ОБ ИНДЕКСЕ ПОЛУЭЛЛИПТИЧЕСКОГО ОПЕРАТОРА В \mathbb{R}^n

Г. А. Карапетян, А. А. Дарбинян

Русско-Армянский университет, Ереванский государственный университет E-mail: garnik_karapetyan@yahoo.com, d_arman@freenet.am

Резюме. Настоящая работа посвящена исследованию индекса линейного дифференциального полуэллиптического оператора с переменными коэффициентами специального вида в \mathbb{R}^n . В частности, доказывается, что при выполнении некоторых дополнительных условий на символ оператора, в формулировке которого участвуют младшие члены, индекс оператора конечен. Оператор рассматривается в пространствах Соболева с весом.

§1. ВВЕДЕНИЕ И ОСНОВНЫЕ ПРЕДПОЛОЖЕНИЯ

Общая теория об индексах эллиптических дифференциальных операторов достаточно хорошо изучена (см. [1]–[6]), а теория об индексах гипоэллиптических операторов изучена не полностью. В настоящей работе делается попытка изучения теории об индексе для одного множества полуэллиптических операторов, являющегося подклассом гипоэллиптических операторов.

Будем пользоватся следующими стандартными обозначениями : \mathbb{R}^n – n-мерное евклидово пространство, \mathbb{Z}^n_+ – множество мультииндексов, т.е. векторов $\alpha = (\alpha_1, \ldots, \alpha_n)$, где α_j $(j=1, \ldots, n)$ – целые неотрицательные числа. Для $x, \xi \in \mathbb{R}^n$, $\nu = (\nu_1, \ldots, \nu_n)$, где ν_j $(j=1, \ldots, n)$ суть натуральные числа, и $\alpha, \beta \in \mathbb{Z}^n_+$ положим $C^{\alpha}_{\beta} = C^{\alpha_1}_{\beta_1} C^{\alpha_2}_{\beta_2} \cdots C^{\alpha_n}_{\beta_n}$, где

$$C_{eta_j}^{lpha_j} = rac{eta_j!}{lpha_j!} \quad (j=1,2,\ldots,n),$$
 $|lpha| = lpha_1 + \ldots + lpha_n, \quad lpha! = lpha_1! \ \ldots \ lpha_n!, \quad \xi^lpha = \xi_1^{lpha_1} \ldots \xi_n^{lpha_n},$ $D^lpha = D_1^{lpha_1} \ldots D_n^{lpha_n}, \quad ext{где} \quad D_k = rac{1}{i} rac{\partial}{\partial x_k} \quad (i^2 = -1),$

$$(\alpha:\nu) = \left(\frac{\alpha_1}{\nu_1} + \ldots + \frac{\alpha_n}{\nu_n}\right), \quad \nu_{\max} = \max_{1 \leq j \leq n} \nu_j \quad \text{if} \quad |x| = \sqrt{\sum_{j=1}^n x_j^2}.$$

Пусть U_j $(j=1,\ldots,m)$ – система открытых областей, покрывающая единичную сферу в ${\bf I\!R}^n$ и пусть

$$V_i = \left\{ r: |r - (i+1)| < rac{2}{3}
ight\}, \quad i = -1, 0, 1, \ldots,$$

есть система, покрывающая полуось $0 \le r < \infty$. С помощью множеств U_j $(j=1,\ldots,m)$ и интервалов V_i $(i=0,1,2,\ldots)$, построим следующую систему открытых областей :

$$W_1=\left\{x:|x|<rac{2}{3}
ight\},\quad W_{k+1}=V_{\left[rac{k-1}{m}
ight]} imes U_{k-\left[rac{k-1}{m}
ight]m},\quad k=2,3,\ldots,$$

где [a] – целая часть числа a.

Легко доказывается, что множество $\{W_k\}$ $(k=1,2,\ldots)$ покрывает пространство ${\rm I\!R}^n$ и $\inf_{x\in W_k}|x|\to\infty$ при $k\to\infty$.

Класс Q_{ν} . Для вектора ν с натуральными компонентами через Q_{ν} обозначим множество вещественных положительных функций q(x), для которых

- $1. \ \frac{|D^{\alpha}q(x)|}{q(x)^{1+(\alpha:\nu)\nu_{\max}}} \to 0 \quad \text{при} \quad |x| \to \infty \ \text{для любого} \ \alpha \in \mathbf{Z}^n_+ \ (0 < (\alpha:\nu) \le 1),$
- 2. для любого $\varepsilon>0$, существуют числа $\delta=\delta(\varepsilon)>0$ и $k_0=k_0(\varepsilon)>0$ такие, что при $k>k_0$ и $\max_{1\leq j\leq m} diam\ U_j<\delta$ имеют место следующие соотношения :

$$\max_{x \in \overline{W}_k} \frac{1}{q(x)} < \varepsilon, \quad \max_{x, y \in \overline{W}_k} \frac{|q(x) - q(y)|}{q(y)} < \varepsilon,$$

где \overline{W}_k – замыкание множества W_k .

Пусть $q \in Q_{
u}$ и пусть A(x,D) – линейный дифференциальный оператор вида

$$A(x,D) = \sum_{(\alpha:\nu) \le 1} a_{\alpha}(x) q(x)^{(1-(\alpha:\nu))\nu_{\max}} D^{\alpha}, \qquad (1.1)$$

удовлетворяющий следующим условиям:

Условие І. Оператор A(x,D) полуэллиптичен, т.е. для всех $x \in {\rm I\!R}^n$ многочлен (от ξ)

$$A_0(x,\xi) = \sum_{(\alpha:\nu)=1} a_{\alpha}(x) q(x)^{(1-(\alpha:\nu))\nu_{\max}} \xi^{\alpha}$$

не имеет вещественных нулей при $\xi \neq 0$.

Условие II.

- 1. $\max_{x,y\in\overline{W}_k}|a_{\alpha}(x)-a_{\alpha}(y)|\to 0$ при $k\to\infty,$
- 2. $|a_{\alpha}(x)| \leq C, x \in {\rm I\!R}^n$, где C положительная постоянная,
- $3. \ \frac{\left|D^{\beta}a_{\alpha}(x)\right|}{q(x)^{(\beta:\nu)\nu_{\max}}} \to 0 \ \text{при} \ |x|\to \infty \ \text{и для любого} \ \beta \in \mathbf{Z}_+^n \ (0<(\beta:\nu)\le 1).$

Условие III. Существует положительное число N=N(A)>0 такое, что при |x|>N имеем

$$\overline{A}(x,\lambda,\xi) \equiv \sum_{(\alpha:\nu)<1} a_{\alpha}(x) \, \lambda^{(1-(\alpha:\nu))\nu_{\max}} \xi^{\alpha} \neq 0, \quad \xi \in {\rm I\!R}^n, \ \lambda > 0.$$

Класс $H_q^{k,\nu}(\Omega)$. Для вектора ν с натуральными компонентами, области $\Omega \subset \mathbb{R}^n$ и натурального числа k, через $H_q^{k,\nu}(\Omega)$ обозначим множество измеримых функций с конечной нормой

$$||u||_{k,\nu,q}\left(\Omega\right) \equiv \left\{ \sum_{(\alpha:\nu) \le k} \iint_{\Omega} \left|D^{\alpha}u(x)\right|^{2} q(x)^{2(k-(\alpha:\nu))\nu_{\max}} dx \right\}^{1/2}.$$

В частности, через $H^{k,\nu}_{q(x_0)}(\Omega)$ обозначим множество измеримых функций $\{u\}$ с конечной мерой

$$||u||_{k,\nu,q(x_0)}(\Omega) \equiv \left\{ \sum_{(\alpha:\nu) \leq k} \iint_{\Omega} |D^{\alpha}u(x)|^2 q(x_0)^{2(k-(\alpha:\nu))\nu_{\max}} dx \right\}^{1/2},$$

которая, в силу того, что $q(x_0) \neq 0$, эквивалентна норме пространства Соболева $H^{k,\nu}(\Omega)$, где

$$H^{k,\nu}(\Omega) = \left\{ u: ||u||_{k,\nu}(\Omega) \equiv \left\{ \sum_{(\alpha:\nu) \leq k} \iint_{\Omega} \left| D^{\alpha} u(x) \right|^2 dx \right\}^{1/2} < \infty \right\}.$$

Положим $H^{
u}_q(\Omega)\equiv H^{1,
u}_q(\Omega),\, H^{
u}_{q(x_0)}(\Omega)\equiv H^{1,
u}_{q(x_0)}(\Omega)$ и $H^{
u}(\Omega)\equiv H^{1,
u}(\Omega).$

§2. ОПЕРАТОР СПЕЦИАЛЬНОГО ВИДА

Пусть имеем линейный дифференциальный оператор

$$P(x,D) = \sum_{(\alpha:\nu) \le 1} p_{\alpha}(x)D^{\alpha}$$
 (2.1)

удовлетворяющий следующим условиям:

1. В некоторой фиксированной точке $x_0 \in \mathbb{R}^n (|x_0| > N(A))$ коэффициенты оператора P(x, D) совпадают с коэффициентами оператора $A(x_0, D)$, т.е.

$$p_{\alpha}(x_0) = a_{\alpha}(x_0) \, q(x_0)^{(1 - (\alpha : \nu))\nu_{\text{max}}},\tag{2.2}$$

2. В силу условия III из §1,

$$P(x_0,\xi) = \sum_{(\alpha:\nu)<1} p_{\alpha}(x_0)\xi^{\alpha} \neq 0, \quad \xi \in \mathbf{IR}^n,$$
 (2.3)

3. Для всех $\alpha, \beta \in \mathbf{Z}_{+}^{n} : (\alpha : \nu) \leq 1$

$$|p_{\alpha}(x) - p_{\alpha}(x_0)| \le \varepsilon q(x_0)^{(1 - (\alpha:\nu))\nu_{\max}}, \quad x \in \mathbb{R}^n,$$
 (2.4)

$$\left| D^{\beta} p_{\alpha}(x) \right| \le K_{\beta} q(x_0)^{(1 - (\alpha - \beta : \nu))\nu_{\max}}, \quad x \in \mathbf{I} \mathbf{R}^n, \tag{2.5}$$

где $\varepsilon>0$ и $K_{eta}>0$ суть некоторые положительные постоянные.

В силу условия (2.5), используя формулу Лейбница, легко получить оценку

$$||P(\,\cdot\,,D)u||_{\nu,q(x_0)}\left({\rm I\!R}^n\right)\leq C^{\,\prime}\,||u||_{2,\nu,q(x_0)}\left({\rm I\!R}^n\right)\quad\forall u\in H^{2,\nu}_{q(x_0)}({\rm I\!R}^n),$$

где C' – постоянная, не зависящая от функции u и точки x_0 . Таким образом, (2.1) является ограниченным оператором из $H^{2,\nu}_{q(x_0)}({\bf I\!R}^n)$ в $H^{\nu}_{q(x_0)}({\bf I\!R}^n)$.

Определение. Для любого мультииндекса $\nu \in \mathbb{Z}_+^n$ и области $\Omega \subset \mathbb{R}^n,$ обозначим

$$C^{\nu}(\Omega) = \left\{u; \ D^{\alpha}u \in C(\Omega), \ \forall \alpha \in \mathbf{Z}^n_+: \ (\alpha:\nu) \leq 1\right\}.$$

Лемма 2.1. Пусть $a \in C^{\nu}(\Omega), q \in Q_{\nu}$ и для некоторого r > 0 при всех $\beta \in \mathbf{Z}_{+}^{n}$, $(\beta : \nu) \leq 1$ имеем

$$\left|D^{\beta}a(x)\right| \leq Kq(x)^{(r+(\beta:\nu))\nu_{\max}} \quad \forall x \in \Omega,$$

где K — некоторая постоянная. Тогда для некоторой постоянной M, не зависящей от q и a

$$||a u||_{\nu,q}^{2}(\Omega) \le MK^{2} \sum_{(\alpha:\nu) \le 1} \iint_{\Omega} |D^{\alpha} u|^{2} q(x)^{2(r+1-(\alpha:\nu))\nu_{\max}} dx$$
 (2.6)

для любого $u\in H^{\nu}_q(\Omega)$, как только правая часть оценки ограничена. Доказательство оценки (2.6) непосредственно следует из формулы Лейбница.

Лемма 2.2. Пусть $a \in C^{\nu}(\Omega), q \in Q_{\nu}, x_0 \in {\rm I\!R}^n$ и для некоторого r > 0 при всех $\beta \in {\rm I\!\!\! Z}^n_+, \, (\beta : \nu) \le 1$

$$|D^{\beta}a(x)| \le Kq(x_0)^{(r+(\beta:\nu))\nu_{\max}}, \quad x \in \Omega,$$

где K — некоторая постоянная. Тогда существует постоянная M, независящая от q, a и точки x_0 такая, что

$$||a u||_{\nu, q(x_0)}^2(\Omega) \le MK^2 \sum_{(\alpha:\nu) \le 1} \iint_{\Omega} |D^{\alpha} u|^2 q(x_0)^{2(r+1-(\alpha:\nu))\nu_{\max}} dx$$
 (2.7)

при всех $u \in H^{\nu}_{q(x_0)}(\Omega)$.

Заметим, что оператор $A(x_0, D)$ в (1.1) можно рассматривать как полуэллиптический оператор с параметром $q(x_0)$. Известна следующая теорема (см. [7]).

Теорема 2.1. Оператор

$$A(x_0,D):H^{2,
u}_{q(x_0)}({
m I\!R}^n) o H^{
u}_{q(x_0)}({
m I\!R}^n)$$

обладает ограниченным обратным оператором

$$R_0: H^{
u}_{q(x_0)}({
m I\!R}^n) o H^{2,
u}_{q(x_0)}({
m I\!R}^n).$$

Используя этот результат, докажем существование обратного оператора для отображения $P(\,\cdot\,,D):H^{2,\nu}_{q(x_0)}({\bf I\!R}^n) \to H^{\nu}_{q(x_0)}({\bf I\!R}^n).$

Теорема 2.2. Если для оператора P(x,D) выполнены условия (2.2)-(2.5), то существует число $\overline{\varepsilon} > 0$ такое, что при всех $0 < \varepsilon < \overline{\varepsilon}$ отображение

$$P(\,\cdot\,,D):H^{2,\nu}_{q(x_0)}({\rm I\!R}^n)\to H^\nu_{q(x_0)}({\rm I\!R}^n)$$

имеет ограниченный обратный оператор

$$R(\,\cdot\,,D):H^{\nu}_{q(x_0)}({\rm I\!R}^n)\to H^{2,\nu}_{q(x_0)}({\rm I\!R}^n).$$

Доказательство: Сначала покажем существование правого обратного для оператора P(x, D). Представим оператор P(x, D) в виде

$$P(x, D) = P(x_0, D) + [P(x, D) - P(x_0, D)].$$

Пусть R_0 – обратный оператор оператора $A(x_0,D)=P(x_0,D)$ (см. Теорему 2.1). Положим $u_f(x)=R_0f(x),$ где $f\in H^{\nu}_{q(x_0)}({\rm I\!R}^n).$ Так как $u_f\in H^{2,\nu}_{q(x_0)}({\rm I\!R}^n),$ то

$$P(x, D)R_0f(x) = f(x) + [P(x, D) - P(x_0, D)]R_0f(x) \equiv f(x) + Tf(x).$$

Если при условиях нашей теоремы число $\varepsilon>0$ в (2.4) достаточно мало, то для отображения $T:H^{\nu}_{q(x_0)}({\bf I\!R}^n)\to H^{\nu}_{q(x_0)}({\bf I\!R}^n)$ имеем

$$\left|\left|Tv\right|\right|_{\nu,q(x_0)}({\rm I\!R}^n) \leq \frac{1}{2} \left|\left|v\right|\right|_{\nu,q(x_0)}({\rm I\!R}^n), \quad v \in H^\nu_{q(x_0)}({\rm I\!R}^n).$$

Действительно,

$$||Tf||_{\nu, q(x_0)}(\mathbb{R}^n) \le \sum_{(\alpha:\nu) \le 1} ||(p_{\alpha}(\cdot) - p_{\alpha}(x_0)) D^{\alpha} R_0 f||_{\nu, q(x_0)}(\mathbb{R}^n).$$
 (2.8)

Далее, используя условия (2.4), (2.5) и неравенство Колмогорова

$$\sup_{t \in R} |f'(t)| \le \left(2 \sup_{t \in R} |f(t)| \sup_{t \in R} |f''(t)|\right)^{1/2} \tag{2.9}$$

(для функций f с $\sup_{t\in R} \left|f^{(j)}(t)\right| < \infty, \ j=0,1,2$) заключаем, что существует постоянная $\omega_{\varepsilon}>0$ ($\omega_{\varepsilon}\to 0$ при $\varepsilon\to 0$), не зависящая от точки x_0 и для которой при всех $\alpha,\beta\in \mathbf{Z}_+^n,\ (\alpha:\nu)\leq 1,\ (\beta:\nu)\leq 1,$

$$\left| D^{\beta} \left(p_{\alpha}(x) - p_{\alpha}(x_0) \right) \right| \le \omega_{\varepsilon} q(x_0)^{(1 - (\alpha - \beta:\nu))\nu_{\text{max}}}. \tag{2.10}$$

Оценка (2.10) следует из (2.4), (2.5) несколько раз применяя неравенство (2.9). Из Леммы 2.2 и неравенства (2.7) следует, что для всех $\alpha \in \mathbf{Z}_+^n$, $(\alpha : \nu) \leq 1$

$$\left\| \left(p_{\alpha}(\,\cdot\,) - p_{\alpha}(x_{0}) \right) D^{\alpha} R_{0} f \right\|_{\nu, q(x_{0})}^{2} \left(\mathbf{\mathbb{R}}^{n} \right) \leq$$

$$\leq M_{\alpha} \omega_{\varepsilon}^{2} \sum_{(\beta:\nu) \leq 1} \iint_{\mathbf{\mathbb{R}}^{n}} \left| D^{\alpha+\beta} R_{0} f(x) \right|^{2} q(x_{0})^{2(2-(\alpha+\beta:\nu))\nu_{\max}} dx,$$

$$(2.11)$$

где M_{α} – некоторые постоянные, не зависящие от точки x_0 и ε . Так как $\omega_{\varepsilon} \to 0$ при $\varepsilon \to 0$, то существует число $\overline{\varepsilon} > 0$, для которого

$$\sqrt{M_{lpha}}\,\omega_{arepsilon} \leq rac{1}{2K\,||R_0||},\quad arepsilon \in (0,\overline{arepsilon})\,,$$

где R_0 – обратный оператор оператора $A(x_0,D)=P(x_0,D).$ Таким образом, $\|R_0\|$ – норма оператора из $H^\nu_q({\bf R}^n)$ в $H^{2,\nu}_q({\bf R}^n)$, причём

$$K \geq card\left\{\alpha: \alpha \in {\rm I\!\!\!\! Z}_+^n, \, (\alpha:\nu) \leq 1\right\}.$$

Из неравенств (2.8) и (2.11) следует, что

$$||Tf||_{\nu,\,q(x_0)}\left(\mathbb{R}^n\right) \le \frac{1}{2||R_0||} ||R_0f||_{2,\nu,\,q(x_0)}\left(\mathbb{R}^n\right) \le \frac{1}{2} ||f||_{\nu,\,q(x_0)}\left(\mathbb{R}^n\right).$$

Отсюда непосредственно следует, что оператор I+T имеет ограниченный обратный в $H^{\nu}_{q(x_0)}({\bf R}^n)$. Положим $v_f(x)=R_0(I+T)^{-1}f(x)$, где $f\in H^{\nu}_{q(x_0)}({\bf R}^n)$. Тогда, так как $v_f\in H^{2,\nu}_{q(x_0)}({\bf R}^n)$ (см. Теорему 2.1), то имеем

$$P(x,D)v_f(x) = P(x,D)R_0(I+T)^{-1}f(x) = (P(x_0,D) + [P(x,D) - P(x_0,D)])R_0(I+T)^{-1}f(x) \equiv (I+T)(I+T)^{-1}f(x) \equiv f(x),$$

т.е. оператор $R \equiv R_0 (I+T)^{-1}$ является правым обратным оператором оператора P(x,D).

В силу Теоремы 2.1, для любой функции $u\in H^{2,\nu}_{q(x_0)}({\bf R}^n)$ существует единственная функция $f_0\in H^\nu_{q(x_0)}({\bf R}^n)$ такая, что

$$R_0 f_0(x) \equiv u(x)$$
.

Но, так как оператор I+T имеет обратный, то существует единственная функция $f\in H^{\nu}_{q(x_0)}({\bf I\!R}^n),$ для которой

$$(I+T)^{-1}f(x) \equiv f_0(x).$$

Следовательно, для любой функции $u\in H^{2,\nu}_{q(x_0)}({\bf R}^n)$ существует единственная функция $f\in H^{\nu}_{q(x_0)}({\bf R}^n)$, для которой

$$Rf(x) \equiv u(x)$$

И

$$P(x, D)u(x) \equiv f(x).$$

В силу этого имеем

$$||u||_{2,\nu,q(x_0)}(\mathbf{R}^n) = ||R f||_{2,\nu,q(x_0)}(\mathbf{R}^n) =$$

$$= ||R_0(I+T)^{-1}f||_{2,\nu,q(x_0)}(\mathbf{R}^n) \le C||f||_{\nu,q(x_0)}(\mathbf{R}^n) \le$$

$$\le C||P(\cdot,D)u||_{\nu,q(x_0)}(\mathbf{R}^n), \quad u \in H_{q(x_0)}^{2,\nu}(\mathbf{R}^n),$$
(2.12)

где C не зависит от u, q и точки x_0 .

Для завершения доказательства осталось убедится, что из существования правого обратного оператора и оценки (2.12) следует, что оператор R является ограниченным обратным для оператора P(x, D). Теорема 2.2 доказана.

$\S 3$. СПЕЦИАЛЬНОЕ РАЗБИЕНИЕ ЕДИНИЦЫ В \mathbb{R}^n

Пусть $\theta_1(t)$ и $\theta_2(t)$ — бесконечно гладкие неотрицательные функции такие, что $\theta_1(t)=\mathrm{const}\neq 0$ при $|t|\leq 1/3,\, \theta_1(t)=0$ при $|t|\geq 2/3,\, \theta_2(t)=1$ при $|t|\leq 8/11,$ и $\theta_2(t)=0$ при $|t|\geq 4/5.$ Очевидно, что $\theta_1(t)\theta_2(t)=\theta_1(t).$ Введем следующие функции

$$\chi_i^{(1)}(t) = \frac{\theta_1(t-i)}{\sum_{j=0}^{\infty} \theta_1(t-j)}, \quad \chi_i^{(2)}(t) = \theta_2(t-i) \quad (i=0,1,\ldots).$$

Эти функции обладают следующими свойствами:

- 1. В каждой точке $t\in(0,\infty)$ отличны от нуля одна или две функции из системы $\left\{\chi_i^{(j)}\right\}\,(j=1,2).$
- 2. Для любого $i=0,1,2\dots$ $supp\ \chi_i^{(1)}\subset\{t:|t-i|\leq 2/3\}$ и $supp\ \chi_i^{(2)}\subset\{t:|t-i|<4/5\}.$
- 3. Для любого $k=0,1,2\dots$ существуют постоянные $\Lambda_k^{(1)}$ и $\Lambda_k^{(2)}$ такие, что

$$\left|D^k\chi_i^{(1)}(t)\right| \leq \Lambda_k^{(1)} \quad \text{if} \quad \left|D^k\chi_i^{(2)}(t)\right| \leq \Lambda_k^{(2)} \quad (i=0,1,2\ldots).$$

- 4. $\sum_{i=0}^{\infty} \chi_i^{(1)}(t) \equiv 1.$
- 5. $\chi_i^{(1)}(t)\chi_i^{(2)}(t) = \chi_i^{(1)}(t), \quad i = 0, 1, 2 \dots$

Допустим, что система открытых областей $\{U_i\}_{i=1}^m$ является покрытием единичной сферы из \mathbf{R}^n , а система функций $\left\{v_i^{(1)}\right\}_{i=1}^m$ такова, что

$$\sum_{i=0}^{m} v_i^{(1)}(\omega) \equiv 1, \quad supp \ v_i^{(1)} \subset U_i, \quad 0 \le i \le m$$

является гладкое разбиение единицы соответствующее этому разбиению. Кроме того, рассмотрим систему функций $\left\{v_i^{(2)}\right\}_{i=1}^m$, удовлетворяющую условиям

- 1. $supp_i v_i^{(2)} \subset U_i, \quad i = 1, 2, ...m,$
- 2. $v_i^{(1)}(\omega)v_i^{(2)}(\omega) = v_i^{(1)}(\omega), \quad i = 1, 2, \dots m.$

Дополнительно рассмотрим следующие системы гладких функций φ_k и ψ_k :

$$\varphi_{k}(x) = \chi_{\left[\frac{k-1}{m}\right]}^{(1)}(|x|)v_{k-\left[\frac{k-1}{m}\right]m}^{(1)}\left(\frac{x}{|x|}\right), \quad k = 2, 3, \dots,
\varphi_{1}(x) = 1 - \sum_{k=2}^{\infty} \varphi_{k}(x),$$
(3.1)

$$\psi_{k}(x) = \chi_{\left[\frac{k-1}{m}\right]}^{(2)}(|x|)v_{k-\left[\frac{k-1}{m}\right]m}^{(2)}\left(\frac{x}{|x|}\right), \quad k = 2, 3, \dots,$$

$$\psi_{1}(x) = 1 - \sum_{k=2}^{\infty} \psi_{k}(x).$$
(3.2)

Эти системы функций обладают следующими свойствами:

- 1. supp $\varphi_k(x) \subset W_k, k > 2$,
- 2. $\varphi_k(x)\psi_k(x) = \varphi_k(x), k \geq 2,$
- 3. $|D^{\alpha}\varphi_k(x)| \leq \kappa_{\alpha}, \ |D^{\alpha}\psi_k(x)| \leq \kappa_{\alpha}, \ \alpha \in \mathbf{Z}_+^n, \ k \geq 2,$ где κ_{α} некоторые постоянные,
- 4. $\sum_{k=1}^{\infty} \varphi_k(x) \equiv 1,$

т.е. система функции $\{\varphi_k\}$ является разбиением единицы в \mathbb{R}^n , соответствующее покрытию $\{W_k\}$.

§4. АПРИОРНАЯ ОЦЕНКА

Лемма 4.1. Пусть $q \in Q_{\nu}$. Тогда для любого $\varepsilon > 0$ существуют числа $\delta = \delta(\varepsilon) > 0$ и $k_0 = k_0(\varepsilon) > 0$ такие, что для $k \geq k_0$ и $\max_{1 \leq j \leq m} diam\ U_j < \delta$ выполняются следующие неравенства c некоторой постоянной η_{ε} $(\eta_{\varepsilon} \to 0 \text{ при } \varepsilon \to 0)$:

$$\left\| \left(\varphi_{k} A(\cdot, D) - A(\cdot, D) \varphi_{k} \right) u \right\|_{\nu, q}^{2} (W_{k}) \leq$$

$$\leq \eta_{\varepsilon} \sum_{(\alpha:\nu) < 2} \iint_{W_{k}} \left| D^{\alpha} u(x) \right|^{2} q(x)^{2(2 - (\alpha:\nu))\nu_{\max}} dx.$$

$$(4.1)$$

Доказательство. В силу условия на коэффициенты оператора A имеем

$$\begin{split} &\left\|\left(\varphi_{k} A(\,\cdot\,,D)-A(\,\cdot\,,D)\,\varphi_{k}\right) \, \left.u\right\|_{\nu,q}^{2}\left(W_{k}\right)=\right. \\ &=\left\|\sum_{\left(\beta:\nu\right)\leq1}a_{\beta} \, q^{\left(1-\left(\beta:\nu\right)\right)\nu_{\max}}\left(\varphi_{k} \, D^{\beta} u-D^{\beta} \, \left(\varphi_{k} \, u\right)\right)\right\|_{\nu,q}^{2}\left(W_{k}\right)\leq C \sum_{\left(\beta:\nu\right)\leq1}\mathrm{T}_{\beta}, \end{split}$$

где

$$T_{\beta} = \left\| \varphi_k \, q^{(1-(\beta:\nu))\nu_{\text{max}}} D^{\beta} u - q^{(1-(\beta:\nu))\nu_{\text{max}}} D^{\beta} \left(\varphi_k \, u \right) \right\|_{L^{\infty}}^{2} (W_k). \tag{4.2}$$

Применяя формулу Лейбница

$$D^{\beta}\left(\varphi_{k}(x)\,u(x)\right) = \sum_{0 < \alpha < \beta} C^{\alpha}_{\beta}\,D^{\alpha}\varphi_{k}(x)\,D^{\beta - \alpha}u(x),$$

из (4.2) имеем

$$T_{\beta} \leq \sum_{0 \neq \alpha < \beta} \left\| C_{\beta}^{\alpha} q^{(1 - (\beta:\nu))\nu_{\max}} \, D^{\alpha} \varphi_k \, D^{\beta - \alpha} u \right\|_{\nu, q}^2 (W_k).$$

Так как $q\in Q_{\nu}$, то для любого $\varepsilon>0$ существуют числа $\delta=\delta(\varepsilon)>0$ и $k_0=k_0(\varepsilon)>0$ для которых

$$\max_{x \in \overline{W}_k} q(x)^{-1} \le \varepsilon \quad \operatorname{\pi} p u \quad k \ge k_0 \quad \operatorname{\mathbf{M}} \quad \max_{1 \le j \le m} \operatorname{diam} \, U_j < \delta.$$

Поэтому, в силу свойства 3 из §3, имеем

$$\left| q(x)^{(1-(\beta:\nu))\nu_{\max}} D^{\alpha} \varphi_k(x) \right| \leq \kappa_{\alpha} \varepsilon^{(\alpha:\nu)\nu_{\max}} q(x)^{(1+(\alpha-\beta:\nu))\nu_{\max}}, \quad x \in W_k.$$

Используя свойства функций из класса Q_{ν} , для любого $\gamma \in \mathbf{Z}_{+}^{n}$ и $(\gamma : \nu) \leq 1$ с некоторой постоянной $\tau_{\gamma}(\varepsilon)$ $(\tau_{\gamma}(\varepsilon) \to 0$ при $\varepsilon \to 0)$, имеем

$$\left|D^{\gamma}\left(q(x)^{(1-(\beta:\nu))\nu_{\max}}\,D^{\alpha}\varphi_k(x)\right)\right| \leq \tau_{\gamma}(\varepsilon)\,q(x)^{(1+(\alpha-\beta+\gamma:\nu))\nu_{\max}},\quad x\in W_k,$$

т.е. выполняются все условия Леммы 2.1. Поэтому имеем

$$\left\| q^{(1-(\beta:\nu))\nu_{\max}} D^{\alpha} \varphi_{k} D^{\beta-\alpha} u \right\|_{\nu,q}^{2} (W_{k}) \leq$$

$$\leq M \max_{(\gamma:\nu) \leq 1} \tau_{\gamma}^{2}(\varepsilon) \sum_{(\gamma:\nu) \leq 1} \iint_{W_{k}} \left| D^{\beta-\alpha+\gamma} u \right|^{2} q(x)^{2(2-(\beta-\alpha+\gamma:\nu))\nu_{\max}} dx.$$

$$(4.3)$$

Просуммировав неравенства (4.3) по α (0 $\neq \alpha \leq \beta$), получим

$$T_{\beta} \leq M' \max_{(\gamma:\nu) \leq 1} \tau_{\gamma}^{2}(\varepsilon) \sum_{0 \neq \alpha \leq \beta} \sum_{(\gamma:\nu) \leq 1} \iint_{W_{k}} \left| D^{\beta-\alpha+\gamma} u \right|^{2} q(x)^{2(2-(\beta-\alpha+\gamma:\nu))\nu_{\max}} dx \leq
\leq M' \max_{(\gamma:\nu) \leq 1} \tau_{\gamma}^{2}(\varepsilon) \sum_{0 \leq \alpha' < \beta} \sum_{(\gamma:\nu) \leq 1} \iint_{W_{k}} \left| D^{\alpha'+\gamma} u \right|^{2} q(x)^{2(2-(\alpha'+\gamma:\nu))\nu_{\max}} dx \leq
\leq M' K \max_{(\gamma:\nu) \leq 1} \tau_{\gamma}^{2}(\varepsilon) \sum_{(\alpha:\nu) < 2} \iint_{W_{k}} \left| D^{\alpha} u \right|^{2} q(x)^{2(2-(\alpha:\nu))\nu_{\max}} dx,$$

$$(4.4)$$

где $K > card \{\alpha, \alpha \in \mathbf{Z}_{+}^{n}; (\alpha : \nu) < 1\}.$

Из оценок (4.2) и (4.4) непосредственно следует оценка (4.1), где

$$\eta_{arepsilon} = CM'K^2 \max_{(\gamma, \nu) \le 1} au_{\gamma}^2(arepsilon).$$

Лемма 4.2. Пусть $\{\varphi_k\}$ и $\{\psi_k\}$ – системы функций (3.1) и (3.2). Тогда существуют постоянные Λ_1 и Λ_2 , для которых

$$\sum_{k=1}^{\infty} \|\varphi_k u\|_{\nu,q}^2 (W_k) \le \Lambda_1^2 \|u\|_{\nu,q}^2 (\mathbb{R}^n), \quad u \in H_q^{\nu}(\mathbb{R}^n), \tag{4.5}$$

$$\sum_{k=1}^{\infty} \|\psi_k u\|_{\nu,q}^2 (W_k) \le \Lambda_2^2 \|u\|_{\nu,q}^2 (\mathbb{R}^n), \quad u \in H_q^{\nu}(\mathbb{R}^n).$$
 (4.6)

Доказательство. Так как $q \in Q_{\nu}$, то существует положительная постоянная Δ , для которой $\max_{x \in \mathbf{R}^n} q(x)^{-1} \leq \Delta$. Следовательно, в силу свойства 3 из §3, имеем

$$\left|D^{\beta}\varphi_k(x)\right| \leq \kappa_{eta} \leq \kappa_{eta} \, \Delta^{(eta:
u)
u_{ ext{max}}} \, q(x)^{(eta:
u)
u_{ ext{max}}}, \quad k=1,2,\dots$$

Поэтому, выполнены условия Леммы 2.1 при r=0. Отсюда получаем

$$\|\varphi_k u\|_{\nu,q}^2(W_k) \le \max_{(\beta:\nu) \le 1} \kappa_\beta^2 \Delta^{2(\beta:\nu)\nu_{\max}} \|u\|_{\nu,q}^2(W_k).$$
 (4.7)

Для любой фиксированной точки $x \in \mathbb{R}^n$, существует число p (зависящее лишь от размерности пространства) областей W_k , содержащих точку x. Следовательно, просуммировав неравенства (4.7) по всем k, получаем оценку (4.5), где $\Lambda_1 = \max_{(\beta:\nu)<1} \kappa_{\beta} \ \Delta^{(\beta:\nu)\nu_{\max}} p$. Доказательство оценки (4.6) аналогично.

Для областей "малого" размера пространства $H^{\nu}_{q(x_0)}$ эквивалентны пространствам H^{ν}_q , т.е. верна следующая лемма.

Лемма 4.3. Пусть $q\in Q_{\nu}$. Существует число $\varepsilon_0>0$ такое, что при всех $\varepsilon\in(0,\varepsilon_0)$ с некоторыми числами $\delta=\delta(\varepsilon)>0$ и $k_0=k_0(\varepsilon)>0$

$$\lambda_0 \|u\|_{\nu,q} (W_k) \le \|u\|_{\nu,q(x_k)} (W_k) \le \lambda_1 \|u\|_{\nu,q} (W_k),$$
(4.8)

как только $k \geq k_0$, $\max_{1 \leq j \leq m} diam \ U_j < \delta$ и $x_k \in W_k$, где λ_0 и λ_1 – некоторые постоянные, не зависящие от ε .

Доказательство. Так как $q \in Q_{\nu}$, то для любого $\varepsilon > 0$

$$\frac{|q(x) - q(x_k)|}{q(x_k)} \le \max_{x,y \in \overline{W}_k} \frac{|q(x) - q(y)|}{q(y)} \le \varepsilon,$$

как только k – достаточно большое и $\max_{1 \leq j \leq m} \operatorname{diam} \ U_j$ – достаточно малое. Очевидно, $|q(x)-q(x_k)| \leq \varepsilon \, q(x_k)$ для таких k и $\operatorname{diam} \ U_j$, и поэтому непосредственно получаем левую часть неравенства (4.8), так как $|q(x)^p-q(x_k)^p| \leq \tau_p(\varepsilon) \, q(x_k)^p$, где p – положительное число, а $\tau_p(\varepsilon) \equiv \max \{|(1-\varepsilon)^p-1|, |(1+\varepsilon)^p-1|\} \to 0$ при $\varepsilon \to 0$. Правая часть неравенства (4.8) доказывается аналогичным образом.

Теорема 4.1. Если для оператора A(x, D) выполнены условия I - III, то существуют положительные числа N и C_1 такие, что

$$||u||_{2,\nu,q}(\mathbf{R}^n) \le C_1 \{||A(\cdot,D)u||_{\nu,q}(\mathbf{R}^n) + ||u||_{L_2}(K_N)\}, \quad u \in H_q^{2,\nu}(\mathbf{R}^n), \quad (4.9)$$

$$\text{где } K_N = \{x : |x| < N\}.$$

Доказательство. Пусть $\{\varphi_k\}$ — система функции (3.1). Тогда для любого натурального n_1

$$||u||_{2,\nu,q}^{2}(\mathbf{R}^{n}) = \left\| \sum_{k=1}^{\infty} \varphi_{k} u \right\|_{2,\nu,q}^{2}(\mathbf{R}^{n}) \leq \sum_{k=1}^{\infty} ||\varphi_{k} u||_{2,\nu,q}^{2}(W_{k}) =$$

$$= \sum_{k=1}^{n_{1}} ||\varphi_{k} u||_{2,\nu,q}^{2}(W_{k}) + \sum_{k=n_{1}+1}^{\infty} ||\varphi_{k} u||_{2,\nu,q}^{2}(W_{k}).$$

$$(4.10)$$

Как показано в [8], существует постоянная $C_2 > 0$, для которой

$$||v||_{2,\nu}(\Omega) \le C_2 \{ ||A(\cdot, D)v||_{\nu}(\Omega) + ||v||_{L_2}(\Omega) \}, \quad v \in C_0^{\nu}(\Omega), \tag{4.11}$$

где $C_0^{\nu}(\Omega)$ – множество функций из $C^{\nu}(\Omega)$, финитных в Ω .

Очевидно, что $H_q^{k,\nu}(\Omega)=H_{q(x_0)}^{k,\nu}(\Omega)=H^{k,\nu}(\Omega)$ для ограниченной области $\Omega.$ Следовательно, из оценки (4.11) и Леммы 4.1 имеем

$$\sum_{k=1}^{n_1} \|\varphi_k u\|_{2,\nu,q}^2(W_k) \le C_3^2 \sum_{k=1}^{n_1} \|\varphi_k A(\cdot, D) u\|_{\nu,q}^2(W_k) + C_4 \|u\|_{L_2}^2(K_N), \tag{4.12}$$

где C_3 и C_4 – некоторые положительные постоянные, а N выбран так, чтобы K_N содержал все области W_k $(k=1,2,\ldots n_1).$

Оценим слагаемые второй суммы правой части оценки (4.10). Пусть $k>n_1,$ $x_k\in W_k$ – фиксированная точка и

$$P_k(x,D) \equiv \sum_{(\alpha:
u) \le 1} p_{lpha}^{(k)}(x) D^{lpha},$$

где

$$\begin{split} p_{\alpha}^{(k)}(x) &= \psi_k(x) \, a_{\alpha}(x) \, q(x)^{(1 - (\alpha:\nu))\nu_{\text{max}}} + \\ &+ (1 - \psi_k(x)) \, a_{\alpha}(x_k) \, q(x_k)^{(1 - (\alpha:\nu))\nu_{\text{max}}}, \end{split}$$

а $\{\psi_k\}$ — система функции (3.2). Заметим, что функции $p_{\alpha}^{(k)}(x)$ обладают следующими свойствами :

1.
$$p_{\alpha}^{(k)}(x) - p_{\alpha}^{(k)}(x_k) = \psi_k(x) \left(a_{\alpha}(x) q(x)^{(1-(\alpha:\nu))\nu_{\text{max}}} - a_{\alpha}(x_k) q(x_k)^{(1-(\alpha:\nu))\nu_{\text{max}}} \right),$$

2.
$$p_{\alpha}^{(k)}(x_k) = a_{\alpha}(x_k) q(x_k)^{(1-(\alpha:\nu))\nu_{\text{max}}},$$

3. для любого $\beta \in {\bf Z}_+^n, \, (\beta : \nu) \le 1,$ существует постоянная $E_\beta,$ для которой

$$\left|D^{\beta}p_{\alpha}^{(k)}(x)\right| \leq E_{\beta}q(x)^{(1-(\alpha-\beta:\nu))\nu_{\max}}.$$

Свойства 1 и 2 очевидны. Докажем свойство 3. В силу формулы Лейбница имеем, что для любого $\beta \in \mathbf{Z}_+^n$

$$D^{\beta} p_{\alpha}^{(k)}(x) = \sum_{0 \le \gamma \le \beta} C_{\beta}^{\gamma} D^{\gamma} \psi_{k}(x) D^{\beta - \gamma} \left(a_{\alpha}(x) q(x)^{(1 - (\alpha : \nu))\nu_{\text{max}}} \right) + a_{\alpha}(x_{k}) q(x_{k})^{(1 - (\alpha : \nu))\nu_{\text{max}}} D^{\beta} \left(1 - \psi_{k}(x) \right).$$

$$(4.13)$$

Так как $q \in Q_{\nu}$, то из условия II следует, что

$$\left| D^{\beta-\gamma} \left(a_{\alpha}(x) q(x)^{(1-(\alpha:\nu))\nu_{\max}} \right) \right| \le K' q(x)^{(1-(\alpha-(\beta-\gamma):\nu))\nu_{\max}}, \tag{4.14}$$

где K'>0 — некоторая постоянная. В силу свойства 3 из $\S 3$, для достаточно больших k имеем

$$q(x)^{-(\gamma:\nu)\nu_{\max}} |D^{\gamma}\psi_k(x)| \le \kappa_{\gamma} \max_{x \in \overline{W}_k} q(x)^{-(\gamma:\nu)\nu_{\max}} \le \kappa_{\gamma} \Delta^{(\gamma:\nu)\nu_{\max}}, \qquad (4.15)$$

где $\max_{x\in\overline{W}_k}q(x)^{-1}\leq \Delta$ не зависит от k. Из соотношения (4.13), в силу оценок (4.14) и (4.15) с некоторой постоянной E_β имеем

$$\begin{split} & \left| D^{\beta} p_{\alpha}^{(k)}(x) \right| \leq \sum_{0 \leq \gamma \leq \beta} C_{\beta}^{\gamma} \left| D^{\gamma} \psi_{k}(x) \right| \left| D^{\beta - \gamma} \left(a_{\alpha}(x) q(x)^{(1 - (\alpha:\nu))\nu_{\max}} \right) \right| + \\ & + \left| a_{\alpha}(x_{k}) q(x_{k})^{(1 - (\alpha:\nu))\nu_{\max}} D^{\beta} (1 - \psi_{k}(x)) \right| \leq \\ & \leq \sum_{0 \leq \gamma \leq \beta} C_{\beta}^{\gamma} \kappa_{\gamma} \Delta^{(\gamma:\nu)\nu_{\max}} q(x)^{(\gamma:\nu)\nu_{\max}} K' q(x)^{1 - (\alpha - (\beta - \gamma):\nu)\nu_{\max}} + \\ & + \left| a_{\alpha}(x_{k}) q(x_{k})^{(1 - (\alpha:\nu))\nu_{\max}} \kappa_{\gamma} \Delta^{(\beta:\nu)\nu_{\max}} q(x)^{(\beta:\nu)\nu_{\max}} \right| \leq E_{\beta} q(x)^{1 - (\alpha - \beta:\nu)\nu_{\max}}. \end{split}$$

Так как $q \in Q_{\nu}$, то из свойства 1 и условия II следует, что

$$\left| p_{\alpha}^{(k)}(x) - p_{\alpha}^{(k)}(x_k) \right| \le \tau(\varepsilon) q(x_k)^{(1-(\alpha:\nu))\nu_{\max}},$$

где $\tau(\varepsilon) \to 0$ при $\varepsilon \to 0$. Следовательно, выполнены все условия Теоремы 2.2, и поэтому, в силу оценки (2.12) имеем

$$\|\varphi_k u\|_{2,\nu,q(x_k)}^2 (W_k) \le C^2 \|P_k(\cdot, D) (\varphi_k u)\|_{\nu,q(x_k)}^2 (W_k),$$
 (4.16)

где постоянная C не зависит от $k\geq n_1$, если n_1 выбрано достаточно большой. Так как $\psi_k(x)D^\beta\varphi_k(x)=D^\beta\varphi_k(x)$, то

$$P_k(x, D) \left(\varphi_k(x) u(x) \right) = A(x, D) \left(\varphi_k(x) u(x) \right). \tag{4.17}$$

Из оценки (4.16), равенства (4.17) и Леммы 4.3 следует, что

$$\|\varphi_k u\|_{2,\nu,q}^2(W_k) \le C_5^2 \|A(\cdot, D)(\varphi_k u)\|_{\nu,q}^2(W_k),$$
 (4.18)

где $C_5=\lambda_0^{-1}C\lambda_1$. Из оценки (4.18) и Леммы 4.1, имеем

$$\|\varphi_{k} u\|_{2,\nu,q}^{2}(W_{k}) \leq C_{5}^{2} \|\varphi_{k} A(\cdot, D) u\|_{\nu,q}^{2}(W_{k}) + C_{5}^{2} \eta_{\varepsilon} \sum_{(\alpha:\nu)\leq 2} \iint_{W_{k}} |D^{\alpha} u(x)|^{2} q(x)^{2(2-(\alpha:\nu))\nu_{\max}} dx.$$

$$(4.19)$$

Так как для любого $x \in \mathbb{R}^n$ существует конечное число p (зависящее лишь от размерности пространства) областей W_k , содержащих точку x, то просуммировав неравенства (4.19) по всем $k > n_1$ и учитывая неравенства (4.10) и (4.12), получаем

$$||u||_{2,\nu,q}^{2}(\mathbf{R}^{n}) \leq C_{3}^{2} \sum_{k=1}^{n_{1}} ||\varphi_{k} A(\cdot, D) u||_{\nu,q}^{2}(W_{k}) +$$

$$+ C_{5}^{2} \sum_{k=n_{1}+1}^{\infty} ||\varphi_{k} A(\cdot, D) u||_{\nu,q}^{2}(W_{k}) +$$

$$+ \left(C_{5} p \sqrt{\eta_{\varepsilon}} ||u||_{2,\nu,q} (\mathbf{R}^{n}) \right)^{2} + C_{4} ||u||_{L_{2}}^{2}(K_{N})$$

$$\leq C_{6}^{2} \sum_{k=1}^{\infty} ||\varphi_{k} A(\cdot, D) u||_{\nu,q}^{2}(W_{k}) +$$

$$+ \left(C_{5} p \sqrt{\eta_{\varepsilon}} ||u||_{2,\nu,q} (\mathbf{R}^{n}) \right)^{2} + C_{4} ||u||_{L_{2}}^{2}(K_{N}).$$

$$(4.20)$$

Так как $\eta_{\varepsilon} \to 0$ при $\varepsilon \to 0$, то для достаточно малых $\varepsilon > 0$

$$C_5 p \sqrt{\eta_{\varepsilon}} \leq 1/\sqrt{2}$$
.

Из оценки (4.20), в силу (4.5) имеем

$$||u||_{2,\nu,q}^2(\mathbf{R}^n) \le 2C_6^2\Lambda_1^2||A(\cdot,D)u||_{\nu,q}^2(\mathbf{R}^n) + 2C_4||u||_{L_2}^2(K_N).$$

Доказательство завершено.

Следствие 4.1. Если для оператора A(x,D) выполнены условия I - III, то ядро оператора A(x,D) в пространстве $H_q^{2,\nu}({\rm I\!R}^n)$ конечномерно.

Доказательство. Из оценки (4.9), имеем

$$||u||_{2,\nu,q}(\mathbf{R}^n) \le C_1||u||_{L_2}(K_N) \quad \text{if} \quad u \in H_q^{2,\nu}(\mathbf{R}^n) \cap Ker A(\cdot, D).$$
 (4.21)

Пусть $\{u_k\}$ — последовательность функций из $H_q^{2,\nu}({\bf R}^n)\cap Ker\,A(\cdot,D)$ таких, что $\|u_k\|_{2,\nu,q}\,({\bf R}^n)\le 1$. Так как $q\in Q_{\nu}$, то $C\,\|u_k\|_{2,\nu}\,(K_N)\le \|u_k\|_{2,\nu,q}\,(K_N)$ $(k=1,2,\ldots)$, где C — некоторая постоянная, независящая от $\{u_k\}$. Это означает, что последовательность $\{u_k\}$ ограничена в пространстве $H^{2,\nu}(K_N)$, и следовательно компактна в $L_2(K_N)$ (см. [9], [10]). Далее, из оценки (4.21) следует, что последовательность $\{u_k\}$ компактна в пространстве $H_q^{2,\nu}({\bf R}^n)$. Таким образом, единичный шар в $H_q^{2,\nu}({\bf R}^n)\cap Ker\,A(\,\cdot\,,D)$ компактен. Следовательно, пространство $H_q^{2,\nu}({\bf R}^n)\cap Ker\,A(\,\cdot\,,D)$ конечномерно, т.е. ядро оператора A(x,D) в $H_q^{2,\nu}({\bf R}^n)$ конечномерно.

Следствие 4.2. Если для оператора A(x,D) выполнены условия I - III, то область значений оператора A(x,D) в пространстве $H_q^{2,\nu}({\rm I\!R}^n)$ замкнута.

Доказательство. Обозначим через S топологическое дополнение к пространству $Ker\ A(\,\cdot\,,D)$ пространства $H^{2,\nu}_q({\bf R}^n)$. Тогда, область значений оператора A(x,D) совпадает с областью значений его сужения в S. Покажем, что существует постоянная K>0 такая, что

$$||u||_{2,\nu,q}(\mathbb{R}^n) \le K||A(\cdot,D)u||_{\nu,q}(\mathbb{R}^n), \quad u \in S.$$
 (4.22)

Чтобы доказать это неравенство, допустим, что оно неверно. Тогда можно найти такую последовательность $u_n \in S$, что $||u_n||_{2,\nu,q}({\bf R}^n) \to \infty$ и $||A(\,\cdot\,,D)u_n||_{\nu,q}({\bf R}^n) \le C$. Положим $v_n = \frac{u_n}{||u_n||_{2,\nu,q}({\bf R}^n)}$ $(n=1,2,\ldots)$. Тогда

$$||v_n||_{2,\nu,q}({\bf I\!R}^n)=1 \quad \text{if} \quad ||A(\,\cdot\,,D)v_n||_{\nu,q}({\bf I\!R}^n)\to 0 \quad (n=1,2,\ldots).$$

Так как оператор вложения $H_q^{2,\nu}({\bf R}^n)$ в $L_2(K_N)$ вполне непрерывен (см. [9], [10]), то из v_n можно извлечь подпоследовательность v_{n_k} , сходящуюся в $L_2(K_N)$. Оценка (4.9) показывает, что v_{n_k} сходится в $H_q^{2,\nu}({\bf R}^n)$. Пусть v_0 – предельный элемент этой последовательности в $H_q^{2,\nu}({\bf R}^n)$. Тогда $||v_0||_{2,\nu,q}({\bf R}^n)=1$ (так как $||v_n||_{2,\nu,q}({\bf R}^n)=1$), $v_0\in S$ (так как S замкнуто) и $v_0\in Ker\ A(\cdot,D)$ (так как $||A(\cdot,D)v_n||_{\nu,q}({\bf R}^n)\to 0$), что приводит к противоречию. Таким образом, неравенство (4.22) верно.

Из неравенства (4.22) следует замкнутость области значений оператора A(x, D) в пространстве $H_q^{2,\nu}({\bf I\!R}^n)$, поскольку A(x, D) отображает S на область значений оператора A(x, D) изоморфным образом.

§5. КОЯДРО ОПЕРАТОРА

Известна следующая теорема (см. [5]).

Теорема 5.1. Пусть T — ограниченный оператор из $H_q^{2,\nu}({\bf R}^n)$ в $H_q^{\nu}({\bf R}^n)$, обладающий следующим свойством : для любого $\varepsilon>0$

$$||Tu||_{\nu,q}(\mathbb{R}^n) \le \varepsilon ||u||_{2,\nu,q}(\mathbb{R}^n) + M_{\varepsilon}||u||_{2,\nu,q}(K_N), \quad u \in H_q^{2,\nu}(\mathbb{R}^n),$$

где M_{ε} – постоянная, не зависящая от функции u, а $K_N=\{x:|x|\leq N\}$. Тогда T – вполне непрерывный оператор из $H_q^{2,\nu}({\bf R}^n)$ в $H_q^{\nu}({\bf R}^n)$.

Теорема 5.2. Если для оператора A(x,D) выполнены условия I - III, то коядро оператора A(x,D) конечномерно в пространстве $H_q^{2,\nu}({\bf R}^n)$.

Доказательство. Пусть $A^*(x,D)$ формально сопряженный к A(x,D) оператор. Тогда, в силу формулы Лейбница имеем

$$\begin{split} A^*(x,D)u(x) &= \sum_{(\alpha:\nu)\leq 1} (-1)^{|\alpha|} D^{\alpha} \left(a_{\alpha}(x)q(x)^{(1-(\alpha:\nu))\nu_{\max}} u(x) \right) \\ &= \sum_{(\alpha:\nu)\leq 1} (-1)^{|\alpha|} \sum_{0\leq\beta\leq\alpha} D^{\alpha-\beta} \left(a_{\alpha}(x)q(x)^{(1-(\alpha:\nu))\nu_{\max}} \right) D^{\beta} \left(u(x) \right) \\ &= \sum_{(\alpha:\nu)\leq 1} (-1)^{|\alpha|} a_{\alpha}(x)q(x)^{(1-(\alpha:\nu))\nu_{\max}} D^{\alpha} \left(u(x) \right) \\ &+ \sum_{(\alpha:\nu)\leq 1} (-1)^{|\alpha|} \sum_{0\leq\beta<\alpha} C_{\alpha}^{\beta} D^{\alpha-\beta} \left(a_{\alpha}(x)q(x)^{(1-(\alpha:\nu))\nu_{\max}} \right) D^{\beta} \left(u(x) \right). \end{split}$$

Обозначим

$$T(x,D)u(x) = \sum_{(\alpha:\nu) \leq 1} (-1)^{|\alpha|} \sum_{0 \leq \beta < \alpha} C_{\alpha}^{\beta} D^{\alpha-\beta} \left(a_{\alpha}(x) q(x)^{(1-(\alpha:\nu))\nu_{\max}} \right) D^{\beta} \left(u(x) \right).$$

В силу того, что

$$A(x,-D)u(x) \equiv \sum_{(\alpha:\nu) \le 1} (-1)^{|\alpha|} a_{\alpha}(x) q(x)^{(1-(\alpha:\nu))\nu_{\max}} D^{\alpha}\left(u(x)\right),$$

имеем

$$A^*(x, D)u(x) = A(x, -D)u(x) + T(x, D)u(x).$$

Докажем, что T(x,D) – компактный оператор из $H_q^{2,\nu}({\bf I\!R}^n)$ в $H_q^{\nu}({\bf I\!R}^n)$. Отметим, что из условия II и вложения $q\in Q_{\nu}$ следует, что при $0<(\alpha-\beta:\nu)\leq 1$ имеем

$$\frac{\left|D^{\alpha-\beta}\left(a_{\alpha}(x)q(x)^{(1-(\alpha:\nu))\nu_{\max}}\right)\right|}{q(x)^{(1-(\beta:\nu))\nu_{\max}}} \to 0 \quad \text{if } u \quad |x| \to \infty, \tag{5.1}$$

$$\left| D^{\alpha-\beta} \left(a_{\alpha}(x) q(x)^{(1-(\alpha:\nu))\nu_{\max}} \right) \right| \le B_{\alpha,\beta} q(x)^{(1-(\beta:\nu))\nu_{\max}}, \quad x \in \mathbf{IR}^n.$$
 (5.2)

Из оценки (5.1) следует, что для любого $\varepsilon > 0$

$$\frac{\left|D^{\alpha-\beta}\left(a_{\alpha}(x)q(x)^{(1-(\alpha:\nu))\nu_{\max}}\right)\right|}{q(x)^{(1-(\beta:\nu))\nu_{\max}}} < \varepsilon, \quad x \in \mathbb{R}^n \backslash K_N, \tag{5.3}$$

где N=N(arepsilon) – некоторая постоянная.

Для функции $u \in H^{2,
u}_q({\rm I\!R}^n)$ имеем

$$\begin{split} &||T(\cdot,D)u||_{\nu,q}\left(\mathbf{R}^{n}\right) = \\ &= \left\|\sum_{(\alpha:\nu)\leq 1}(-1)^{|\alpha|}\sum_{0\leq\beta<\alpha}C_{\alpha}^{\beta}D^{\alpha-\beta}\left(a_{\alpha}q^{(1-(\alpha:\nu))\nu_{\max}}\right)D^{\beta}u\right\|_{\nu,q}\left(\mathbf{R}^{n}\right) = \\ &= \left\|\sum_{(\alpha:\nu)\leq 1}(-1)^{|\alpha|}\sum_{0\leq\beta<\alpha}C_{\alpha}^{\beta}D^{\alpha-\beta}\left(a_{\alpha}q^{(1-(\alpha:\nu))\nu_{\max}}\right)D^{\beta}u\right\|_{\nu,q}\left(K_{N}\right) + \\ &+ \left\|\sum_{(\alpha:\nu)\leq 1}(-1)^{|\alpha|}\sum_{0\leq\beta<\alpha}C_{\alpha}^{\beta}D^{\alpha-\beta}\left(a_{\alpha}q^{(1-(\alpha:\nu))\nu_{\max}}\right)D^{\beta}u\right\|_{\nu,q}\left(\mathbf{R}^{n}\backslash K_{N}\right). \end{split}$$

Отсюда, используя компактность K_N и оценки (5.2), (5.3), имеем

$$||T(\cdot,D)u||_{\nu,q}(\mathbb{R}^n) \le \tau_{\varepsilon} ||u||_{2,\nu,q}(\mathbb{R}^n) + M_{\varepsilon}||u||_{2,\nu,q}(K_N), \quad u \in H_q^{2,\nu}(\mathbb{R}^n),$$

где $\tau_{\varepsilon} \to 0$ при $\varepsilon \to 0$, M_{ε} – постоянная, не зависящая от функции u. Следовательно, в силу Теоремы 5.1, T(x, D) есть компактный оператор, действующий из $H_a^{2,\nu}({\bf l}{\bf R}^n)$ в $H_a^{\varrho}({\bf l}{\bf R}^n)$.

Так как для оператора A(x,-D) выполнены условия I - III, то в силу Теоремы 4.1 имеем, что для всех $u\in H^{2,\nu}_q({\rm I\!R}^n)$

$$||u||_{2,\nu,q}(\mathbb{R}^n) < C_1\{||A(\cdot,-D)u||_{\nu,q}(\mathbb{R}^n) + ||u||_{L_2}(K_N)\},$$
 (5.4)

где $K_N = \{x: |x| \le N\}$. Из оценки (5.4) имеем

$$||u||_{2,\nu,q}(\mathbf{R}^n) \le C_1 \{||A(\cdot,-D)u||_{\nu,q}(\mathbf{R}^n) + ||u||_{L_2}(K_N)\} \le < C_1 \{||A^*(\cdot,D)u||_{\nu,q}(\mathbf{R}^n) + ||T(\cdot,D)u||_{\nu,q}(\mathbf{R}^n) + ||u||_{L_2}(K_N)\}.$$
(5.5)

В силу Следствия 4.1 и оценки (5.5), ядро сопряженного оператора A(x,D) в пространстве $H_q^{2,\nu}({\bf I\!R}^n)$ также конечномерно. Следовательно, коядро оператора A(x,D) в пространстве $H_q^{2,\nu}({\bf I\!R}^n)$ конечномерно. Теорема доказана.

Таким образом, мы доказали, что если для оператора A(x,D) выполнены условия I - III, то индекс отображения

$$A(\,\cdot\,,D):H^{2,
u}_q({
m I\!R}^n) o H^
u_q({
m I\!R}^n)$$

конечен.

Abstract. The paper investigates the index of some linear, differential, semielliptic operators with variable coefficients of a special form in \mathbb{R}^n . In particular, additional conditions on the symbol are found that render the index finite. The operators are considered in the weighted Sobolev spaces.

ЛИТЕРАТУРА

- 1. И. Ц. Гохберг, М. Г. Крейн, "Основные положения о дефектных числах, корневых числах и индексах линейных операторов", Успехи Мат. Наук, том 12, вып. 2(74), стр. 43 118, 1957.
- 2. А. И. Вольперт, "Об индексе и нормальной разрешимости граничных задач для эллиптических систем дифференциальных уравнений на плоскости", Труды Моск. Мат. Общ., том 10, стр. 41 87, 1961.
- 3. R. T. Seeley, "The Index of Elliptic Systems of Singular Integral Operators", Journal of Math. Analysis And Appl., vol. 7, pp. 289 309, 1963.
- 4. M. F. Atiyah, I. M. Singer, "The Index of Elliptic Operators on Compact Manifolds", Bull. Amer. Math. Soc., vol. 69, № 3, pp. 422 433, 1963.
- 5. М. С. Агранович, "Эллиптические сингулярные интегродифференциальные операторы", Успехи Мат. Наук, том 20, вып. 5(125), стр. 3 120, 1965.
- 6. JI. А. Багиров, "Эллиптические уравнения в неограниченной области", Мат. сборник, том 86(128), № 1(9), стр. 121 139, 1971.
- 7. Г. А. Карапетян, "Регулярные уравнения, зависящие от параметра", Изв. АН Арм.ССР, серия Математика, том 25, № 2, стр. 192 202, 1990.
- 8. E. Pehkonen, "Ein Hypoelliptisches Dirichlet Problem", Com. Mat. Phys., vol. 48, № 3, pp. 131 143, 1978.
- 9. О. В. Бесов, В. П. Ильин, С. М. Никольский, Интегральные Представления Функций и Теоремы Вложения, Москва, Наука, 1977.
- 10. Л. Хермандер, Линейные Дифференциальные Операторы с Частными Производными, Москва, Мир, 1965.

Поступила 17 мая 2007