
Известия HAH Армении. Математика, том 42, и. 6, 2007, стр. 3-10 

SOME PROPERTIES OF T H E e T O -PRODUCT OF Q U O T I E N T 
B O R N O L O G I C A L SPACES 

B. AQZZOUZ, F. BELMAHJOUB, H. SNOUSSI 

UniversitS Mohammed V-Souissi, Sala Eljadida, Morocco 
Universit4 Ibn Tofail, Kenitra, Morocco 

Universit4 Mohammed V-Souissi, Rabat, Morocco 
E-mail: baqzzouz@hotmail. com 

АННОТАЦИЯ. Some properties of the ^ - p r o d u c t defined in [4] are obtained by a 
study of a kind of isomorphism between the computation of this e^-product and 
the ordinary e-product of L. Schwartz [9]. The paper contains several corollaries. 

1. I N T R O D U C T I O N 

The e-product in the category of locally convex spaces was defined by L. Schwartz 
[9j. Later, L. Waelbroeck [10] gave a simple definition of the e-product in the category 
of Banach spaces, while in [lj we defined the e c-product in the category of quotient 
bornological spaces. 

For a nuclear b-space N, we showed in [2j that if Q is a finite or a a-finite measure 
space and 1 < p < < then the functors Lploc (Q, Ne.) and NeLp (Q, . ) are isomorphic 
on the category of b-spaces of L. Waelbroeck [1]. Next, we established in [3] that 
for a nuclear b-space N and a b-space E , if X is a compact space (resp. locally 
compact space that is countable at infinity) then the exact functors C (X, Ne.E) and 
NeC (X,.) are isomorphic on the category of b-spaces. 

In a recent paper [4j, we defined the eT O-product of a b-space by a quotient 
bornological space and we proved that if G is an eb-space and E | F is a quotient 
bornological space, then (GeE) | (GeF) is isomorphiс to Gex(E | F). 

N G 
b-space, the quotient bornological spaces Gex (Ne(E | F)) and Ne(Gex(E | F)) are 
isomorphic for each quotient bornological space E | F where e ^ is the eT O-product 
defined in [4] and we will give some interesting consequences. 

First we need to fix the notation and recall some definitions. Let E V be the 
category of vector spaces and linear mappings over the scalar field 1 or C, and 
B a n be the category of Banach spaces and bounded linear mappings. We denote by 
Ban(Ei, E2) the Banach space of all bounded linear mappings Ei —> E2, where Ei 
and E2 are Banach spaces. 

1- Let (E, ||-||B) be a Banach space. A Banach subspace F of E is a vector 
subspace endowed with a B a n a c h norm ||-||F such that the inclusion map (F, ||-||F) —> 
(E, ||-||B) is bounded. Observe that the norm ||-||F of F is not necessarily the same 
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as the norm induced by ||.||E on F, and the Banaeh subspaee F is not necessarily 
closed in E. A quotient Banach space E | F is a vector space E / F , where E is a 
Banach space and F a Banach subspaee. It is clear that E | F is not necessarily an 
object of the category B a n , but it is if F is closed in E . If E | F and Ei | Fi are 
two quotient Banach spaces, a strict morphism u : E | F —> Ei | Fi is a linear 
mapping u : x + F ——> ui(x) + Fi, where ui : E —> Ei is a bounded linear mapping 
such that u i ( F ) С F^. We say է hat ^ i n d u c e s u. Two bounded linear mappings ui, 
u2 : E —> Ei both inducing a strict morphism, induce the same strict morphism iff 
the linear mapping ui — u2 : E —> Fi is bounded. Let E | F be a quotient Banach 
space and Eo a Banach subspaee of E such that F is a Banach subspaee of E0. Then 
the natural injection E0 ^ E induces a strict morphism E0 | F —> E | F, and the 
identity mapping IdE : E ^ E induces a strict morphism E | F —> E | E0. 

The category of quotient Banach spaces and strict morphisms we called q B a n , it is 
a subcategory of vector spaces E V and contains the category B a n (any Banach space 
E will be identified with the quotient Banach space E | { 0 } , moreover if ui : E ^ Ei 

is a bounded linear mapping, then ui induces a strict morphism E | { 0 } ^ Ei | { 0 } 
and every strict morphism E | { 0 } ^ Ei | { 0 } is induced by a unique bounded linear 
mapping ui : E ^ E i ) . 

The category q B a n is not Abelian. If E is a Banach space and F a closed subspaee 
of E , it would be very nice if the quotient Banach space E | F were isomorphic to 
the quotient ( E / F ) | { 0 } . This is not the case in q B a n unless F is complemented in 
E 

q B a n qqBan 
qqBan 

u of q B a n can be expressed as u = v о s - i , where s is a pseudo-isomorphism and v is 
a strict morphism. For more information about quotient Banach spaces we refer the 
reader to [12]. 

2- Let E be a real от complex vector space, and B be an absolutely convex set in 
E . Let EB be the vector space generated by B i.e. EB = U\>0^B. The Minkowski 
functional of B is a semi-norm on E B . It is a norm, if and only if B does not contain 

E B 
Banach norm. 

A bounded structure в от a vector space E is defined by a set of "bounded" subsets 
E 

E 
(2) Every union of two bounded subsets is bounded. 
(3) Every subset of a bounded subset is bounded. 
(4) A set homothetic to a bounded subset is bounded. 
(5) Each bounded subset is contained in a completant bounded subset. 

A b-space (E, в ) is a vector space E with a boundedness в- A subspaee F of a b-space 
E is bornologically closed if the subspaee F Ո EB is closed in EB for every completant 

B E 
Given two b-spaces (E, вЕ) and (F, вр), a linear map ping u : E —> F is bounded, 

if it maps bounded sets of E into bounded sets of F. The mapping u is bornologically 
surjective if for every B' e вР> there exists B e вЕ such that u(B) = B'. A Schwartz 
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G 
disk A of G there exists a eompletant bounded disk B of G such that the inclusion 
mapping iB՛ B : GA ^ GB is compact. 

We denote by b the category of b-spaces and bounded linear mappings. For more 
information about b-spaces we refer the reader to [5, 6] and [11]. 

Let ( E , (3E) be a b-space. A b-subspace of E is a subspace F with a boundedness 
PF such that (F, [3F) is a b-space and [3F Q We note that the boundedness [3F of 
F is not necessary the same as the boundedness induced by вЕ on F, and then the b-

F E 
E | F is a vector space E / F , where E is a b-space and F a b-subspace of E. Observe 

E | F b F 
E E | F Ei | Fi 

a strict morphism u : E | F —> E1 | F1 is induced by a bounded linear mapping 
u1 : E —> E1 whose restriction to F is a bounded linear mapping F —> F1. Two 
bounded linear mappings u ^ v1 : E —> E1, both inducing a strict morphism, induce 
the same strict morphism E | F —> E1 | F1 iff the linear mapping u1 — v1 : E —> F1 

is bounded. 
We call q the category of quotient bornological spaces and strict morphisms. A 

pseudo-isomorphism u : E | F —> E1 | F1 is a strict morphism induced by a 
bounded linear mapping u1 : E —> E1 which is bornologically surjective and such 
that u - 1(F1) = F i.e. B e в р if B e PE and u1(B) e PF^ 

The category q is not Abelian because it contains the category q B a n . In [13], 
Waelbroeck introduced an Abelian category q generated by q and the inverses of 

qq u q 
expressed as u = v о s ՜ 1 , where s ŝ a pseudo-isomorphism and v is a strict morphism. 

2. M A I N R E S U L T S 

To show our main results concerning the eTO-product defined in [4], recall that the 
usual e-product of two Banach spaces E and F is the Banach space EeF of linear 
mappings E' —> F whose restrictions to the closed unit ball B E ՛ of E' are a ( E E ) ֊ 
continuous where E' is the topological dual of E . The e-product is symmetric i.e. the 

EeF FeE 
Ei and Fi are Banach spaces and щ : Ei —> Fi are bounded linear mappings, i = 1, 2, 
the e-product of u1 and u 2 is the bounded linear mapping u1eu2 : E1eE2 —> F1 eF2, 
f ——> u2 о f оu1, where u1 ŝ ^^e dual mapping of u ^ It is clear that u1eu2 is injective 
whenever u1 and u2 are injective. 

G F E 
GeF ŝ a Banach subspace of G e E . For more information about the e-product see 
[10]. 

The e-product of two b-spaces G and E is the b-space GeE = UB,c (GBeEC), 
B C 
G E F G 

FeE GeE 
A Banach space E is an £TO,A-space, Л > 1, if and only if every finite-dimensional 

F E F1 E 
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d (F1,l™) < Л, where n = dim F-լ, and l™ is K n ( K = R or C) with the norm 
s u p i < i < n \xi^ where d(X,Y) = inf{ЦТ|| T : X —> Y isomorphism is the 
Banach-Mazur distance of the Banach spaces X and Y. A Banach space E is an 
£T O-space if it is an £TOjA-space for so me Л > 1. Any complemented subspace of 
an £T O-space is an L^- space . For more information about LT O-spaces the reader is 
refered to [8]. 

Recall from [2], that a b-space G is an eb-space if the bounded linear mapping 

IdGeu : GeE —> GeF, f -—> u о f 

is bornologically surjective whenever u : E —> F is a surjective bounded linear 
mapping between Banach spaces. 

G e 
and only if for every bounded linear mapping u : X —> Y which is bornologically 
surjective, the bounded linear mapping IdGeu : GeX —> GeY is bornologically 
surjective, where X and Y are b-spaces. As a consequence, if E \ F is a quotient 
bornological space, then it defines the exact sequence 

0 —> F —> E —> E \ F —> 0. 

Its image by the exact functor Ge : q —> q is the exact sequence 

0 — • GeF —• GeE —> Ge (E \ F) — • 0 

in the category q Finally, we obtain Ge (E \ F) = (GeE) \ (GeF). 

We start with the following elementary Lemma: 

Lemma 1. Let G be an eb-space and (Ei \ F i ) i e I an inductive system, in the category 
q. Then Ge(Ui (Ei \ Fi)) ~ (Ge (Ei \ F-լ)) where ^Jj, denotes the inductive limit in 
q 

Proof: Recall that in [6], Houzel proved that the inductive limit is an exact functor 
on the category b . It follows from Theorem 4.1 of [13] that this functor admits an 
exact extension to the category of quotient bornological spaces. 

If we apply the exact functor U i(-) to the following exact соmplex in q: 

(2.1) 0 ^ Fi Ei Ei \ Fi 0 

we obtain 
0 UiFi UiEi Ui (Ei \ Fi) 0 

and hence 

Ui (Ei \ F i ) ) ~ coker (UiFi UiEi) ~ (UiEi) \ (UiFi). 

Now, if we apply successively the exact functors U i(-) and Ge. to the exact complex 
(2.1), we obtain the following exact complex: 

0 Ge(UiFi) Ge(UiEi) Ge(U (Ei \ F i ) ) 0 

and then 
Ge(Ui (Ei \ F i ) ) ~ (Ge(UiEi)) \ (Ge(UiFi))). 

e 

(Ge(UiEi)) \ (Ge(UiFi)) ~ Ui (GeEi) \ Ui (GeFi) 
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~ Ui (GeEi | GeFi) ~ Ui (Ge (Ei | F i ) ) . 

This proves the Lemma. 

Recall that a b-space G is nuclear if each bounded completant subset B of G is 
included in a bounded completant A of G such that the inclusion iAB : GB —• GA is 
a nuclear mapping. For more information about nuclear b-spaces we refer the reader 
to [5]. 

T h e o r e m 1. Let I be a set, G an £™-space a nd E | F a quotient bornological space. 
Then l™ (I) e (Ge(E | F)) ~ Ge (l™ (I) e (E | F)). 

Proof: Since the Banach spaces l™ (I) and G are L™-spaces, their e-product 
l™ (I) eG is an £™-space. Hence a Theorem of Kabal lo [7j implies that the functor 
( l  ™ ( I) eG) e. B a n 
this functor admits an unique and exact extension to the category of quotient Banach 
spaces q B a n . Then, for each quotient Banach space E | F, we have 

(l™ (I) eG) e(E | F) = ((l™ (I) eG) eE) | ((l™ (I) eG) eF) . 

On the other hand, 

((l™ (I) eG) eE) | ((l™ (I) eG) eF) = (l™ (I) e (GeE)) | l™ (I) e (GeF) 
= l™ (I) e ((GeE) | (GeF)) = l™ (I) e (Ge (E | F)) 

Now, given quotient bornological space E | F , let (B, C) be a couple of bounded 
completant subsets, B is bounded in E , C is bounded in F and C с B. This set of 
couples is ordered by the relation (B, C) — (Bi, C ^ if and onlу if B с Bi and C с C i . 
For this order, the set of couples (B,C) is a net and the family (EB | FC)(B,C) is  a n  

inductive system in q and we can write E | F ~ U(B C)(EB | FC). This proves that 
E | F 

EB | FC 

l™ (I) e (Ge(EB | FC)) ~ Ge (l™ (I) e (EB | FC)) 

and the exactness of the inductive limit that 

U{B,C) (l™ ( I ) e (Ge(EB | FC))) ֊ U{B,C) (Ge (l™ ( I ) e (EB | F C ) ) ) . 

Finally, a double application of Lemma 1, gives the following result: 

U(B,C) (l™ ( I ) e (Ge(EB | FC))) = (l™ ( I ) e U{B,C) (Ge(EB | FC))) 

= (l™ ( I ) e (Ge U{B,C) (EB | FC))) = l™ ( I ) e (Ge(E | F ) ) 

and 
U{B,с) (Ge (l™ ( I ) e (EB | FC))) = Ge U(B,с) (l™ ( I ) e (EB | FC)) 

= Ge (l™ ( I ) e U{B,с) (EB | FC)) = Ge (l™ ( I ) e (E | F ) ) . 

Now, a b-space is a b£™-space if it is a bornological inductive limit of £ ™ ֊ s p a c e s . 
Since the inductive limit functor is exact on the category of b-spaces [6], it is clear that 
any b£™-space is an eb-space. Another concrete example is given in ([2j, Example 
2.4). In fact, for r e N* and X a compact manifold, we defined the space C r+0 (X) = 
Ue C r+ e ( X ) , where 0 < e < 1 and C r+ e (X) is the Banach space of functions of 
class C r on X such that: for all k e N " , |k| < r , Dk / i s continuously o-Holderian of 
exposant e , on which we placeed the following boundedness of b-space: B с C r+0 (X) 
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is bounded if there is e > 0 such that B is bounded in C r + £ (X). The space C r+0 (X) 
is a bornological inductive limit of the inductive system (C r + e (X))e>0, where each 
C r+£ (X) is an C™ ֊ space , and hence it is an £TO-space. 

As a consequence of Theorem 1 and the exactness of the bornological inductive 
limit, we obtain 

Corollary 1. Let I be a set, G be a bC™֊space and E \ F be a quotient bornological 
space. Then l™ (I) e (Ge(E \ F)) ~ Ge (l™ (I) e (E \ F)). 

Another example of bCTO-spaces: let № be a nuclear b-space, then there exists a 
net (I, < ) and a base (B0,i)i^I of the bornology of N such that the Banach space 
NBoi is isometrically isomorphic to c0 and N = UieINBoi as b-spaces [5j. Since c0 is 
an CTO-space [9], it is clear that every nuclear b-space is a bCTO-space. 

Corollary 2. Let I be a set, N a nuclear b-space and E \ F a quotient bornological 
space. Then l™ (I) e (Ne(E \ F)) ~ Ne (l™ (I) e (E \ F)). 

Since the Banach space l™ (I) is an eb-space and its e-product by the eb-space 
N is an eb-space. Hence the functor (l™ (I) eG) e is exact on the category B a n . A 
version of the proof of Theorem 1, produces the following result: 

T h e o r e m 2. Let I be a set, G an eb-space and E \ F a quotient bornological space. 
Then l™ (I) e (Ge(E \ F)) ~ Ge (l™ (I) e (E \ F)). 

e™ 
e™ 

B a n l™ G 
left exact complex 

0 — • G -U l™(I) -U l™(J) 

i.e. a complex such that Ker(v) = Im(u) and the image of v is closed in l™(J). 
Since l™ (K) is an C™ ֊ space , it follows from [1], that for each quotient bornological 

E \ F 

l™(K)e(E \ F) = (l™(K)eE) \ (l™(K)eF) for K = I, J. 

The bounded linear mapping veIdE : l™(I)eE —> l™(J)eE induces a strict morphism 

veIdE\F : (l™(I)eE) \ (l™(I)eF) -u (l™(J)eE) \ (l™(J)eF) 

and as the category q is Abelian, the object Ker(veIdE\F) exists, and we obtain the 
q 

0 - u Ker(veIdE[F) (l™(I)eE) \ (l™(I)eF) 

v£ld&\ F 
-UF (l™(J)eE) \ (l™(J)eF), 

where 
Ker(veIdE\F) = (veIdE) - 1(l™(J)eF) \ (l™(I)eF). 

and (veIdE) - 1(l™(J)eF) is a b-subspace of the b-space l™(I)eE for the following 
boudedness: a subset B of (veIdE ) - 1(l™(J )eF) is bounded if it is bou nded in l™(I )eE 
and its image (veIdE )(B) is bounded in l™(J)eF. 
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We let GeRes(E | F) = Ker(veIdE\F). This defines a functor 

GeReS. : q - i q, E | F - i GeReS(E | F). 

The Banach space G has several left exact ^-resolut ions , and we proved in [4j that the 
object GeRes(E | F) does not depend on the 1 eft exact /^-resolutions of G (Theorem 
2.4 of [4j). Then, we defined the e ̂ -product of a b-space G by a quotient bornological 
space E | F ж the quotient bornological space Geх(Е | F) = GeRes(E | F). 

Now we are in a position to prove the principal result which concerns the e ̂ -product 
defined in [4]. 

T h e o r e m 3. Let N be a n C^-spaee, G a Banach space and E | F a quotient 
bornological space. Then Geх (N e(E | F)) ~ N e(Geх(E | F)). 

Proof: Let 
0 - i G - i I х (I) - i I х ( J ) 

be a left exact ^-resolut ion of G. As N is an L x - s p a c e , we have 

Ne(E | F) ~ (NeE) | (NeF). 

Then the bounded linear mapping 

՝^eId{NeE) : Iх(I)e(NeE) —• Iх(J)e(NeE) 

induces a strict morphism 

*eIdNe(E\F) : Iх(I)e(Ne(E | F)) - i lx(J)e(Ne(E | F)) 
q 

q 

0 - i Ge^e(E | F)  Ф еЫ-ЦЕ\р ) ^^e^e(E | F)) 

/х(j)e(Ne(E | F)). 

On the other hand, the image of the left exact complex 

0 - i G e х ( E | F) " e I d - i E \ F ) ^ e E | F) * e I d i ? \ F ) ^ ( յ ) e ( e | F) 

by the exact functor Ne. : q —> q is the following left exact complex: 

0 — • Ne (Geх(Е | F)) —• Ne ^ ( ^ ( E | F)) —• Ne ( 1 х ^ ( Е | F)). 

Now, by Theorem 1, we have 

1х(К)e(Ne(E | F)) = Ne (1х(К)e(E | F)) for K = I,J 

therefore 
Ker ( Ф e I d N e ( E \ F ) ) = Ker (IdNe ( Ф e I d E \ F ) ) , 

implying 
Ge х (Ne (E | F)) ~ Ne (Ge х(Е | F)). 

As a consequence of the Theorem 2 and Lemma 1, we obtain: 

Corollary 3. Let N be an Сх-8расе, G a b-space and E | F a quotient bornological 
space. Then Ge х (Ne (E | F)) ~ Ne (Ge х(Е | F)). 
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Proof: In fact, since G = UBGB where B ranges over bounded completant subsets 
G 

GBe™ (Ne(E \ F)) ~ Ne(GBe™(E \ F)), 
we have 

UB (GBe™ (Ne(E \ F))) ~ UB (Ne(GBe™(E \ F))). 
It follows from Lemma 1, that 

UB(Ne(GBe™(E \ F))) = Ne(UB(GBe™(E \ F))) = Ne(Ge™(E \ F)), 

therefore 
Ge™ (Ne(E \ F)) ~ Ne(Ge™(E \ F)). 

This ends the proof. 

Other consequences of Theorem 1 and Corollary 1 (resp. Corollaries 2, 3 and Theorem 
2) are as follows: 

Corollary 4. Let N be a bC™֊space, G a b-space and E \ F a quotient bornological 
space. Then Ge™ (Ne(E \ F)) ~ Ne(Ge™(E \ F)). 

Corollary 5. Let N be a nuclear b-space, G a b-space and E \ F a quotient bornological 
space. Then Ge™ (Ne(E \ F)) ~ Ne(Ge™(E \ F)). 

Corollary 6. Let N be an eb-space, G a b-space and E \ F a quotient bornological 
space. Then Ge™ (Ne(E \ F)) ~ Ne(Ge™(E \ F)). 
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