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AnnoTanms. Some properties of the eo-product defined in [4] are obtained by a
study of a kind of isomorphism between the computation of this eco-product and
the ordinary e-product of L. Schwartz [9]. The paper contains several corollaries.

1. INTRODUCTION

The e-product in the category of locally convex spaces was defined by L. Schwartz
[9]. Later, L. Waelbroeck [10] gave a simple definition of the -product in the category
of Banach spaces, while in [1] we defined the e.-product in the category of quotient
bornological spaces.

For a nuclear b-space N, we showed in {2] that if 2 is a finite or a o-finite measure
space and 1 < p < 00, then the functors L!, (9, Ne.) and NeL? (©,.) are isomorphic
on the category of b-spaces of L. Waelbroeck [1]. Next, we established in [3] that
for a nuclear b-space N and a b-space F, if X is a compact space (resp. locally
compact space that is countable at infinity) then the exact functors C (X, Ne.F) and
NeC (X, .) are isomorphic on the category of b-spaces.

In a recent paper [4], we defined the eo-product of a b-space by a quotient
bornological space and we proved that if G is an eb-space and F | F' is a quotient
bornological space, then (GeF) | (GeF) is isomorphic to Geoo(E | F).

In the present paper, we are going to prove that if N is a nuclear b-space and G is a
b-space, the quotient bornological spaces Geoo (Ne(E | F)) and Ne(Geoo(E | F)) are
isomorphic for each quotient bornological space F | F' where £, i8 the eoo-product
defined in {4] and we will give some interesting consequences.

First we need to fix the notation and recall some definitions. Let EV be the
category of vector spaces and linear mappings over the scalar field IR or €, and
Ban be the category of Banach spaces and bounded linear mappings. We denote by
Ban(F,, E5) the Banach space of all bounded linear mappings £y — Es, where F)
and F, are Banach spaces.

1- Let (£,|]|5) be a Banach space. A Banach subspace F of E is a vector
subspace endowed with a Banach norm ||-||  such that the inclusion map (F, [|-|| ) —
(E, |||l z) is bounded. Observe that the norm ||-|| of F' is not necessarily the same
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as the norm induced by ||.||5 on F, and the Banach subspace I is not necessarily
closed in . A quotient Banach space F | I is a vector space E/F, where F is a
Banach space and I' a Banach subspace. It is clear that F | F' is not necessarily an
object of the category Ban, but it is if Fis closed in . If £ | F and F; | F} are
two quotient Banach spaces, a strict morphism « @ £ | FF — FE, | F} is a linear
mapping u : x + I —— wy(z) + Fy, where u; : F — F) is a bounded linear mapping
such that uq (F') C Fy. We say that v, induces v. Two bounded linear mappings w1,
uo 1 ' — F4 both inducing a strict morphism, induce the same strict morphism iff
the linear mapping uy — us : £ — Fy is bounded. Let £ | F be a quotient Banach
space and Fy a Banach subspace of E such that I is a Banach subspace of Ey. Then
the natural injection Ey — F induces a strict morphism Ey | FF — E | I, and the
identity mapping Idg : F' — F induces a strict morphism F | F' — E | Ep.

The category of quotient Banach spaces and strict morphisms we called gBan, it is
a subcategory of vector spaces EV and contains the category Ban (any Banach space
E will be identified with the quotient Banach space F | {0}, moreover if uy : F — F)
is a bounded linear mapping, then w; induces a strict morphism £ | {0} — Fy | {0}
and every strict morphism E | {0} — F4 | {0} is induced by a unique bounded linear
mapping vy : F — Fy).

The category qBan is not Abelian. If £ is a Banach space and F' a closed subspace

of I, it would be very nice if the quotient Banach space F | F' were isomorphic to
the quotient (F/F') | {0}. This is not the case in @Ban unless F' is complemented in
E.
L. Waelbroeck [12] introduced an Abelian category qBan generated by qBan and
inverses of pseudo-isomorphims, i.e. has the same objects as qBan and every morphism
u of gBan can be expressed as u = vo s~ !, where s is a pseudo-isomorphism and v is
a strict morphism. For more information about quotient Banach spaces we refer the
reader to [12].

2- Let F be a real or complex vector space, and B be an absolutely convex set in
E. Let Ep be the vector space generated by B ie. EFp = Uxs0AB. The Minkowski
functional of B is a semi-norm on Fpg. It is a norm, if and only if B does not contain
any nonzero subspace of E. The set B is completant if its Minkowski functional is a
Banach norm.

A bounded structure 8 on a vector space F is defined by a set of “bounded” subsets
of F¥ with the following properties:

(1) Every finite subset of F is bounded.

(2) Every union of two bounded subsets is bounded.

(3) Every subset of a bounded subset is bounded.

(4) A set homothetic to a bounded subset is bounded.

(5) Each bounded subset is contained in a completant bounded subset.

A b-space (F, 3) is a vector space F with a boundedness 3. A subspace F of a b-space
E is bornologically closed if the subspace F'N Eg is closed in E'p for every completant
bounded subset B of FE.

Given two b-spaces (&, Bg) and (I, Br), a linear mapping v : £ — F'is bounded,
if it maps bounded sets of F into bounded sets of F. The mapping w is bornologically
surjective if for every B’ € S, there exists B € 8g such that w(B) = B’. A Schwartz
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b-space G is a b-space satisfying the following condition: for each completant bounded
disk A of G there exists a completant bounded disk B of G such that the inclusion
mapping ip 5 : G4 — Gp is compact.

We denote by b the category of b-spaces and bounded linear mappings. For more
information about b-spaces we refer the reader to [5, 6] and [11}.

Let (E, 3g) be a b-space. A b-subspace of F is a subspace I' with a boundedness
G such that (F, Br) is a b-space and Sr C Sg. We note that the boundedness Sp of
I is not necessary the same as the boundedness induced by Sg on F', and then the b-
subspace F' is not necessary bornologically closed in E. A quotient bornological space
E| Fis a vector space F/F, where F is a b-space and F' a b-subspace of E. Observe
that £ | F' is not necessarily an object of the category of b-spaces b, but it is if F'
is bornologically closed in F. If F' | F' and E; | I} are quotient bornological spaces,
a strict morphism v : F | F' — E | I} is induced by a bounded linear mapping
uy 1 B — Fy whose restriction to F' is a bounded linear mapping F' — F}. Two
bounded linear mappings u1, v1 : F — FE1, both inducing a strict morphism, induce
the same strict morphism F | FF — FE4 | Fy iff the linear mapping v —vy : £ — F}
is bounded.

We call q the category of quotient bornological spaces and strict morphisms. A
pseudo-isomorphism « @ £ | ' — F; | F} is a strict morphism induced by a
bounded linear mapping v1 : ¥ — F; which is bornologically surjective and such
that u; '(Fy) = F ie. B € Bp if B € 8 and ui(B) € Br,.

The category q is not Abelian because it contains the category qBan. In {13],
Waelbroeck introduced an Abelian category q generated by q and the inverses of
pseudo-isomorphims i.e. has the same objects as q and every morphism v of q can be
expressed as u — vos !, where s is a pseudo-isomorphism and v is a strict morphism.

2. MAIN RESULTS

To show our main results concerning the e,.-product defined in [4], recall that the
usual e-product of two Banach spaces F and F' is the Banach space FcF of linear
mappings ' — F whose restrictions to the closed unit ball B of £ are o (£, E)-
continuous where E’ is the topological dual of E. The e-product is symmetric i.e. the
Banach spaces FeF and FeF are isometrically isomorphic (Proposition 2 of [10]). If
E; and F; are Banach spaces and u; : E; — F; are bounded linear mappings, i =1, 2,
the e-product of u; and wuy is the bounded linear mapping wicus : EyeFy — FyeFy,
[ —— ug o foul, where v is the dual mapping of uy. It is clear that uicus is injective
whenever v and ug are injective.

If G is a Banach space and F is a Banach subspace of a Banach space F, then
GeF is a Banach subspace of GeF. For more information about the s-product see
[10].

The e-product of two b-spaces G and F is the b-space GeE = Up ¢ (GpeLp),
where B and C respectively range over the bounded completant subsets of the b-
spaces G and F respectively. It is clear that if F'is a b-subspace of G, then the space
FeF is a b-subspace of GeF.

A Banach space IV is an L x-space, A > 1, if and only if every finite-dimensional
subspace F' of F is contained in a finite-dimensional subspace F, of F such that



6 B. AQZZ0UZ, F. BELMAHJOUB, H. SNOUSSI

d(Fy,15°) < A, where n = dim Fy, and £° is K" (K = R or C) with the norm
SUP<;<p, |2i], where d(X,Y) = inf{||T|| ||77|, T : X — Y isomorphism is the
Banach-Mazur distance of the Banach spaces X and Y. A Banach space F is an
Loo-space if it is an Lo z-space for some A > 1. Any complemented subspace of
an Loo-space is an Loo-space. For more information about L..-spaces the reader is
refered to [8].

Recall from [2], that a b-space G is an eb-space if the bounded linear mapping

Idgeu . GelB — GeF, fr—uof

is bornologically surjective whenever v : F — F is a surjective bounded linear
mapping between Banach spaces.

As in Proposition 6.2 of [1], it is easy to show that a b-space G is an eb-space if
and only if for every bounded linear mapping » : X — Y which is bornologically
surjective, the bounded linear mapping Idgeuw : GeX — GeY is bornologically
surjective, where X and Y are b-spaces. As a consequence, if F | I is a quotient
bornological space, then it defines the exact sequence

0—F—F— FE|F—0.
Its image by the exact functor Ge : @ — q is the exact sequence
0 — Gel' — GeE — Ge(F|F)—0
in the category q. Finally, we obtain Ge (F | I') = (GeE) | (GeF).
We start with the following elementary Lemma:

Lemma 1. Let G be an eb-space and (I; | F;),c; an inductive system in the category
q. Then Ge(U; (B | Fy)) = Uy (Ge (B | F})) where U; denotes the inductive limit in
q.

Proof: Recall that in [6], Houzel proved that the inductive limit is an exact functor
on the category b. It follows from Theorem 4.1 of [13] that this functor admits an

exact extension to the category of quotient bornological spaces.
If we apply the exact functor U;(-) to the following exact complex in q:

(2.1) 0—F —FbE —E|F,—0

we obtain

and hence

Now, if we apply successively the exact functors U;(-) and Ge. to the exact complex
(2.1), we obtain the following exact complex:

and then

Now, from the definition of the s-product of two b-spaces it follows that
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This proves the Lemma.

Recall that a b-space G is nuclear if each bounded completant subset B of G is
included in a bounded completant A of G such that the inclusion iap : Gp — G4 is
a nuclear mapping. For more information about nuclear b-spaces we refer the reader
to [5].

Theorem 1. Let [ be a set, G an Loo-space and FE | ' a quotient bornological space.
Then I (I e(Ge(E | F)) = Ge (I (e (E | F)).

Proof: Since the Banach spaces [*° (I) and G are L.,-spaces, their s-product
[ (I)eG is an Loc-space. Hence a Theorem of Kaballo [7] implies that the functor
(I (1) eG) e. is exact on the category Ban. It follows from Theorem 4.1 of {13} that
this functor admits an unique and exact extension to the category of quotient Banach
spaces qBan. Then, for each quotient Banach space F | F', we have

(I DNe@)e(F|F)=((I"1)eG)ecE) | ((I"°(1)e@G)el) .
On the other hand,

(I eG)eR) | (I (N e@)eF) =" (1) e (GeE)) | 1> (1) e (GeF)
=1 e((Gel) | (GeF)) =1 (1) e(Ge (£ | F))
Now, given quotient bornological space F | F, let (B,C) be a couple of bounded
completant subsets, B is bounded in F, C is bounded in F and C C B. This set of
couples is ordered by the relation (B, C) < (B1,Cy) ifand only if B C By and C C C}.
For this order, the set of couples (B,C) is a net and the family (Ep | Fo)(p,c) is an
inductive system in q and we can write F' | ' ~ U(g ¢y(Ep | F¢). This proves that
each quotient bornological space F | F' is an inductive limit of an inductive system
of quotient Banach spaces Ep | Feo. It follows from the equality
[ (Ne(Ge(FEp | Fo)) = Ge (I (1) e (Fp | Fo))
and the exactness of the inductive limit that
Us,c) (I ()& (Ge(Ep | Fe))) ~ U,y (Ge (17 (1) e (Ep | 1))
Finally, a double application of Lemma 1, gives the following result:
U,y (17 (1) e (Ge(Bp | Fo))) = (I (1) e Ugp e (Ge(EE | Fo)))

— (I (1) (Ge Up oy (E | Fo))) = 1 (D) e (Ge(E | F)

and
Us,o) (Ge (I7 (1) e (EB | Fo))) = Ge Up,o) (17 (1) e (EB | Fo))

— G= (I (I)e Ugs.cy (B | F)) = Ge (1 (1) (E | F)).
Now, a b-space is a bL,-space if it is a bornological inductive limit of £, .-spaces.
Since the inductive limit functor is exact on the category of b-spaces [6], it is clear that
any bLoo-space is an eb-space. Another concrete example is given in (|2}, Example
2.4). In fact, for » € N* and X a compact manifold, we defined the space C" 79 (X) =
U C"(X), where 0 < ¢ < 1 and C"*¢ (X) is the Banach space of functions of

class C” on X such that: for all k € N*, |k| <r, D f is continuously o-Hdlderian of
exposant £, on which we placeed the following boundedness of b-space: B € C"0 (X)
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is bounded if there is € > 0 such that B is bounded in C"*¢ (X). The space C" % (X)
is a bornological inductive limit of the inductive system (C"7¢ (X)) where each
O™ (X) is an L.-space, and hence it is an L..-space.

As a consequence of Theorem 1 and the exactness of the bornological inductive
limit, we obtain

e>0

Corollary 1. Let I be a set, G be a bLoo-space and E | ' be a quotient bornological
space. Then [ (e (Ge(E | F)) = Ge (I (I)e (F | F)).

Another example of bL.-spaces: let N be a nuclear b-space, then there exists a
net (I, <) and a base (Bg;)icr of the bornology of N such that the Banach space
NBp,,,; is isometrically isomorphic to co and N = U;erNp, , as b-spaces [5]. Since co is
an Loo-space [9], it is clear that every nuclear b-space is a bL-space.

Corollary 2. Let I be a set, N a nuclear b-space and E | ' a quotient bornological
space. Then [ (1)e(Ne(F | F))~ Ne(I*(I)e(E| F)).

Since the Banach space [*° (/) is an eb-space and its e-product by the eb-space
N is an sb-space. Hence the functor (I*° (/) eG)e is exact on the category Ban. A
version of the proof of Theorem 1, produces the following result:

Theorem 2. Let I be a set, G an cb-space and E | F' o quotient bornological space.
Then I (I e(Ge(E | F)) = Ge (I (e (E | F)).

Now, we prove the same property for the £ .-product of a b-space by a quotient
bornological space defined in [4]. First, we recall the definition of the £.-product.

In the category Ban, a left exact [°°-resolution of a Banach space G is a strongly
left exact complex

0 — G % 1°°(I) =% 1°°()

i.e. a complex such that Ker(v) = Im(u) and the image of v is closed in [*°(.J).

Since [ (K) is an L,.-space, it follows from [1], that for each quotient bornological
space F | F', we have

C(K)e(F|F)=(I"K)eE) | ((®(K)eF) for K=1,..

The bounded linear mapping veldg : [*°([)eF — [°°(J)eF induces a strict morphism
veldgp : (IF(1)el) | (IFU)eF) — (I(J)eE) | (I7°(J)el)

and as the category q is Abelian, the object Ker(veldg r) exists, and we obtain the

following left exact sequence in q:

ueldp | p

0 — Ker(veldgp) — ((™(I)eE) | (> (1)eF)

CEET @ )eB) | ()R,
where

Ker(veldpp) = (veldg) (1% (J)eF) | (I°(1)eF).
and (veldg) 1(1°°(J)eF) is a b-subspace of the b-space [°°(I)cE for the following
boudedness: a subset B of (veldg) 1 (1°°(J)eF) is bounded if it is bounded in (*° (1) F
and its image (veldg)(B) is bounded in [*(J)eF.
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We let Gepes (I | F') = Ker(veldp p). This defines a functor
Gepes-:q—4q, F|F — Geps(E|F).

The Banach space G has several left exact [*°-resolutions, and we proved in {4] that the
object Gepes(F | I') does not depend on the left exact {*°-resolutions of G (Theorem
2.4 of [4]). Then, we defined the ¢ ,-product of a b-space G by a quotient bornological
space F | F' as the quotient bornological space Geoo(E | F) = Gepes(E | F).

Now we are in a position to prove the principal result which concerns the .,-product
defined in {4].

Theorem 3. Let N be an Lo -space, G a Banach space and E | F a quotient
bornological space. Then Geo, (Ne(F | F)) = Ne(Geo(F | F)).

Proof: Let

0— G -2 L))

be a left exact [*°-resolution of G. As N is an L-space, we have
Ne(E | F) =~ (NeFE) | (Nel).
Then the bounded linear mapping
Veldn.py : 17 (I)e(NeF) — 17 (J)e(NeE)
induces a strict morphism
Veldyopipy : I7°(1)e(Ne(E | F)) — 17°(J)e(Ne(E | F))

which has a kernel in the category q. We obtain then the following left exact complex
in q:

0 — Geo Ne(E | F) = e

\IIEIdNE(E\F)
—

(De(Ne(E | F))

°(Ne(Ne(E | F)).
On the other hand, the image of the left exact complex

éEIdNE(E\F) \IIEIdNE(E\F)
— —

0 — Geo(F | F) (*e(F | F) >°(Ne(E | F)
by the exact functor Ne.: q — q is the following left exact complex:
0 — Ne(Geoo(E | F)) — Ne(I(1)e(E | F)) — Ne(I™(Ne(E | F)).
Now, by Theorem 1, we have
[(K)e(Ne(E | F))=Ne(I™(K)e(E | F)) for K=1,J

therefore
Ker (\IIEIdNE(E‘F)) = Ker (IdNE (\IIEIdE‘F)) ,
implying
Geoo (Ne(E | F)) = Ne(Geoo(E | F)).
As a consequence of the Theorem 2 and Lemma 1, we obtain:

Corollary 3. Let N be an Lo, -space, G a b-space and E | F' a quotient bornological
space. Then Geoo (Ne(E | F)) = Ne(Geoo(E | F)).
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Proof: In fact, since G = UpGp where B ranges over bounded completant subsets
of GG, and since
Gpeoe (Ne(E | F)) = Ne(Gpeno(E | F)),
we have
Up(Gpes (Ne(E | ) = Up(Ne(Gpeoo(F | F))).
It follows from Lemma 1, that
Up(Ne(Gpexo(E | F))) = Ne(Up(Gpexo(E | F))) = Ne(Geso (B | F)),

therefore
Geoo (Ne(E | F)) = Ne(Geoo(E | F)).
This ends the proof.

Other consequences of Theorem 1 and Corollary 1 (resp. Corollaries 2, 3 and Theorem
2) are as follows:

Corollary 4. Let N be a bLo-space, G a b-space and E | F' a quotient bornological
space. Then Geoo (Ne(E | ) = Ne(Geoo(E | F)).

Corollary 5. Let N be a nuclear b-space, G a b-space and F | F' a quotient bornological
space. Then Geoo (Ne(E | F)) = Ne(Geoo(E | F)).

Corollary 6. Let N be an cb-space, G a b-space and E | F' o quotient bornological
space. Then Geoo (Ne(E | ) = Ne(Geoo(E | F)).
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