characterize (within M = M ՚ Ո { Z x = + ^ } ) those configurations 

which are in general position. Here բ e M ' is in genera l posi t ion, we then write 
բ  e Mgp, iff 

(4.1) (v < բ, 2 <\v\ < d + 1 ^ v affinely independent) 

Here \v\ = v(X); v < բ means that v is a non-void subconfiguration of բ. Finally, 
v e M f is called affinely independent , write v a ^ f f v e M', and if any element 
x e v ŝ not contained in aff (v — Sx), ^^e linear variety in X generated by v — 5x. By 
definition Mgp is a subset of M 
v is called affinely dependent (ad) otherwise. Any singleton is affinely independent; 
and Sx + 5y is affinely depend ent iff x = y . I f v is ad then so is v + 5x for any x e X ; 
thus any non-void subconfiguration of an ai v is ai. 

We now give an equivalent description of configurations in general position: Let 

Dk = {(xi,...,xk) e Xк |Jx! + . . . + 5xk a d } 2 < k < d + 1. 

Dk is a measurable sub set of Xk. The following result is the main lemma of this 
note. 

L e m m a 1. If թ e M t h e following assertions are equivalent: 

(4.1) թ e Mgp, i.e. թ is in general position; 

(4.2) fi k(Dk)=0/or2 < k < d + 1 ; 

( 4 . 3 ) (Dd+i) = 0 . 

P r o o f The implications (4.1) ^ (4.2) ^ (4.3) are obvious, 
ad (4.3) ^ (4.2): Observe first that 
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(a) j i d + i (Dd+i) = f l  d(dxi,..., dxd) f ( j - Sxi - . . . - Sxd )(dx)lDd+i(xi,...,xd) ( x ) , 
Xd X 

where Dd+i(xi, . . . , X F ) = {x G X ^ + ... + X + Sx a d } . 
But 

aff (Sxi + ... + Sxd) , if (xi,...,xd) G Dd 
D d + i  ( x i , . . . , x d ) ֊ , X , else. 

Therefore under assumption (4.3) one obtains 
(в) j l d(dxi ,...,dxd) ( j - Sxi - ... - Sxd) (X )=0. 

Dd 

Since the integrand is = one has jl d(Dd) = 0. Iterating this argument yields 

ad (4.2) ^ (4.1): Under (4.2) we have jl 2(D2) = 0 which is equivalent to j being 

simple. Then it is obvious that (4.2) implies (4.1). 
M g p D p 

and also j ^ jip (Dp ՝ ) . Moreover one immediately has the 

P G PM 

(4.4) P G PMgp, i.e. P is in general position; 

(4.5) vp (Dp) =0 for 2 < k < d + 1 ; 

(4.6) v dF+ i (Dd+i) = 0. 

We remark here that a necessary condition for a point process to be concentrated 
on Mx is that vp is an infinite measure. If p G M then Pp G PM'X iff p is infinite. 

p G M 

Pp G PMgp, Pp ; 

(4.8) pp (Dp) =0 for all 2 < k < d + 1 ; 

(4.9) p d+ i (Dd+i)=0; 

X d - 1 p . 

Here (4.7) (4.8) (4.9) follows from the theorem because vp = pp by Mecke's 
theorem. 

ad (4.10) ^ (4.8): Observe first է hat for 2 < k < d +1 

(a) p p+ i (Dp+i) = j p p (dxi,...,dxp)p(X)+ 

Dk 

+ J p p(dxi,..., dxp )p(aff( Sxi + ... + Sxk)) 

Dk 
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where D1 = 0. 
Under assumption (4.10) the second integral on the right hand side always vanishes. 

On the other hand p(X) = and an induction starting with k = 1 yields (4.8). 
ad (4.8) ^ (4.10): Assumption (4.10) combined with (a) yields for k = d 

(в) p d + 1(Dd+i) = j p d(dxi,..., dxd) p (aff(<x + . . . + Sxd)), 
Dd 

because Dd is a pd— null set. 
This implies (4.10) by the following argument: Suppose that A is an affine subspace 
X d — 1 ( в) 

0 = p d + i ( D d + i ) > f p d(dxi,..., dxd) p (aff( Sx! + ... + 5xd)). 
AdnD°d 

But ((xi, ...,xd) e Ad Ո Dd ^ aff( Sxt + ... + Sxd) = A), so that 

0 = p d + i ( D d + i ) > p(A) d + i. 

This implies 0 = p(A). 
p 

process Pp in R d with intensity measure p = z • Xd,z > 0, is in general position. 

5. P O I N T P R O C E S S E S IN R E I N F O R C E D G E N E R A L P O S I T I O N 

The aim now is to describe within the class of point processes in general position 
those whose configurations are non circular in the sense that subconfigurations of 
cardinality n + 1 between 1 and d + 2 are not situated on an (n — 1)-sphere. 

X 
there is no essential loss of generality in working only with X = R d , which we shall 
do now. A configuration թ e Mgp is called in re inforced genera l posi t ion, write 
then բ e Mrgp, iff 

(5.1.) (v Q բ, 3 < \v\ < d + 2 ^ v non circular). 
Here v e M f is called non circular (nc) iff v e M'gp, and if any element x e v is 

not contained in sph (v — Sx), the circum sphere generated by the ai subconfiguration 
v — Sx in aff (v — Sx). v is called circular (c) otherwise. 

Any singleton is nc; any Sx + Sy,x = y, also, and any Sx + Sy + Sz ai is nc. 
All v e M f which are not in general position are c. If v is in general position, then 
v is circular if there exists x e v such that x e sph (v — x). 
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We now proceed in complete analogy to the case of processes in general position. 
Let 

Sp = {(xi,...,xp) G Xp I Sxi + . . . + Sxk is c} , 3 < k < d + 2. 

This is a measurable subset of X p . 

L e m m a 2. Let j G PMgp Ո MTO. Then the following assertions are equivalent: 

(5.1) j is in reinforced general position, i.e. j G Mrgp; 

(5.2) i p (Sp) =0 for any 3 < k < d + 2 ; 

(5.3) i  d+ 2(Sd+2)=0. 

The proof uses the same ideas as the one of lemma 1 (the main lemma) and will 

Mrgp 

and one has 

T h e o r e m 3. If P G PMgp Ո MTO, then the following assertions are equivalent: 

(5.4) P is in reinforced general position, i.e. P G PMrgp; 

(5.5) vp (Sp) = 0 for all S< k < d + 2; 

(5.6) v d+ 2 (Sd+2) = 0. 

If specialized to Poisson processes we get in the same way as above 

Corollary 3. Let p G M be infinite such that any affine subspace of dimension d - 1 
p Pp ( d - 1) X 
p 

p X Pp 

6. A P P L I C A T I O N S T O G I B B S I A N P O I N T P R O C E S S E S 

Given p G M \ { 0 } , Pp is the unique solution of the equation 

(Mecke) CP = p ® P, P G M ՝ ( X ) . 

Here C P denotes the reduced Campbell measure. 
P p 

(Sp) CP < p ® P 

If in ( S p ) the density V is given in addition to p then P is called a Gibbs process for 
p and V, and we write P G G (p,V). V is called the Boltzmannfactor. If V has the 
form exp(-p • Еф) for some в strictly positive and some potential ф then P satisfies 
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( £ р ) iff P is a Gibbs state for (ф, p) in the sense of Dobrushin/Lanford/Ruelle. Here 
Eф(x, j) denotes the socalled energy of x in j . It is then easy to see that 

Vp(f ) = J f (x) J exp(—e • E^(x, j))P(dj)p k(dx), 
xk M•• 

f>0 

Corollary 4. If p is infinite such that any affine subspace of dimension d — 1 is a 
p-nullset and any (d — 1) — sphere is a p-nullset then any P e G(p, V) is in reinforced 
general position. 
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