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Anporanms. A fundamental theorem of Miirmann [2] characterizing equilibri-
um distributions of physical clusters is reconsidered. We recover this result by
means of the integration by parts formula approach to Gibbs processes due to
Nguyen Xuan Xanh and Hans Zessin [4].
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1. THE PROBLEM

Let £ denote the d— dimensional Euclidean space R? and p = 2A% (2 > 0) the
Lebesgue measure on it. We consider simple point processes P on the space M (F)
of locally finite subsets 7 of £, for which we write P € PM (F) for short. Often we
do not write the underlying space F, and as usual 7 is often considered as a simple
point measure on £. We'll write M, for finite configurations in M.

We are given a parameter R > 0, which enables us to define the notions of an
R—cluster or an R—cluster property as follows.

z € M is called an R—cluster (Rel) iff  is void, or a singleton, or if the graph
obtained by joining interacting points ("particles’) in « is connected. We then write
x € R'. Observe that R’ is a measurable subset of M’ containing 0 and all singletons.
We write R for the finite elements in R . The cluster property defined by the
parameter R is given by the following measurable subset of M™ x M':

(1.1) ((z,n) € D = Dg iff v € R with n(Bg(z)) = 0).

Here Bgr(z) = Br(z) \ z, where Br(z) := Uyc . Br(a) with Bgr(a) denoting the open

ball in E centered in a with radius R. Br(0) = (). We define also the subset D* in

M x M by ((z,n) € D* iff n(Bgr(z)) = 0). Thus 1p(z,n) = 1p«(z,n) - 1x..
Observe that 0 is an Rcl for any n € M . Furthermore, D is translation invariant.

We remark that D induces in each configuration n € M\ {0} an equivalence relation
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by means of
(1.2) (a ~ b iff there exists © Cn with a,b € z and (z,n) € D)

Thus two elements a, b of i are equivalent iff there exists an "R—path’ in 7 from a to
b. The equivalence classes are the r—clusters in 7.
Consider then the random element on (M, P) defined by

(1.3) v i — Yacylp(z,n) - 0. = p.

(If n = 0 then p = &p.) It is obvious that v is a point process on R with distribution
Q@ concentrated on

(14  MO®R)={u|zyemas+y= Brp(e)n Brsly) = b},

~ resp. ), the image of P under +, is called the cluster process belonging to P.Note
that + is a Borel isomorphism between M (E) and M) (R’) with inverse

(1.5) X(0) : M~ J(0) = Yaept,

and the relation () = vP, the image of P under ~, establishes a 1-1 correspondence
between the simple point processes P in F and the cluster processes @ in R’ i.e. the
point processes Qe M) (R).

The aim of this paper is the description of cluster processes belonging to Gibbs
processes in F interacting by finite range pair potentials. Such processes will be

introduced now.

2. THE GIBBSIAN FRAMEWORK

We are given an even and stable pairpotential ¢ on F with finite range £ > 0. The
associated Boltzmann factor is

(2.1) fla,n) = exp(—FEla,n)),a e E,ne M (FE).

Here

(2.2) E(a,n) = > ¢(b—a)ac Ene M(E),
a#ben

is the energy of a in 7.
Recall that a simple point process P in F is called a Gibbs process for (¢, p) iff P

solves the following integration by parts formula

(329) Cp(h) = / / ha,n+ 60) - F(a,n) o(da)P(dn), h € F\ (B x M (E)).
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Here Cp denotes the Campbell measure of P and F{(X) the collection of non-
negative, measurable functions on the measurable space X. We then write P €
G(¢, 0). In the sequel we’ll write always F| instead of I, (X).

The above definition of a Gibbs process is justified by a theorem of Nguyen X.X.,
H. Zessin [4], saying that Gibbs processes in the DLR (=Dobrushin/Lanford/Ruelle)
sense are equivalently defined by (3%). Iterating the integration by parts formula
implies immediately the important

Lemma 1. If P € G(¢,p) , then P satisfies
[ [ Sacumens, b mpian)
M E

- [ [ et a) - exo(-Bla,n)Woidn) Plan). b e P
M A

Here E(x,n) is the energy of © given n, defined by
E(da, + ...+ 6a,,n) = Elar,n) + E(as,n+ da; ) + ... + E(an,n+ Sy + ... + 4,4 )-

Moreover

Wole) = - o [ 900+t 60, ) olda).oldan), ¢ € P

n>0 Fn

We'll not use the DLR-approach in the sequel. This has been done by Miirmann
in {2]. Instead we use systematically the integration by parts approach accompanied
by the following equation due to Ruelle which is equivalent to (39) if the underlying
point process P is of first order. The simplicity and beauty of this approach to Gibbs

processes will be visible in the sequel. Ruelle’s equation is

(R) Ple) = [ [ ol€tn)-exp(=En(e + m)Wald&)P(dy). peF Acbo(E).
My e My
Here By(F) denotes the collection of all bounded Borel sets in F, and exp(—Fa (& +
n) = E&n)if £ CAnC A (For a proof of the equivalence of (R) and (2‘5) see
[4].)

3. MUERMANN’S FIRST THEOREM

If (x,n) € D we say that z is a cluster for n; if in addition = C # then z is called
a cluster 4n 77. We consider the random variable
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(3.1) cdp : M (F) —>N0U{OO}777I—>Z]_D(:E777)7

zCn
which counts the R— clusters in 1. We use also the notations Do, = {(z,n) € D |
|z| = +oo}, Dy = {(z,n) € D | |z| < +oo} ; cdp, as well as cdp_, are defined
similarly.

Given (¢, p) as above, let P be from now on a Gibbs process for (¢, p) , being
concentrated on M__, the set of infinite configurations, which satisfies also the con-
dition
(3.2) Pledp_ =0} =1.

As a consequence P is concentrated on

(3.3) Mp = {cdp, = +o0o,cdp,, = 0}.

In this situation v resp. Q) is called the Mirmann cluster process for P. The Miirmann
cluster process is a point process in R which is concentrated on M()(Rf)
If one defines percolation in this model as the occurrence of an infinite cluster with
positive probability, we are working in a situation where percolation does not occur.
We now calculate the Campbell measure of v resp.Q) : Let h be non negative and

measurable. By definition

Colh) = / S Lpe(wn) - b, () Pldn).

an,zER'f

Since P is a Gibbs process for (¢, p) and a.s. all clusters are finite, this equals

[ [ 1o+ o) bt +-a)) i n) - ule) - Ly (W, ) Pl

Here u(z) denotes the part of the Boltzmann factor which depends only on z and
w(x,n) the one taking into account only the interaction between z and 7. Now observe
that (z,n+x) € D* iff (x,n) € D*. Obviously one then has v(n+2z) = v(n) + 05 and
w = 1. As a consequence we obtain

Colh) = [ [ b1 +8.) - 1o (o100 - o) - L, ()W) Pl
We call the measure
M, =u- IR-fWQ

appearing here the Mirmann measure on R;. Now all ingredients are developped for
the following first basic result of Mirmann (J2]).
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Theorem 1. If p and ¢ are given as above and P € G(9, 0) is concentrated on M,
and saotisfies condition (3.2), then Q, the associated Mirmann cluster process, is a
Poisson exclusion process for (D*,M,). Le. Q is a simple point process in Ry,

solution of the following integration by ports formule

=) Coty— | / (o, 1+ 82) - e (2, oy) Mo(d)Q(dpe), b € e
M(R

We see that (), the Miirmann cluster process, is again a Gibbs process, but now
in R}. On the other hand its interaction structure is much simpler: the clusters are
hard cores but do not interact otherwise.

The theorem implies immediately that the intensity of @ is given by

vo() = [ hla)- PDYM(de), heF..
Ry
The intensity measure vg(h) is Radon (i.e. locally finite) if this is the case for the

Miirmann measure, i.e. if M, satisfies Miirmann’s condition

(M) M, is finite on Bo(Ry).

The meaning of this condition is the following: The collection Bo(R ) of bounded
Borel sets in R, is generated by the collection Fa, AsBo(F), of events meeting A.
(For a formal definition see (5.1).) Moreover, « then is diffuse P — a.s. since p and
thereby M, is diffuse. The main significance of condition Mirmann’s condition (M)
is however that it implies also condition (3.2) if the underlying P is of first order. A
sufficient condition for Miirmann’s condition is that z is small enough. This aspect
will be developped below.

4. THE CONVERSE OF MUERMANN’S FIRST THEOREM

Let@ be a Poisson exclusion process for (D}, M ;f ) on Rf Then @ is concentrated
on M(>(Rf) Consider the image P of @ under the measurable transformation x (o).
This mapping dissolves the clusters of p into its particles.

We calculate the Campbell measure of P. Using that () is a Poisson exclusion

process one has for any given hekF. |

Cp(h) = [ [ hla, M(O))M(m(da)Q(du)
= [ J e, woy)z(da) pu(da)Q(dpe)
=[] ] Pla, (e +82) ) - 1p= (=, M(o)) Ry (@) - u(@)z(da)Wo(dz)Q(dp).
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We then study the inner double integral of the last triple integral, which we denote
by I,, using partial integration with respect to W,(dz). As a result we obtain

1, = //h(a7 pi(oy 2+ 0a) - Lpw(@ + bas poy) - i, (2 + 0a) - w(z + Ja) W (d)o(da).

The next step is the analysis of the double integral

I, = //h(a7 pi(oy 2+ 0a) - Lps (@ + 0a, pig0y) - IRy, (2 + 0a) - ul@ + 00 )W (da) Q(dpr).

Here we subdivide the variable = into R—clusters in such a way that they form,

together with a , an R—cluster. To be more precise, the following representation is
true:

Lps (2 + da, p0y) - Ir, (& + 64) - ul(z + da)
= EkZO%Ezlngzgngzl S Y Ca (ot a2 LD (a5 f10))
xH?;lllD*(zj7z1 + 2+ o)) -

Aps(z = (21 + -+ 2e-1), 21+ + 21+ o))
XL, (25) - L, (0) - u(zg) - exp(=Bla, 29)) - Try (= (21 4+ 25))
X]'B(zf(21+"'+2k—1))(a) cu(z — (21 4+ apo1)) -
cexp(—Fla,xz — (21 + -+ 25-1)))-

Using again partial integration with respect to W, the inner integral of I, equals

1
21@0@/"'k/h(a7u(0)+$+(21+"'+2k71)+5a)'1D*(a7u(o>)
XTI Lps (25,210 + -+ 21 + o)) - Lp= (@, 20 4+ + 251 + pioy))
XH;:%lR'f(Zj) Ly (a) - ulz;) - exp(=E(a, 2;)))

X1r, (z) - 1g(,(a) - u(z) - exp(—E(a, )
ng(dzl) .- Wg(dzkfl)Wg(d:E)

Then integrating this with respect to Q(du) and using again that @ is a Poisson
exclusion process yields

1
I = EkEOE// . 'k/h(a7ﬂ(0) +0a) - Lp=(a; poy — (@ + 20+ -+ + 20-1))
XIEZ1 Lpa (25, oy = (@ + 25 + -+ + 25-1)) - Lpa (2, o) — 2)
XTI 1, (a) - Ly (@) - T2 exp(—E(a, 2;)) - exp(—E(a, z))
xp(dzy) - pldzg—1 ) p(dz)Q(dp).
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Observe finally that in I, the sum
1
Ekzoy/"'k/lD*(Ch poy — (2421 + -+ 2p1))
xH?;ll 1p= (25, oy — (& + 25+ + 2 1)) - Lp=(=, pugoy — )
X1 (@) 10, (a) - T exp(—Bla, %) - exp(— B(a, )
xp(dz1) - pldzp—1) p(de)

equals exp(—FE(a, i(0y)).
To summarize, we have shown Miirmann’s second theorem.

Theorem 2. Let Q be a Poisson exclusion process for (D%, Mf) on Ry. Then the

image P of Q under the measurable transformation x(oy is a Gibbs process in E for

(¢, 0).

Summarizing both theorems, we see that the relation () = P establishes a 1-1
correpondence between Gibbs processes P in F for (¢, 0) concentrated on M and
satisfying condition (3.2) , and Poisson exclusion processes for (D%, M?) in R;. Here
¢ is the given even, stable, pair potential of finite range R.

This result is very valuable. It reduces the study of Gibbs processes to the one
of Poisson exclusion processes. Moreover, since there is a one-to-one correspondence
between these processes, existence, extremality or uniqueness resp. phase transition

occurs in one class if and only if this phenomenon occurs in the other one.

5. ABSENCE OF PERCOLATION AND MUERMANN’S CONDITION

Given (¢, p) as above, we fix some Gibbs process P in E for ¢ (of finite range R
) and p. We assume in addition that P is of first order. In this situation P is then
equivalently described by Ruelle’s equation. To pose the problem we introduce some
notations first: For an open A € By(F) let A(r) denote the r— dilatation r - A, r > 1.
Moreover

(5.1) Fa={zeR |znA#£0D},
(5.2) Fanmye =z € FalznA(r)®# 0},
(5.3) GFpnye =10 € MR [ 1(Fangrye) 2 15

If A’ is a bounded Borel set containing A(r) such that d(A(r), (A')°) > R, then it is
evident that
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P{ there is a particle in A clustering with infinitely many others }
< P{ there is a p. in A which clusters with some p. in A"\ A(r),
regardless eventual clustering with some p. outside A’}
More formally: If war : p — 1a- -1 and yar = v o war, then
(5.4) P{3z €7 |z| = +oo,2 € Fa} < P{yar € Gy ye }-

The problem now is to estimate from above the probability on the right hand side
(and thereby on the left).

Write £ for the event G, ,,,.. We first use Ruelle’s equation to get

Pl € €} = / /15 ) exp(—Ex (€ 1 n))Wo(de)P(dn).

(A/)c

We then analyze the inner integral I, (€) for any measurable event £ in /\/l(f)(Rf) by
means of the following cluster representation:

Lemma 2. For any measurable £ in ./\/l(f)(Rf) and any n € M,

(5.5) 1(&) = / 16 (1) - exp(—W(u [ ) W

M,,,

(dp).
MERy)

Here for p =10, + -+ 04,
Wi | n)) ZW % | ), where

Wiz | n) = ZEC”?

acz;

Proof. Expressing as above the integrand of 1,(€) by means of the cluster decom-
position of ¢ yields

Le(v(€)) - exp(=En (€ +1)) =

1
= Ekzomzzlggzzggsle T 22k71g§*(21+"'+2k72)1gmM(f')(R'f)(65*(21+"'+2k—1) +

0z o+ Oa ) X I Ju(z) - exp(=W(2; | 0)))
xu(€ = (z1+ -+ zp-1)) - exp(-W(e_(zy 4tz r) | M)

Applying again partial integration with respect to W,,, yields the assertion of the
lemma.
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Before starting the estimation we separate a cluster inside Fy a(rye in I;(€) , where

& is from now on given by Gr, .., and obtain

1
1(€) = / . / 1e(40) - exp(—W(pt | m)plder) Wi, (dp).
P(Fa (e A
MP(R) Fa,aqmye

Again partially integrating yields

LE) = [ oo x [ Lle(p+6) 1051+ 6) -
Ki MR H(Fa,a¢rye)tl Faie MG (Ry)

-exp(=W(p+ b [ )Mo, (dx) Wy, , (dp).

We now start estimating from above and use that (p + (51)5./\/1;)(7%}) implies
us/\/l(f')(R'f) . Moreover

W(p+ 84 | m) = W(p | ) + Wiz [ n),
where W(x | n) > —B - |z| by stability of ¢.

As a consequence one obtains

L,(€) < Muny, (Fangrye) / exp(—W(p | n)) W, (dp).

G
M (Rf)

epr

Then dissolving the clusters of i into its particles, by the lemma above the integral
on the right hand side equals

/ exp(—Epr (€ 1 )W ,(dE).
M,

Now integrating the last inequality with respect to 1 M, - P, and using Ruelle’s

ATy
equation implies
P{’YA/ S ng’A(T)C} < MEB~QA/(FA,A(T)C)7
8o that finally we otain for any P € G(¢, o) of first order Miirmann’s
Main estimate. If A’ is a bounded Borel set containing A(r) such that

d(A(r), (A)°) > R, then
P{ ap.in A clusters with infinitely many other p. } < M.s., ,(Fa a(r)e)-

This estimate implies then Miirmann’s
Main Lemma. If M_.5 , is a Radon measure then

P{CdDoo Z 1} =0.
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The proof immediately follows from the following decomposition of Fy:

Fa=F UR R R U

Here F. ,{‘:}v is the event meeting A and A’, but not A”. If F has finite measure with
respect to M.s., then for any positive e there exists IV such that M5 ,(Fa a(v)e) <,
and thus for any A’ containing A(N) ,which itself contains A, one has

MeB~9A/ (}—A,A(N)C) < €.

Combining this with Mirmann’s estimate proves the main lemma.

6. CONCLUDING REMARKS

The question remains, under which conditions on (¢, ¢) the Miirmann measure is
Radon. The well known answer is that this is the case if z is small enough. To be
more complete we give some indications to this question. We use the following simple

observation by separating a particle inside A: For any bounded Borel set A of positive

p—Imeasure
1

(6.1) FER Lr, (n+ 00) - u(n + 00)W(dn)

M(B)
1
. < —M,
(6.3) < Lr:, (14 00) - u(n + 60)Wo(dn).
M)

The upper and lower bound in (6.3) and (6.1) are power series in z with the same
radius of convergence. As a consequence the radius of convergence of M,(Fy), if
considered as a power series, does not depend on A and coincides with the one of
W, % 0o (u - 1z, ). Here * denotes convolution.

Thus it remains to investigate the power series W, x do(v - 1R-f). Here we use the
observation in [2] that 1 (+ do) < |g[(n+ do), where g denotes the Ursell function
belonging to the hard-core potential defined by R. If combined with the stability of

the potential one obtains
Wk do(u-1x,) < e - Wes,x do(lg]).

On the other hand one can find in Ruelle’s book [5] that the integral on the right hand
side of this inequality is finite if z is small enough. This is one of Ruelle’s important
contributions and follows by means of the method of strong cluster estimates.
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7. APPENDIX: THE POISSON CASE

We consider now the case when the underlying process is a Poisson process with
an intensity of the following form: ¢ = p ® 7 , where p is given as above by the
Lebesgue measure 2A%(z > 0) and 7 is a probability on |0, +oo[. The corresponding
Poisson process in X = Ex]0, +oo[ is then concentrated on the following collection

of configurations:
(7.1) ./\/l> = {I/ = Eaené(wa) | 776./\/1'(E)7 Tq > 0}.

The definition of the corresponding clusters and cluster property is as follows: We
call the elements x = (a,r) particles and represent them geometrically as open balls
b(z) = By(a). Two particles z, 2’ are sayed to interact if b(z)Nb(z") # 0. Then ze M
is called a cluster iff the graph obtained by joining interacting particles is connected.
Denote by C' the collection of all such clusters and C; the one of finite clusters. C'
and C; are measurable subsets of M, .

The cluster property defined by R is the measurable subset D = Dg in M| x M|
defined by

(z,v)eD iff
zeC' such that the particles in v with centers outside the support of z

do not interact with particles from z.

Thus one cannot add a particle to z from 7 to enlarge the cluster z. Consider now
the point process on (M (F), P,), defined by

7:V|—>H::ZID(27V)~(52.

2Cv

It has its values in
MOC) = {reM (C) | 2, 2er, 2 # 2/ = B(z) N B(z') = 0}.

Here B(z) = Uge:b(x). We denote its distribution by @,. As above v is a Borel
isomorphism between M;_ and M©)(C) with inverse

X(0) - R K(o) ‘= EZEHZ;

and the relation @ = P, establishes a 1-1 correspondence between PM;_ and
PMO(C).

The problem is to describe Q. The following result is also due to Mirmann [3].
Exactly the same reasoning as in the Gibbsian case yields the
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Theorem 3. Given (o, R) as above, the relation @ = ~P establishes a 1-1 corres-
pondence between Py and the uniquely determined Poisson exclusion process Qo onC;
for (D*, M) if P, has only finite clusters a.s. . Here M, is the measure 1C'f -W,.

This result is also important for the following reasons: It implies the existence and
uniqueness of Poisson cluster exclusion processes in the situation considered here if
there is no percolation.

The question of absence of percolation has been studied in a recent paper of Gouéré

>0
[1]. The author proves that finiteness of [ r?v(dr) is equivalent to the existence of

0
some strictly positive zg such that for all z strictly smaller than zg percolation does
not take place.
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