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АННОТАЦИЯ. A fundamental theorem of Murmann [2] characterizing equilibri-
um distributions of physical clusters is reconsidered. We recover this result by 
means of the integration by parts formula approach to Gibbs processes due to 
Nguyen Xuan Xanh and Hans Zessin [4]. 
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1. T H E P R O B L E M 

Let E denote the d— dimensional Euclidean space K ^ d p = z\d (z > 0) the 
Lebesgue measure on it. We consider simple point processes P on the space M (E) 
of locally finite subsets n of E , for which we write P G PM (E) for short. Often we 
do not write the underlying space E , and as usual n is often considered as a simple 
point measure on E. We'll write Mf for finite configurations in M . 

We are given a parameter R > 0, which enables us to define the notions of an 
R—cluster or an R—cluster property as follows. 

x G M is called an R—cluster (Rc/) iff x is void, or a singleton, or if the graph 
obtained by joining interacting points ('particles') in x is connected. We then write 
x GR . Observe that R' is a measurable subset of M containing 0 and all singletons. 
We write Rf for the finite elements in R . The cluster property defined by the 
parameter R is given by the following measurable subset of M x M ՛. 

(1.1) ((x,n) G D := DR iff x GR with n(Bu(x)) = 0). 

Here BR(x) = BR(x) \ x, where BR(x) := UaexBR(a) with BR(a) denoting the open 
ball in E centered in a with radius R. B R ( 0 ) = 0. We define also the subset D* in 
M x M by ((x, n) G D* iff n(BR(X)) = 0). Thus 1D(x, n) = 1ը՚ (x, n) • • 

Observe that 0 is an Rd for any n G M . Furthermore, D is translation invariant. 
We remark that D induces in each configuration n G M \ {0 } an equivalence relation 
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by means of 

(1.2) (a ~ b iff there exists x С n with a,b G x and (x, n) G D) 

Thus two elements a, b of n are equivalent iff there exists an 'R—path' in n from a to 
b. The equivalence classes are the r—clusters in n-

Consider then the random element on (M ,P) defined by 

(1.3) y : n — • ՝^xcvID(x, n) • 6x = : 

(If n = 0 then բ = Jo-) It is obvious that y is a point process on R with distribution 

Q concentrated on 

(1.4) M ( ) ( R ) = {բ | x,y G բ,x = y ^ BR/2(x) Ո BR/2(y) = 0}. 

Y rap. Q, the m a g e of P under y> is called the cluster process belonging to P.Note 

that Y is a Borel isomorphism between M (E) and M (' )(R) with inverse 

(1-5) X(o) : Բ — • M(o) : = 

and the relation Q = YP, the m a g e of P under Y, establishes a 1-1 correspondence 
between the simple point processes P in E and the cluster processes Q in R', i.e. the 
point processes QeM (^(R'). 

The aim of this paper is the description of cluster processes belonging to Gibbs 
E 

introduced now. 

2. T H E G I B B S I A N F R A M E W O R K 

We are given an even and stable pairpotential ф on E with finite range R > 0. The 
associated Boltzmann factor is 

(2.1) f (a, n) = exp(—E(a,n)),a G E,n G M (E). 

Here 

(2.2) E(a,n)= Y^ ^(b — a), a G E,n G M (E), 

a n 

Recall that a simple point process P in E is called a Gibbs process for (ф, p) iff P 
solves the following integration by parts formula 

(E*) CP (h)= j Jh(a,n + 6a) • f (a,n) g(da)P(dn),h G F+ (E xM (E)). 
M(E) E 
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Here CP denotes the Campbell measure of P and F+(X) the collection of non-
negative, measurable functions on the measurable space X . We then write P G 
ЖФ, Q) In the sequel we'll write always F+ instead of F+(X). 

The above definition of a Gibbs process is justified by a theorem of Nguyen X.X., 
H. Zessin [4], saying that Gibbs processes in the DLR (=Dobrushin/Lanford/Ruelle) 
sense are equivalently defined by (Уф). Iterating the integration by parts formula 
implies immediately the important 

L e m m a 1. If P G G(ф, Q) , then P satisfies 

I I  УхСп,х eMf h(x,n)P(dn) 

M• E 

= J J h(x, n + x) • exp(—E(x,n))We(dx)P(dn),h G F+. 
M• Mf 

E(x, n) x n 

E(Sa֊i + ... + San,n) = E(ai,n) + E(a2, n + S^) + ... + E(an, n + S^ + ... + San-1). 

Moreover 

we(v) = n [ f(Sai + ... + San) Q(dai)...Q(dan), <ք G F+. 
n>0  n՛ En 

We'll not use the DLR-approach in the sequel. This has been done by Miirmann 
in [2]. Instead we use systematically the integration by parts approach accompanied 
by the following equation due to Ruelle which is equivalent to (Уф) if the underlying 

P 
processes will be visible in the sequel. Ruelle's equation is 

(R) P(<P)= J J <P(t + n) • exp(—EA(Հ + n)We(di)P(dn),<peF+, KeB0(E). 
M A c -Мл 

Here B0(E) denotes the collection rf all bounded Borel sets in E , and exp(—EA(£ + 
n)) = E(£, n) if С Q Л,П Q Лс. (For a proof of the equivalence of (R) and (Уф) see 
[4].) 

3. M U E R M A N N ' S F I R S T T H E O R E M 

If (x, n) G D we say that x is a cluster for n; if in addition x Q n then x is called 

n 
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(3.1) cdD : M (E) No U{^},n —^Y,  1D(x,n), 

which counts the R— clusters in n We use also the notations Dx = {(x,n) G D | 
Ixl = Df = {(x,n) G D I x < ; cdDf as well as cdDx are defined 

similarly. 
( ф, p) P ( ф, p) 

concentrated on M t h e set of infinite configurations, which satisfies also the con-
dition 

(3.2) P {cdD„ = 0 } = 1. 

P 

(3.3) MD = {cdDf = +Ж, cdD^ = 0} . 

In this situation Y rap. Q is called the Miirmann duster process for P. The Miirmann 
cluster process is a point process in R f which is concentrated on M (' )(Rf )• 

If one defines percolation in this model as the occurrence of an infinite cluster with 
positive probability, we are working in a situation where percolation does not occur. 

We now calculate the Campbell measure of y resp.Q : Let h be non negative and 
measurable. By definition 

CQ (h) = f J2 1D* (x,n) • h(x,Y(n))P(dn). 

P (ф, p) 

j j 1D* (x,n + x) • h(x,Y(n + x)) • w(x, n) • u(x) • I R (x)Wg(dx)P(dn). 

Here u(x) denotes the part rf the Boltzmann factor which depends only on x and 
w(x, n) x n 
that (x, n + x) G D* iff (x, n) G D*. Obviously one then has Y(n + x) = Y(n) + 6x a n d 
w = 1. As a consequence we obtain 

Cq(h) = J J h(x,Y(n)+ 6x) • 1D* (x,Y(n)(o)) • u(x) • 1Щ (x)Wg(dx)P(dn). 

We call the measure 

Mg = U • lRf Wg 
Rf 

the following first basic result of Miirmann ([2]). 
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T h e o r e m 1. If p and ф are given as above and P G Я(ф, g) is concentrated on M 
Q 

( D  * , Mp ) Q Rf , 
solution of the following integration by parts formula 

(SD*) Cq(h)= j Jh(x,p + Sx) • 1D* (x,P(o)) Mg(dx)Q(dp),h G F+. 
յԱՀՈք) Rf 

Q 

Rf 
hard cores but do not interact otherwise. 

Q 

vQ(h) = J h(x) • P(D*x)Mg(dx),heF+. 

R f 

The intensity measure VQ(K) is Radon (i.e. locally finite) if this is the case for the 
Mp 

(M) Mp is finite on Bo(Rf). 

The meaning of this condition is the following: The collection Bo (Rf) of bounded 
Borel sets in Rf is generated by the collection Т л , AeBo(E), of events meeting A. 
(For a formal definition see (5.1).) Moreover, y then is diffuse P — a.s. since p and 

Mp (M) 
is however that it implies also condition (3.2) if the underlying P is of first order. A 
sufficient condition for Miirmann's condition is that z is small enough. This aspect 
will be developped below. 

4. T H E C O N V E R S E O F M U E R M A N N ' S F I R S T T H E O R E M 

LetQ be a Poisson exclusion process for (DR, M^) on Rf. Then Q is concentrated 
on M (՝ )(Rf). Consider the image P of Q under the me^urable transformation X(o)-
This mapping dissolves the clusters of p into its particles. 

P Q 
process one has for any given heF+, 

Cp(h) = / / h(a, p(o))p(o)(da)Q(dp) 

= If / h(a, p(o) )x(da)p(dx)Q(dp) 

= I I I h(a, (p + Sx)(o)) • 1D* (x, p(o)) • LRf (x) • u(x)x(da)Wg(dx)Q(dp). 
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We then study the inner double integral of the last triple integral, which we denote 
by կ , using partial integration with respect to We(dx). As a result we obtain 

Կ = J J h(a, բլօ) + x + Sa) • 1D* (x + Sa,j(0)) • 1Щ (x + Sa) • u(x + Sa)We(dx)Q(da). 

The next step is the analysis of the double integral 

Ia = J J h(a, բլօ) + x + Sa) • ID* (x + Sa,j(0)) • 1щ (x + Sa) • u(x + Sa)We(dx)Q(dj). 

Here we subdivide the variable x into R—clusters in such a way that they form, 
together with a , an R—cluster. To be more precise, the following representation is 
true: 

ID* (x + Sa,j(0)) • 1щ (x + Sa) • u(x + Sa) 

=  yk>0 к!  yziCx yz2Cx-zi • • •  yzk-iCx-(zi+ + zk-2)  1D*  ( a, j(0)) 

Kn^lLD* (zj,zi + + Zj-i + H(0})) • 

•ID* (x — (zi + + Zk-i), zi + + zk-i + j(0))) 

x^I^R  ( z j ) • } ( a ) •  u ( z j ) • e x p ( — E ( a , z j ) ) •  1RF  ( x  — (zi + ••• +  zk-i ) )  

x 1B(x-(z i + • • • + z—)) ( a ) •  u ( x  — (zl + ••• +  zk-l)) • 
• exp(—E(a, x — (zi + + zk-i))). 

Using again partial integration with respect to We, the inner integral of I a equals 

yk>0 — J ••• k J h(a, j(0) + x + (zi + + zk-i) + Sa) • 1D* (a, j(0)) 

xnKI I 1D* (zj,zi + + z j - i + բ(0))) • 1D* (x,zi + + zk-i + j(0))) 

x nj L I LRF  ( z j ) •  1B(zj) ( a ) •  u ( z j ) • e x p ( — E ( a , z j ) ) )  

x 1-RF (x) • 1B(x)(a) • u(x) • exp(—E(a,x)) 

xWe(dzi) ••• We(dzk-i)We(dx). 

Then integrating this with respect to Q(dj) and using again that Q is a Poisson 

exclusion process yields 

Ia = У>0 — J J •••kJ h(a, j(0) + Sa) • 1D* (a,j(0) — (x + zi + + zk-i)) 

xn^Zl 1D* (zj,թ(0) — (x + zj + + zk-i)) • 1D* (x, թ(0) — x) 

хЦ-^в,^)(a) • 1B(x)(a) • П - exp(—E(a,zj)) • exp(—E(a,x)) 

xj(dzi) • • • j(dzk-i)j(dx)Q(dj). 
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Observe finally that in Ia the sum 

1 
Sk>o~T7 

՜ k! 
j k ֊ l 

j J ••• k J 1D* (a, P(o) — (x + zi + + Zk-i)) 

х П ^ 1 1 D * ( z j , P ( o ) — (x + Zj + + Zk-i)) • 1 D * ( x , P ( o ) — x) 

)(a) • 1տխ) (a) • П^ exp(—E (a,Zj)) • exp(—E(a,x)) 

xp(dzi) • • • p(dzk-i)p(dx) 

equals exp(—E(a,p(o))). 
To summarize, we have shown Miirmann's second theorem. 

T h e o r e m 2. Let Q be a Poisson exclusion process for (DR, Mfi) on Rf. Then the 
image P of Q under the measurable transformation X(o) is a Gibbs process in E for 
(ф, g) 

Summarizing both theorems, we see that the relation Q = YP establishes a 1-1 
correpondence between Gibbs processes P in E for (ф, g) concentrated on Mand 
satisfying condition (3.2) , and Poisson exclusion processes for (DR, Mf) in Rf. Here 
ф is the given even, stable, pair potential of finite range R. 

This result is very valuable. It reduces the study of Gibbs processes to the one 
of Poisson exclusion processes. Moreover, since there is a one-to-one correspondence 
between these processes, existence, extremality or uniqueness resp. phase transition 
occurs in one class if and only if this phenomenon occurs in the other one. 

5. A B S E N C E O F P E R C O L A T I O N A N D M U E R M A N N ' S C O N D I T I O N 

(ф, g) P E ф R 
g P P 

equivalently described by Ruelle's equation. To pose the problem we introduce some 
notations first: For an open Л G Bo(E) let A(r) denote է he r— dilatation r • Л,г > 1. 
Moreover 

(5.1) Тл = {x G R | x Ո Л = Ф], 

(5.2) Тл,л(г)с = {x €Тл I x Ո Л(г) с = 9}, 

(5.3) GFAMr)c = {p G M (R) | p(FKMry) > 1}. 

If Л' is a bounded Borel set containing Л(г) such that d^(r), (Л') с) > R, then it is 
evident that 
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P{ Л } 

< P{ there is a p. in Л which clusters with some p. in Л' \ Л(Г), 

regardless eventual clustering with some p. outside Л'} 

More formally: If пл՛ : n —> 1л՛ • n and Yл� = Y • пл՛, then 

(5.4) P{3x G Y : |x| = x G Тл} < P Ы � G GrA։Mr)c}. 

The problem now is to estimate from above the probability on the right hand side 
(and thereby on the left). 

Write E for the event Gfa A ( r ) c • We first use Ruelle's equation to get 

P{YA՛ GE} = J J 1£(Y(i)) • exp(—EA՛(£ + n))Wg(d£)P(dn). 

М(А')С МЛ՛ 

We then analyze the inner integral In (E) for any measurable event E in M.f \Rf) by 
means of the following cluster representation: 

L e m m a 2. For any measurable E in Mf \Rf) and any n G M(л՛^ 

(5.5) In (E )= J 1£ (p) • exp(—W (p | n)) WMSa, (dp). 

M f ( R f ) f f 

Here for p = Szi + • • • + S: 

k 

W(p | n)) = W(zj | n), where 
j=i 

W(Zj | n ) = J 2 E(a, n). j  

Proof . Expressing as above the integrand of In (E) by means of the cluster decom-
position of £ yields 

LE(Y(£)) • exp(—Ev�(£ + n)) = 

=  Sk>o k  SziC  SZ2C£-Z! • • •  SzK-1C^-(z1 + • • • + Z k ֊ 2 ) 1 E n M ( f  )(Rf ) ( S?-(zi + • • • + z k ֊ i ) + 

+Szi + • • • + Sz—) х n—u(zj) • exp(—W(Zj | n))) 

x u ( £  —  (ZI + • • • +  Zk-i)) • e x p ( — W ( S ? - ( z l H + zk-1) I n))). 

Applying again partial integration with respect to WgK, yields the assertion of the 
lemma. 
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Before starting the estimation we separate a cluster inside Р л , л ( г ) с in In (E) , where 
E is from now on given by G F a A ( r ) c , and obtain 

In (E )= J J(F/ —a c) • / 1E ( j ) • exp—W ( j | n))j(dx)WM,A, (dj). 
M ( F  ) ( R f ) F A , A ( r ) c  

Again partially integrating yields 

I n ( E  ) = f m ( F A A i ( r ) c ) + i  x f  1 £  ( j +  S x ) •  1 M f ) ( R F ) ( j +  S x ) • 

M f ( R { ) F A , A ( r ) c  f  f  

• exp(—W ( j + Sx I n))MeA, (dx)WM,A, (dj). 

We now start estimating from above and use that ( j + Sx)eM {f ) (Rf) implies 

jeM.f )(Rf) • Moreover 

W(j + Sx I n) = W(j I n) + W (x I n), 

where W(x I n) > —B • IxI by stability of ф. 

As a consequence one obtains 

In(E) < MeB.eA, (Fл,л(г)с) • J exp(—W(j I n)) W m B a , (dj). 

M f ' ( R f ) 

Then dissolving the clusters of j into its particles, by the lemma above the integral 
on the right hand side equals 

J exp(—Eл�(Հ + n))We(di). 

M A ՛ 

Now integrating the last inequality with respect to 1M ( a , ) c • P, and using Ruelle's 
equation implies 

P{7л՛ e QFa,a(t)c  } <  Me  B• eA՛  ( FЛ,Л(г) с  )յ 

so that finally we otain for any P e G(Փ, ջ) of first order Miirmann's 

M a i n e s t i m a t e . If Л' is a bounded ^оте1 set containing Л(г) such that 
d^(r), (Л') с) > R , then 

P{ a p. in Л clusters with infinitely many other p. } < MeB,e (Тл,л(г)с). 

This estimate implies then Miirmann's 
Rador 

P { c d D „ > 1} = 0. 

M a i n L e m m a . If MeB. e is a Radon measure then 
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The proof immediately follows from the following decomposition of Тл: 

T h = тлс . . т
л ( 2 ) \ ] т

л ( 3 ) с , , 
г л =  F л u г л л u  Fл,л(2)с u . 

Here F^^՛ is the event meeting Л and Л', but not Л".l^Fл has finite measure with 
respect to M e B . p o s i t i v e e there exists N such that MeB.e(F^^N)c) < e, 
and thus for any Л' containing Л(N) ,which itself contains Л, one has 

MeB• eA՛ )c  ) <  e. 

Combining this with Miirmann's estimate proves the main lemma. 

6. C O N C L U D I N G R E M A R K S 

The question remains, under which conditions on (ф, ջ) the Miirmann measure is 
Radon. The well known answer is that this is the case if z is small enough. To be 
more complete we give some indications to this question. We use the following simple 

Л Л 
ջ—measure 

(6.1) J ֊ 1 • 1Rf (n + So) • u(n + So)We(dn) 

Mf (E) 

(6.2) < ջ ± ֊ ) •  M e F )  

(6.3) < J 1RF (n + So) • u(n + So)We(dn). 

Mf (E) 

The upper and lower bound in (6.3) and (6.1) are power series in z with the same 
radius of convergence. As a consequence the radius of convergence of M e ( F i f 

Л 
We *S0(u • 1Rf). Here * denotes convolution. 

Thus it remains to investigate the power series We * S0(u • 1 R f ) . Here we use the 
observation in [2j that 1 R f (n + S0) < IgI(n + S0), where g denotes the Ursell function 

R 
the potential one obtains 

We *So(u • 1RF) < eB • WeBe * So(IgI). 

On the other hand one can find in Ruelle's book [5] that the integral on the right hand 
side of this inequality is finite if z is small enough. This is one of Ruelle's important 
contributions and follows by means of the method of strong cluster estimates. 
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7. A P P E N D I X : T H E P O I S S O N C A S E 

We consider now the case when the underlying process is a Poisson process with 
an intensity of the following form: a = p ® т , where p is given as above by the 
Lebesgue measure z\d(z > 0) and т is a probability on ]0, The corresponding 
Poisson process in A = Ex]0, is then concentrated on the following collection 
of configurations: 

(7.1) My := {v =%aen S(a,ra) | nM (E),ra > 0 } . 

The definition of the corresponding clusters and cluster property is as follows: We 
call the elements x = (a, r) particles and represent them geometrically as open balls 
b(x) = Br (a). Two particles x, x' are sayed to inter act if b(x) Ո b(x') = 0. Then zeMy 

is called a cluster iff the graph obtained by joining interacting particles is connected. 
Denote by C' the collection of all such clusters and Cf the one of finite clusters. C' 
and Cf are measurable sub sets of My. 

The cluster property defined by R is the measurable subset D = DR in My х My 

defined by 

(Z, v)eD iff 

zeC' such that the particles in v with centers outside the support of z 

z. 

z n z 
the point process on (M'(E),Pa), defined by 

Y : v ——> к : = Y 1D(Z, v) • SZ. 
zCv 

It has its values in 

M (' )(C•) := {KCM՝ (C•) | Z,Z'CK,Z = z' ^ B(z) Ո B(z') = 0}. 

Here B(z) = Uxezb(x). We denote to distribution by Qa. ^ s above y is a Borel 
isomorphism between My rnd M (' )(C') with inverse 

X(o) : к ——> K(o) E zen^: 

and the relation Q = YP establishes a 1-1 correspondence between VMy and 
PM ( •  )(C •) 

The problem is to describe Qa. The following result is also due to Miirmann [3j. 
Exactly the same reasoning as in the Gibbsian case yields the 
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T h e o r e m 3. Given (a, R) as above, the relation Q = YP establishes a 1-1 corres-
pondence between Pa and the uniquely determined Poisson exclusion process Qa on Cf 
for (D*,Ma) if Pa has only finite clusters a.s. . Here Ma is the measure 1cf • Wa. 

This result is also important for the following reasons: It implies the existence and 
uniqueness of Poisson cluster exclusion processes in the situation considered here if 
there is no percolation. 

The question of absence of percolation has been studied in a recent paper of Gouere 
oo 

[lj. The author proves that finiteness of f r dv(dr) is equivalent to the existence of 
o 

zo z zo 

not take place. 
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