К ВОПРОСУ О РАЗРЕШИМОСТИ ОДНОГО КЛАССА ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ТИПА СВЕРТКИ НА ВСЕЙ ПРЯМОЙ

н нечтарах . А. Э. И нечтарах . А. Х

Институт математики, Национальная Академия Наук Армении Ереванский Государственный Университет E-mail: Khach 82@rambler.ru, emilya@yandex.ru

Аннотация. В статье изучается вопрос разрешимости следующего интегродифференциального уравнения

$$-\frac{d\varphi}{dx} + A\varphi(x) = g(x) + B \int_R k(x-t)\lambda(t)\varphi(t)dt, \quad x \in R,$$

где искомое решение $\varphi(x)$ принадлежит классу абсолютно непрерывных на \mathbb{R} функций медленного роста. Здесь A и B – неотрицательные параметры, $0 \leq g \in L_1(\mathbb{R}), \ 0 \leq k \in L_1(\mathbb{R}),$ причем $\int_{\mathbb{R}} k(x) dx = 1, \ 0 \leq \lambda(x) \leq 1$ – измеримая на \mathbb{R} функция.

Рассматриваемое уравнение решается путем сочетания специальной факторизации соответствующего интегро-дифференциального оператора с методами теории функций и теории интегральных уравнений типа свертки (и их обощений).

1. ВВЕДЕНИЕ

В работе рассматривается следующее интегро-дифференциальное уравнение типа свертки

$$(1) \qquad \qquad -\frac{d\varphi}{dx} + A\varphi(x) = g(x) + B\int_{R} k(x-t)\lambda(t)\varphi(t)dt, \quad x \in R,$$

где $A, B \ge 0$ – параметры, $0 \le g \in L_1(\mathbb{R}), \ 0 \le k \in L_1(\mathbb{R})$, причем

(2)
$$\int_{\mathbb{R}} k(x)dx = 1,$$

 $0 \le \lambda(x) \le 1$ — измеримая на $\mathbb R$ функция. Задача (1)-(2), кроме самостоятельного математического интереса, представлет известный интерес в физической кинетике (см. [1]-[3]). В частности, она возникает в кинетической теории металлов при изучении задачи распределения электрического поля в полубесконечной плазме (см. [2]-[3]). Уравнение (1)-(2) выводится из нелинейного стационарного уравнения Больцмана, с учетом члена в интеграле столкновения, учитывающего энергетическое взаимодействие (см. [2]-[3]). Изучению и решению задачи (1)-(2), в том частном случае, когда A=0 и $\lambda(x)\equiv 1, \, k(x)=\int_1^{+\infty}e^{-|x|s}s^{-2}ds$, посвящен

ряд интересных работ (см. [2]-[6]). Эти работы в основном носят прикладной характер. В последнем случае задачу (1)-(2) принято называть "классической задачей Ландау".

В настоящей работе мы будем заниматься изучением и решением уравнения (1)-(2) в классе абсолютно непрерывных функций медленного роста, т.е. в классе

$$\mathfrak{M} = \left\{ f \in AC(\mathbb{R}) : \forall \varepsilon > 0, \quad e^{-\varepsilon x} f(x) \to 0, \quad x \to +\infty \right\},\,$$

где $AC(\mathbb{R})$ – пространство абсолютно непрерывных на \mathbb{R} функций.

Основным ключом исследования задачи (1)-(2) является трехфакторное разложение соответствующего интегро-дифференциального оператора $D-AI+BK\Lambda$ (D – оператор дифференцирования, I – единичный оператор, K – интегральный оператор типа свертки, а Λ – оператор умножения на функцию $\lambda(x)$), в виде произведения одного дифференциального, одного вольтеррового и одного сверточного операторов. Оказывается, что указанная факторизация позволяет свести решение уравнени (1)-(2) к решению следующего интегрального уравненя:

(3)
$$f(x) = g_0(x) + \int_{\mathbb{R}} w(x-t)\lambda(t)f(t)dt,$$

где $0 \le g_0, w \in W_1^1(\mathbb{R})$.

В вышеуказанных приложениях часто возникают интегро-дифференциальные уравнения вида (1)-(2) со специальными ядрами, а именно, ядрами, представляющими из себя суперпозицию экспонент, т.е. ядро k(x) допускает следующее представление

(4)
$$k(x) = \int_a^b e^{-|x|s} d\sigma(s),$$

где $\sigma(s)$ – монотонная, неубывающая функция на [a,b) $(0 < a < b \le +\infty)$, причем

$$2\int_{a}^{b} \frac{d\sigma(s)}{s} = 1.$$

Последнее условие означает, что ядро k(x) удовлетворяет соотношению (2).

Вторая часть настоящей работы посвящена аналитическому решению уравнения (1), (4), (5). В отличии от общего случая, здесь предлагается более простой способ решения уравнения (1), (4), (5).

В последней, третьей части рассматривается однородное уравнение (1)-(2) (т.е. при g=0) в случае A=B. Здесь, накладывая некоторые дополнительные условия на функции k и λ , доказывается существование нетривиального решения в классе \mathfrak{M} .

2. ОБОЗНАЧЕНИЯ И ВСПОМОГАТЕЛЬНЫЕ ПРЕДЛОЖЕНИЯ

2.1. **Некоторые классы интегральных операторов.** Обозначим через Ω – класс интегральных операторов типа свертки: $K \in \Omega$, если

$$(Kf)(x) = \int_{\mathbb{R}} k(x-t)f(t)dt, \quad k \in L_1(\mathbb{R}).$$

Оператор $K\in\Omega$ действует в каждом из пространств $L_p(\mathbb{R}),\ p\geq 1,$ причем $\|K\|_{L_p} \le \int_{\mathbb{R}} |k(x)| dx, \ p \ge 1$ (см. [7]). Введем следующие подалгебры $\Omega^\pm \subset \Omega$ верхних и нижних вольтерровых операторов: $V^{\pm} \in \Omega^{\pm},$ если

(6)
$$(V^+ f)(x) = \int_{-\infty}^x \nu_+(x - t) f(t) dt,$$

$$(V^- f)(x) = \int_x^{+\infty} \nu_-(t - x) f(t) dt$$

при $\nu_{\pm} \in L_1(0,+\infty)$. Нетрудно проверить, что

$$\Omega = \Omega^+ \oplus \Omega^-$$
.

Операторы $V^{\pm} \in \Omega^{\pm}$ обладают следующими свойствами (см. [7]-[8]):

(7)
$$V^-K \in \Omega, \quad KV^+ \in \Omega.$$

Введем также класс Ω^* следующих интегральных операторов $K^* \in \Omega^*$, если

$$(K^*f)(x) = \int_{\mathbb{R}} k(x-t)\lambda(t)f(t)dt,$$

где $0 \le \lambda(x) \le 1$ – измеримая функция, а $k \in L_1(\mathbb{R})$.

Следующая лемма является одним простым обобщением формулы (7).

Лемма 1. Если $K^* \in \Omega^*, V^{\pm} \in \Omega^{\pm},$ то справедливы следующие простые воз-

- і) $V^-K^*\in\Omega^*,$ іі) $K^*V^+\in\Omega^*$ тогда и только тогда, когда существует такая вещественная функция r(t), определенная на \mathbb{R} , для которой $\lambda(x+t)=\lambda(x)r(t)$, $r\partial e \ r(t)\nu_+(t) \in L_1(0,+\infty).$

Доказательство: Пусть $f \in L_p(\mathbb{R})$ – произвольная функция. Имеем

(8)
$$\left(V^-K^*f\right)(x) = \int_x^{+\infty} \nu_-(t-x) \int_{-\infty}^{+\infty} k(t-y)\lambda(y)f(y)dydt.$$

Изменяя порядок интегрирования в (8), получим

$$(V^{-}K^{*}f)(x) = \int_{-\infty}^{+\infty} f(y)\lambda(y) \int_{x}^{+\infty} \nu_{-}(t-x)k(t-y)dtdy$$
$$= \int_{-\infty}^{+\infty} h(x-y)\lambda(y)f(y)dy,$$

где

$$h(x) = \int_0^{+\infty} \nu_-(t) k(x+t) dt.$$

Теперь перейдем к доказательству пункта ii). Совершая аналогичные рассуждения, получим

$$(K^*V^+f)(x) = \int_{-\infty}^{+\infty} k(x-t)\lambda(t) \int_{-\infty}^t \nu_+(t-\tau)f(\tau)d\tau dt$$
$$= \int_{-\infty}^{+\infty} f(\tau) \int_{\tau}^{+\infty} k(x-t)\lambda(t)\nu_+(t-\tau)dt d\tau$$
$$= \int_{-\infty}^{+\infty} f(\tau) \int_{0}^{+\infty} k(x-\tau-z)\lambda(\tau+z)\nu_+(z)dz d\tau.$$

Обозначим через $q(x,\tau)$ следующую функцию:

$$q(x, au) := \int_0^{+\infty} k(x- au-z) \lambda(au+z)
u_+(z) dz.$$

Если $\lambda(x+z)=\lambda(x)r(z)$, где $r\nu_+\in L_1(0,+\infty)$, то из теоремы Фубини (см. [9]) следует, что

$$q(x, au) = \lambda(au) \int_0^{+\infty} k(x- au-z) r(z)
u_+(z) dz,$$

причем

$$\int_0^{+\infty} k(x-z)r(z)\nu_+(z)dz \in L_1(\mathbb{R}).$$

Обратное утверждение следует из представления функции q. Лемма доказана

2.2. Об интегральных операторах типа свертки. Рассмотрим следующее однородное интегральное уравнение:

(9)
$$B(x) = \int_{-\infty}^{+\infty} k(x-t)\lambda(t)B(t)dt, \quad x \in \mathbb{R},$$

относительно искомой функции $B \in L_1^{loc}(\mathbb{R})$. Здесь

(10)
$$0 \le k \in L_1(\mathbb{R}), \quad \int_{-\infty}^{+\infty} k(x) dx = 1,$$
$$0 \le g \in L_1(\mathbb{R}), \quad 0 \le \lambda(x) \le 1 \quad \text{ha} \quad \mathbb{R}.$$

В дальнейшем изложении настоящей статьи мы будем использовать следующий результат из [10].

Теорема [10] Пусть в уравнении (9)

1)
$$0 \le k \in L_1(\mathbb{R}), \ \int_{-\infty}^{+\infty} k(x) dx = 1 \ u \ cywecmsyem$$

$$\nu = \nu(k) := \int_{-\infty}^{+\infty} x k(x) dx \neq 0,$$

2)
$$0 \le \lambda(x) \le 1$$
 на \mathbb{R} и $1 - \lambda(x) \in L_1(\mathbb{R})$.

Тогда уравнение (9) имеет неотрицательное, ограниченное, нетривиальное решение B(x), $B(x) \leq 1$, $x \in \mathbb{R}$, причем

(11)
$$\int_0^x B(t)dt = O(x) \quad as \quad x \to -\infty.$$

3. ЗАДАЧА ФАКТОРИЗАЦИИ

3.1. Постановка задачи. Уравнение (1) запишем в операторной форме

$$(D - AI + BK^*)\varphi + g = 0,$$

где $(Df)(x)=\frac{df}{dx},\ I$ — единичный оператор и $K^*\in\Omega^*.$ Рассмотрим следующие возможности

1)
$$A = 0$$
 и 2) $A > 0$.

Пусть A=0. Рассмотрим следующую задачу факторизации: для операторов Dи $K^* \in \Omega^*$ и для каждого $\alpha > 0$ найти такие интегральные операторы $U \in \Omega^-$ и $P^* \in \Omega^*$, чтобы имела место факторизация:

(13)
$$D + BK^* = (D - \alpha I)(I - BP^* - U).$$

Пусть A>0. Найти такие интегральные операторы $V\in\Omega^-$ и $H^*\in\Omega^*$, чтобы имела место факторизация:

(14)
$$D - AI + BK^* = (D - \alpha I)(I - V)(I - BH^*).$$

Факторизации (13) и (14) мы будем понимать как равенство интегральных операторов, действующих в пространстве $W^1_1(\mathbb{R})$, где $W^n_p(\mathbb{R})$ — это пространство Соболева функций f таких, что $f^{(k)} \in L_p(\mathbb{R}), \ k=0,1,2,\ldots,n.$

3.2. Основные факторизационные ламмы. В этом пункте мы будем заниматься изучением задач (13) и (14). Справедлива следующая лемма.

Лемма 2. Если A > 0, то оператор $D - AI + BK^*$ допускает факторизацию вида (14), где ядра операторов $V \in \Omega^-$ и $H^* \in \Omega^*$ задаются соответственно по формулам

$$(15) \quad \nu(x)=(\alpha-A)e^{-\alpha x}\theta(x), \quad \theta(x)=\left\{ \begin{array}{ll} 1, & \textit{ecau} & x\geq 0, \\ 0, & \textit{ecau} & x<0, \end{array} \right.$$

$$h^*(x,t) = \lambda(t)h_0(x-t),$$

(16)
$$h_0(x) = \int_0^{+\infty} e^{-At} k(x+t) dt = \int_x^{+\infty} e^{-A(t-x)} k(t) dt \in W_1^1(\mathbb{R}).$$

Имеют место также следующие оценки

(17)
$$\sup_{t \in \mathbb{R}} \int_{-\infty}^{+\infty} h^*(x, t) dx = \frac{1}{A} \sup_{t \in \mathbb{R}} \lambda(t) \le \frac{1}{A}, \\ \sup_{t \in \mathbb{R}} \int_{-\infty}^{+\infty} \left| \frac{\partial h^*(x, t)}{\partial x} \right| dx \le 2 \sup_{t \in \mathbb{R}} \lambda(t).$$

Доказательство: Обозначим через Γ_{α} обратный оператор дифференциального оператора $\alpha I-D$ в пространстве $W_1^1(\mathbb{R})$. Легко можно убедиться, $\Gamma_{\alpha}\in\Omega^-$ и имеет следующий вид

(18)
$$(\Gamma_{\alpha}f)(x) = \int_{0}^{+\infty} e^{-\alpha(t-x)} f(t) dt, \quad \alpha > 0.$$

Обозначим через P произведение операторов Γ_{α} и K^* . Из леммы 1 следует, что $P^* \in \Omega^*$, ядро которого задается посредством следующей формулы

(19)
$$p^*(x,t) = \lambda(t) \int_x^{+\infty} e^{-\alpha(z-x)} k(z-t) dz = \lambda(t) \int_0^{+\infty} e^{-\alpha\tau} k(\tau+x-t) d\tau.$$

Покажем, что функция $p^*(x,t)$ удовлетворяет следующим двум оценкам:

(20)
$$\sup_{t \in \mathbb{R}} \int_{-\infty}^{+\infty} p^*(x,t) dx = \frac{\sup_{t \in \mathbb{R}} \lambda(t)}{\alpha} \le \frac{1}{\alpha}, \\ \sup_{t \in \mathbb{R}} \int_{-\infty}^{+\infty} \left| \frac{\partial p^*(x,t)}{\partial x} \right| dx \le 2 \sup_{t \in \mathbb{R}} \lambda(t).$$

Имеем

$$\int_{-\infty}^{+\infty} p^*(x,t)dx = \lambda(t) \int_{-\infty}^{+\infty} \int_{x}^{+\infty} e^{-\alpha(z-x)} k(z-t) dz dx.$$

Изменяя порядок интегрирования с использованием теоремы Φ убини, с учетом (2), получим

(21)
$$\int_{-\infty}^{+\infty} p^*(x,t)dx = \lambda(t) \int_{-\infty}^{+\infty} k(z-t) \int_{-\infty}^{z} e^{-\alpha(z-x)} dxdz$$
$$= \frac{\lambda(t)}{\alpha} \int_{-\infty}^{+\infty} k(z-t)dz = \frac{\lambda(t)}{\alpha}.$$

Поскольку

$$\frac{\partial p^*(x,t)}{\partial x} = -\lambda(t)k(x-t) + \alpha p^*(x,t),$$

то с учетом (2) и (21) будем иметь

$$\int_{-\infty}^{+\infty} \left| \frac{\partial p^*(x,t)}{\partial x} \right| dx \le \lambda(t) \int_{-\infty}^{+\infty} k(x-t) dx + \lambda(t) \le 2 \sup_{t \in \mathbb{R}} \lambda(t),$$

откуда проходим к оценкам (20).

Оператор $D-AI+BK^*$, с учетом (18) и (19), можно представить в следующем виде

(22)
$$D - AI + BK^* = D - \alpha I + BK^* + (\alpha - A)I$$
$$= (D - \alpha I) (I - BP^* - (\alpha - A)\Gamma_{\alpha}).$$

Пусть $I+\Phi$ — резольвента оператора $I-(\alpha-A)\Gamma_\alpha$ в $W^1_1(\mathbb{R})$. Тогда простые вычисления показывают, что $\Phi\in\Omega^-$ и

(23)
$$(\Phi f)(x) = (\alpha - A) \int_{x}^{+\infty} e^{-A(t-x)} f(t) dt.$$

Снова используя лемму 1, заключаем, что $\Phi P^* \in \Omega^*$. Следовательно,

$$(24) H^* \equiv P^* + \Phi P^* \in \Omega^*,$$

ядро которого имеет вид (16). Таким образом, из (22) и (23), (24) получим

$$D - AI + BK^* = (D - \alpha I)(I - V)(I - BH^*),$$

где $V=(\alpha-A)\Gamma_{\alpha}$. Итак, мы получаем факторизацию (14). Из оценок (20) легко убедиться, что оператор H^* действует в пространстве $W_1^1(\mathbb{R})$. Лемма доказана.

Аналогичными рассуждениями можно доказать следующую лемму.

Лемма 3. Если A = 0, то оператор $D + BK^*$ допускает факторизацию вида (13), где ядра операторов $U \in \Omega^-$ and $P^* \in \Omega^*$ задаются соответственно по формулам

(25)
$$u(x) = \alpha e^{-\alpha x} \theta(x),$$

$$p^*(x,t) = \lambda(t)p(x-t),$$

(26)
$$p(x) = \int_0^{+\infty} e^{-\alpha t} k(x+t) dt = \int_x^{+\infty} e^{-\alpha(t-x)} k(t) dt \in W_1^1(\mathbb{R}).$$

3.3. Связь между первыми моментами ядер k и h. Как уже отмечалось, для разрешимости интегральных уравнений типа (9), (10) нужно, чтобы существовал первый момент соответствующего ядра, причем этот момент должен быть неположительным. Поскольку в нашем подходе решение уравнения (1)-(2) сводится к решению интегральных уравнений вида (9), (10) то нам существенным образом понадобится связь между первыми моментами соответствующих ядер. Следующая лемма устанавливает связь между $\nu(k)$ и $\nu(h)$.

Пемма 4. Если A>0 и существует $\nu(k)$, то существует и $\nu(h)$, причем имеет место формула

(27)
$$\nu(h) = \frac{\nu(k)}{A} - \frac{1}{A^2}.$$

Доказательство: В силу теоремы Фубини имее

$$\nu(h) = \int_{-\infty}^{+\infty} xh(x)dx = \int_{-\infty}^{+\infty} x \int_{0}^{+\infty} e^{-At}k(x+t)dtdx$$
$$= \int_{0}^{+\infty} e^{-At} \int_{-\infty}^{+\infty} xk(x+t)dxdt.$$

Обозначая через $\tau = x + t$, получ

$$\nu(h) = \int_0^{+\infty} e^{-At} \int_{-\infty}^{+\infty} (\tau - t)k(\tau)d\tau dt$$
$$= \frac{\nu(k)}{A} - \int_{-\infty}^{+\infty} k(\tau)d\tau \int_0^{+\infty} te^{-At} dt = \frac{\nu(k)}{A} - \frac{1}{A^2}.$$

Следствие 1. Если $\nu(k) \leq \frac{1}{A}$, то $\nu(h) \leq 0$.

4. РАЗРЕШИМОСТЬ УРАВНЕНИЯ (1)-(2) В СЛУЧАЕ ${f A}>0$

4.1. **Уравнеие** (1)-(2) в случае A > B. В настоящем и последующем разделах мы будем заниматься вопросами существования абсолютно непрерывного решения уравнения (1) с помощью факторизационных лемм 2 и 3.

В этом пункте рассмотрим случай, когда параметр A больше, чем B. Имеет место

Теорема 1. Предположим, что $0 \le g \in L_1(\mathbb{R})$, $0 \le \lambda(x) \le 1$ – измеримая функция на \mathbb{R} . Тогда, если A > B, то задача (1)-(2) в пространстве Соболева $W_1^1(\mathbb{R})$ имеет неотрицательное решение.

Доказательство: Используя факторизацию (14), уравнение (1) можно записать в следующей форме

$$(D - \alpha I)(I - V)(I - BH^*)\varphi + g = 0.$$

Решение этого уравнения сводится к последовательному решению следующих трех связанных уравнений:

$$(29) (D - \alpha I)\rho = -g,$$

$$(30) (I - V)\psi = \rho,$$

$$(31) (I - BH^*) \varphi = \psi.$$

Нетрудно убедиться, что уравнение (29) в пространстве $W^1_1(\mathbb{R})$ имеет единственное решение вида

(32)
$$\rho(x) = \int_{x}^{+\infty} e^{-\alpha(t-x)} g(t) dt \in W_1^1(\mathbb{R})$$

Уравнение (30) можно переписать в раскрытой форме

(33)
$$\psi(x) = \rho(x) + (\alpha - A) \int_{x}^{+\infty} e^{-\alpha(t-x)} \psi(t) dt,$$

легко убедиться, что

$$\psi(x) = \rho(x) + (\alpha - A) \int_{x}^{+\infty} e^{-A(t-x)} \rho(t) dt,$$

где с учетом (32) получим

(34)
$$0 \le \psi(x) = \int_{x}^{+\infty} e^{-A(t-x)} g(t) dt \in W_{1}^{1}(\mathbb{R}).$$

Теперь перейдем к рассмотрению интегрального уравнения (31). Уравнение запишем в интегральном виде

(35)
$$\varphi(x) = \psi(x) + B \int_{-\infty}^{+\infty} h(x-t)\lambda(t)\varphi(t)dt, \quad x \in \mathbb{R},$$

Рассмотрим следующие итерации: $\varphi^{(0)}=0$ и

(36)
$$\varphi^{(n+1)}(x) = \psi(x) + B \int_{-\infty}^{+\infty} h(x-t)\lambda(t)\varphi^{(n)}(t)dt, \quad n = 0, 1, 2, 3, \dots$$

По индукции легко можно убедиться, что 1) $\psi(x) \leq \varphi^{(n)} \in W^1_1(\mathbb{R}),$ 2) $\varphi^{(n)} \uparrow$ по n. Тогда из оценки (17) с учетом 1), 2) получим, что

(37)
$$\int_{-\infty}^{+\infty} \varphi^{(n+1)}(x) dx \leq \int_{-\infty}^{+\infty} \psi(x) dx + \frac{\sup_{t \in \mathbb{R}} \lambda(t)}{A} B \int_{-\infty}^{+\infty} \varphi^{(n)}(x) dx$$
$$\leq \int_{-\infty}^{+\infty} \psi(x) dx + q \int_{-\infty}^{+\infty} \varphi^{(n+1)}(x) dx,$$

где

$$0 \leq q \equiv \frac{1}{A} \sup_{t \in \mathbb{R}} \lambda(t) B \leq \frac{B}{A} < 1,$$

поскольку A>B и $0\leq \lambda(t)\leq 1$. Следовательно, из (37), (34), с учетом теоремы Фубини будем иметь

(38)
$$\int_{-\infty}^{+\infty} \varphi^{(n+1)}(x) dx \le \frac{\int_{-\infty}^{+\infty} g(t) dt}{A(1-q)}, \quad n = 0, 1, 2, \dots$$

Итак, мы получили монотонно возрастающую (по n) последовательность функций $\varphi^{(n)}$, для которых справедливо неравенство (38). Следовательно, по теореме Б. Леви (см. [9]) получим, что последовательность функций $\varphi^{(n)}(x)$ сходится почти всюду в $\mathbb R$ к суммируемой функции $\varphi(x)$. Нетрудно убедиться, что $\varphi(x)$ является решением уравнения (35). Действительно, из (36) имеем

(39)
$$\varphi^{(n+1)}(x) \leq \psi(x) + B \int_{-\infty}^{+\infty} h(x-t)\lambda(t)\varphi(t)dt \in L_1(\mathbb{R}), \quad n = 0, 1, 2, \dots$$

Устремляя $n \to \infty$, получим

(40)
$$\varphi(x) \le \psi(x) + B \int_{-\infty}^{+\infty} h(x-t)\lambda(t)\varphi(t)dt.$$

С другой стороны,

$$\psi(x) + B \int_{-\infty}^{+\infty} h(x-t)\lambda(t)\varphi^{(n)}(t)dt \le \varphi(x),$$

откуда в силу теоремы Лебега (см. [9]) будем иметь

(41)
$$\psi(x) + B \int_{-\infty}^{+\infty} h(x-t)\lambda(t)\varphi(t)dt \le \varphi(x).$$

Таким образом, из неравенств (40) и (41) следует, что $\varphi(x)$ является решением уравнения (35). Из (35) и (17) следует, что $\varphi \in W_1^1(\mathbb{R})$.

4.2. **Уравнение** (1)-(2) **в случае** $\mathbf{A} = \mathbf{B}$. Рассмотрим теперь уравнение (1) в случае, когда A=B. Используя факторизацию (14), как и при доказательстве теоремы 1), и последовательно решая уравнения, (29) и (30), приходим к уравнению:

(42)
$$\varphi(x) = \psi(x) + B \int_{-\infty}^{+\infty} h(x-t)\lambda(t)\varphi(t)dt, \quad x \in \mathbb{R}.$$

Обозначим через

$$w(x) := Bh(x).$$

Поскольку A=B>0, то $\gamma:=\int_{-\infty}^{+\infty}w(x)dx=1.$ Наряду с уравнением (42) рассмотрим следующие уравнения

(43)
$$F(x) = \psi(x) + \int_{-\infty}^{+\infty} w(x-t)F(t)dt,$$

(44)
$$f(x) = \int_{-\infty}^{+\infty} w(x-t)f(t)dt.$$

В работе [10] доказано, что если $\nu(w)>0,\,0\leq\psi\in L_1(\mathbb{R})$ и $\gamma=1,$ то уравнение (43) имеет положительное решение $F(x)\in L_1^{loc}(\mathbb{R}),$ причем $\int_0^x F(t)dt=o(x)$ при $x\to -\infty.$ Рассмотрим следующие итерации: $\varphi^{(0)}=0$ и

(45)
$$\varphi^{(n+1)}(x) = \psi(x) + B \int_{-\infty}^{+\infty} h(x-t)\lambda(t)\varphi^{(n)}(t)dt, \quad n = 0, 1, 2, \dots$$

Поскольку $\psi \geq 0$, то нетрудно убедиться, что $\psi \leq \varphi^{(n)} \uparrow$ по n и $\varphi^{(n)} \leq F$ почти всюду в \mathbb{R} . Отсюда следует, что предел $\varphi(x) = \lim_{n \to \infty} \varphi^{(n)}(x)$ существует почти всюду в \mathbb{R} , причем $0 \leq \psi(x) \leq \varphi(x) \leq F(x)$. Аналогично доказательству теоремы 1, здесь проверяется, что полученная функция $\varphi \in AC(\mathbb{R})$ удовлетворяет уравнению (1). Итак, используя лемму 4, приходим к следующему результату.

Теорема 2. Пусть $0 \le g \in L_1(\mathbb{R}), \ 0 \le \lambda(x) \le 1$ — измеримая функция на \mathbb{R} и $\exists \nu(k) > \frac{1}{A}$. Тогда, если A = B > 0, то задача (1)-(2) в классе \mathfrak{M} имеет положительное решение с асимптотикой $\int_0^x \varphi(t)dt = o(x), \ x \to -\infty$.

4.3. Уравнение (1)-(2) в случае A < B.

Теорема 3. Пусть 0 < A < B и выполнены следующие условия:

1)
$$0 \le g \in L_1(\mathbb{R}),$$

$$2) \ \ 0 < \lambda(x) \leq 1, \quad \lambda \in W^1_\infty(\mathbb{R}) \quad u \quad \sup_{t \in \mathbb{R}} \int_{-\infty}^{+\infty} \lambda(t+\tau) w(\tau) d\tau < 1.$$

Тогда задача (1)-(2) имеет положительное решение в пространстве Соболева $W^1_{1,\lambda}(\mathbb{R})$ с весом $\lambda(x)$.

Доказательство: Используя факторизацию (14) и последовательно решая уравнения (29) и (30), мы приходим к следующему интегральному уравнению

(46)
$$\varphi(x) = \psi(x) + \int_{-\infty}^{+\infty} w(x-t)\lambda(t)\varphi(t)dt,$$

где

$$\int_{-\infty}^{+\infty} w(x)dx = B \int_{-\infty}^{+\infty} h(x)dx = \frac{B}{A} > 1.$$

Умножая обе части уравнения (46) на функцию $\lambda(x)$ и обозначая через $\rho(x) := \lambda(x)\varphi(x)$ и $q(x) := \lambda(x)\psi(x)$, приходим к следующему уравнению

(47)
$$\rho(x) = q(x) + \lambda(x) \int_{-\infty}^{+\infty} w(x-t)\rho(t)dt.$$

Рассмотрим следующие итерации: $\rho^{(0)} = 0$ и

(48)
$$\rho^{(n+1)}(x) = q(x) + \lambda(x) \int_{-\infty}^{+\infty} w(x-t)\rho^{(n)}(t)dt, \quad n = 0, 1, 2, \dots$$

Легко убедиться, что $q(x) \leq \rho^{(n)} \uparrow$ по $n, \rho^{(n)}(x) \in L_1(\mathbb{R})$. Следовательно, с учетом последнего, из (48) получим

$$\int_{-\infty}^{+\infty} \rho^{(n+1)}(x)dx \le \int_{-\infty}^{+\infty} q(x)dx + \int_{-\infty}^{+\infty} \lambda(x) \int_{-\infty}^{+\infty} w(x-t)\rho^{(n)}(t)dt$$
$$\le \int_{-\infty}^{+\infty} q(x)dx + \varepsilon \int_{-\infty}^{+\infty} \rho^{(n+1)}(x)dx,$$

где

$$\varepsilon = \sup_{t \in \mathbb{R}} \int_{-\infty}^{+\infty} \lambda(t+\tau) w(\tau) d\tau < 1,$$
, следует

откуда, в свою очередь, след

$$\int_{-\infty}^{+\infty} \rho^{(n+1)}(x) dx \le \frac{\int_{-\infty}^{+\infty} q(x) dx}{1 - \varepsilon}.$$

Таким образом, из теоремы Леви следует, что последовательность $\left\{\rho^{(n)}(x)\right\}_{n=1}^{+\infty}$ почти всюду в $\mathbb R$ сходится к суммируемой функции ρ . Нетрудно проверить, что ρ является решением уравнения (47). Поскольку $0 < \lambda(x) \le 1$ и $\lambda \in W^1_\infty(\mathbb R)$, то $\varphi \in W^1_{1,\lambda}(\mathbb{R}).$

5. РЕШЕНИЕ УРАВНЕНИЯ (1)-(2) В СЛУЧАЕ $\mathbf{A} = \mathbf{0}$

Рассмотрим следующее уравнение

(49)
$$-\frac{d\varphi}{dx} = B \int_{-\infty}^{+\infty} k(x-t)\lambda(t)\varphi(t)dt + g(x)$$

относительно искомой функции φ . В следующей теореме мы сформулируем некоторые достаточные условия, при которых это уравнение будет иметь положительные решения в пространстве $W^1_{1,\lambda}(\mathbb{R})$. Имеет место

Теорема 4. Предположим, что $0 \le g \in L_1(\mathbb{R})$

$$0 < \lambda(x) \le 1, \quad \lambda \in W_1^1(\mathbb{R}), \quad \sup_{x \in \mathbb{R}} \int_{-\infty}^{+\infty} \lambda(x+t) G_0(t) dt < 1,$$

u

$$G_0(x) \equiv \int_x^{+\infty} k(t)dt \in M(\mathbb{R}) \cap C_0(\mathbb{R}).$$

Тогда уравнение (49) имеет положительное решение в пространстве $W^1_{1,\lambda}(\mathbb{R})$.

Доказательство: Используя факторизацию (13), уравнение (49) можно переписать в следующем виде

$$(D - \alpha I) (I - BP^* - U) \varphi + g = 0,$$

решение которого сводится к последовательному решению следующих уравнений

$$(50) (D - \alpha I)F = -g,$$

$$(51) (I - BP^* - U)\varphi = F.$$

Как уже отмечалось, уравнение (50) в $W_1^1(\mathbb{R})$ имеет единственное решение вида (32). Перейдем к рассмотрению уравнения (51). Имеем $(I-U)^{-1} = I + \Phi$, где

$$(\Phi f)(x) = \alpha \int_{x}^{+\infty} f(t)dt.$$

Из представления оператора Φ видно, что он переводит пространство $L_1(\mathbb{R})$ в пространство $M(\mathbb{R}) \cap C_0(\mathbb{R})$, где $M(\mathbb{R})$ – пространство ограниченных функций на \mathbb{R} , а $C_0(\mathbb{R})$ – пространство непрерывных функций на \mathbb{R} , стремящихся к нулю на $+\infty$. Оператор $I-BP^*-U$ представим в следующем виде

(52)
$$I - BP^* - U = (I - U)(I - G),$$

где $G = BP^* + B\Phi P^*$. Тогда нетрудно убедиться, что

$$(Gf)(x) = B \int_{-\infty}^{+\infty} G_0(x-t)\lambda(t)dt,$$

где

$$G_0(x) = \int_x^{+\infty} k(t)dt \in M(\mathbb{R}) \cap C_0(\mathbb{R}).$$

Используя факторизацию (52), решение уравнения сводится к решению следующих уравнений:

$$(53) (I-U)\xi = F$$

$$(54) (I-G)\varphi = \xi.$$

Очевидно, что уравнение (53) имеет решение следующего вида

(55)
$$\xi(x) = F(x) + \alpha \int_{x}^{+\infty} F(t)dt,$$

где с учетом (32) получим

$$\xi(x) = \int_x^{+\infty} g(t) dt \in M(\mathbb{R}) \cap C_0(\mathbb{R}).$$

Теперь перейдем к рассмотрению уравнения (54)

$$\varphi(x) = \xi(x) + B \int_{-\infty}^{+\infty} G_0(x - t) \lambda(t) \varphi(t) dt,$$

применим к нему следующий итерационный процесс: $\varphi^{(0)} = 0$ и

(56)
$$\varphi^{(n+1)}(x) = \xi(x) + B \int_{-\infty}^{+\infty} G_0(x-t)\lambda(t)\varphi^{(n)}(t)dt, \quad n = 0, 1, 2, \dots$$

Нетрудно проверить, что $\xi(x) \leq \varphi^{(n)} \uparrow$ по $n, \varphi^{(n)} \in L_{1,\lambda}(\mathbb{R}), n = 0, 1, 2, \dots$ Тогда умножая обе части (56) на $\lambda(x)$ будем иметь

$$\int_{-\infty}^{+\infty} \lambda(x) \varphi^{(n+1)}(x) dx$$

$$\leq \int_{-\infty}^{+\infty} \xi(x) \lambda(x) dx + B \int_{-\infty}^{+\infty} \lambda(x) \int_{-\infty}^{+\infty} G_0(x-t) \lambda(t) \varphi^{(n+1)}(t) dt dx$$

$$\leq \int_{-\infty}^{+\infty} \xi(x) \lambda(x) dx + \mu \int_{-\infty}^{+\infty} \lambda(t) \varphi^{(n+1)}(t) dt.$$

Откуда

$$\int_{-\infty}^{+\infty} \lambda(x) \varphi^{(n+1)}(x) dx \le \frac{\int_{-\infty}^{+\infty} \xi(x) \lambda(x) dx}{1 - \mu}.$$

Следовательно, с учетом теоремы Б. Леви, получим, что последовательность функций $\varphi^{(n)}(x) \in L_{1,\lambda}(\mathbb{R})$ почти всюду в \mathbb{R} имеет предел $\varphi(x) = \lim_{n \to \infty} \varphi^{(n)}(x)$, причем $\varphi(x) \in L_{1,\lambda}(\mathbb{R})$ и является решением уравнения (51). Но поскольку $\xi, G_0 \in$ $W_{1\lambda}^1(\mathbb{R})$, то стало быть и $\varphi \in W_{1\lambda}^1(\mathbb{R})$.

6. ПОСТРОЕНИЕ НЕТРИВИАЛЬНОГО РЕШЕНИЯ СООТВЕТСТВУЮЩЕГО ОДНОРОДНОГО УРАВНЕНИЯ (1)-(2) В СЛУЧАЕ $\mathbf{A} = \mathbf{B}$

Рассмотрим соответствующее однородное уравнение в случае A=B:

(57)
$$-\frac{d\varphi}{dx} + A\varphi(x) = A \int_{\mathbb{R}} k(x-t)\lambda(t)\varphi(t)dt, \quad x \in \mathbb{R}.$$

Используя факторизацию (14), это уравнение можно переписать в виде

$$(58) \qquad (D - \alpha I)(I - V)(I - AH^*)\varphi = 0,$$

Решение уравнения (58) сводится к последовательному решению следующих уравнений

$$(59) (D - \alpha I)F = 0,$$

$$(60) (I - V)\psi = F,$$

(61)
$$(I - AH^*) \varphi = \psi.$$

Заметим, что уравнения (59) и (60) в пространстве $W_1^1(\mathbb{R})$ имеют только тривиальные решения. Итак, в случае A=B мы приходим к следующему однородному уравнению относительно функции φ

(62)
$$\varphi(x) = A \int_{-\infty}^{+\infty} h(x-t)\lambda(t)\varphi(t)dt,$$

где $A\int_{-\infty}^{+\infty}h(x)dx=1$. Следовательно, используя теорему из [10] и лемму 4, приходим к следующему результату.

Теорема 5. Пусть в уравнении (57)

1)
$$0 \le k \in L_1(\mathbb{R}), \ \int_{-\infty}^{+\infty} k(x)dx = 1 \ u \ \exists \nu(k) \ne \frac{1}{A},$$

2) $0 \le \lambda(x) \le 1$ на \mathbb{R} и $1 - \lambda(x) \in L_1(\mathbb{R})$.

Тогда это уравнение в классе \mathfrak{M} имеет неотрицательное ограниченное решение $\varphi(x) \leq 1, \ x \in \mathbb{R}, \$ причем

$$\int_0^x \varphi(t)dt = O(x) \quad as \quad x \to -\infty.$$

7. ДРУГОЙ ПОДХОД К РЕШЕНИЮ УРАВНЕНИЯ (1)-(2) В СЛУЧАЕ ВПОЛНЕ МОНОТОННЫХ ЯДЕР

7.1. **Постановка задачи.** Пусть ядро k уравнения (1) задается посредством следующей формулы

(63)
$$k(x) = \int_a^b e^{-|x|s} d\sigma(s),$$

где $\sigma(s)$ – монотонно неубывающая функция на $[a,b),\, 0 < a < b \leq +\infty,$ причем

(64)
$$2\int_a^b d\sigma(s) = 1.$$

Нетрудно убедиться, что

(65)
$$\int_{-\infty}^{+\infty} k(x)dx = 2\int_a^b d\sigma(s) = 1.$$

Предположим, что искомое решение уравнения удовлетворяет следующему граничному условию

(66)
$$\varphi(+\infty) \equiv \lim_{x \to +\infty} \varphi(x) = 0.$$

В случае, когда $A=0,\ a=1,\ b=+\infty,\ \lambda(t)\equiv 1,\ u\ d\sigma(s)=1/s^2$ уравнение (1)-(2) исследовалось в работах [2]-[5]. Здесь мы попробуем некоторые методы работы [3] провести в случае задачи (1), (2), (63).

7.2. Сведение задачи (1), (2), (63) к интегральному уравнению. Интегрируя обе части уравнения (1) по x от τ до $+\infty$, с учетом (66) будем иметь

(67)
$$\varphi(\tau) = B \int_{-\infty}^{+\infty} T_0(\tau - t) \lambda(t) \varphi(t) dt - A \int_{\tau}^{+\infty} \varphi(\tau) d\tau + \int_{\tau}^{+\infty} g(\tau) d\tau,$$

где

(68)
$$T_0(x) = B \int_x^{+\infty} k(z) dz, \quad x \in (-\infty, +\infty),$$

Нетрудно заметить, что $T_0 \not\in L_1(\mathbb{R})$. Рассмотрим следующую функцию $T_\eta(x) = e^{\eta x} T_0(x) > 0$. Из представления (68) с учетом (63), следует, что если $0 < \eta < a$, то

$$(69) T_{\eta}(x) = \begin{cases} B \int_{a}^{b} e^{-(s-\eta)x} \frac{d\sigma(s)}{s}, & \text{если} \quad x \ge 0 \\ B e^{\eta x} - B \int_{a}^{b} e^{(s+\eta)x} \frac{d\sigma(s)}{s}, & \text{если} \quad x < 0 \end{cases} \in L_{1}(-\infty, +\infty).$$

Умножая обе части уравнения (67) на функцию $e^{\eta x}$, приходим к следующему уравнению

$$(70) \quad f(x) = \int_{-\infty}^{+\infty} T_{\eta}(x-t)\lambda(t)f(t)dt - A \int_{x}^{+\infty} e^{-\eta(t-x)}f(t)dt + e^{\eta x} \int_{x}^{+\infty} g(t)dt,$$

относительно функции $f(x)=e^{\eta x}\varphi(x)$. Нормируем функцию $T_{\eta}\colon \int_{-\infty}^{+\infty}T_{\eta}(x)dx=$ 1. После простых выкладок из (69) получим следующее характеристическое уравнение относительно η :

(71)
$$\frac{2B}{\eta} \int_a^b \frac{s}{s^2 - \eta^2} d\sigma(s) = 1.$$

7.3. Характеристическое уравнение (71). Рассмотрим функцию

$$B=B(\eta)=rac{\eta}{\displaystyle\int_a^brac{2s}{s^2-\eta^2}d\sigma(s)},\quad \eta\in(0,a).$$

Нетрудно убедиться, что она непрерывна на (0, a), $0 < B(\eta)$, причем B(+0) = 0. Функция $B(\eta)$ строго возраста
ает на $(0,\eta_0]$ и строго убывает на $[\eta_0,p)$, где точка максимума η_0 определяется из следующего уравнения

(72)
$$\int_{a}^{b} \frac{s(s^{2} - 3\eta^{2})}{(s^{2} - \eta^{2})^{2}} d\sigma(s) = 0.$$

Тогда на $(0, \eta_0]$ и $[\eta_0, a)$ существуют обратные к $B(\eta)$ функции, которые обозначим через $\eta_1(B)$ и $\eta_2(B)$ соответственно.

Вычислим значение первого момента ядра T_{η} , получим

(73)
$$\nu = \nu \left(T_{\eta}\right) = \frac{\mu}{\eta^2} \int_a^b \frac{s\left(3\eta^2 - s^2\right)}{\left(s^2 - \eta^2\right)^2} d\sigma(s).$$

Используя (71) и (72), из (73) приходим к следующей лемме:

Лемма 5. Пусть выполнено условие (69). Тогда функция f удовлетворяет уравнению (70), где T_{η} удовлетворяет условию $\int_{-\infty}^{\infty} T_{\eta}(x) dx = 1$, причем справедливы следующие утверждения:

- a) $ecnu \ \nu(T_{\eta}) < 0, \ mo \ \eta = \eta_1(B) \ B < B(\eta_0),$
- b) ecnu $\nu(T_{\eta}) > 0$, mo $\eta = \eta_2(B) B < B(\eta_0)$, c) ecnu $\nu(T_{\eta}) = 0$, mo $\eta = \eta_0 B = B(\eta_0)$.

7.4. Решение уравнения (70). Уравнение (70) перепишем в операторной форме:

$$(74) \qquad \qquad (I - T_{\eta}^* + L_{\eta}) f = g_{\eta},$$

где

(75)
$$\left(T_{\eta}^{*}f\right)(x) = \int_{-\infty}^{+\infty} T_{\eta}(x-t)\lambda(t)f(t)dt,$$

$$\left(L_{\eta}f\right)(x) = A \int_{x}^{+\infty} e^{-\eta(t-x)}f(t)dt$$

a

(76)
$$g_{\eta}(x) = e^{\eta x} \int_{x}^{+\infty} g(t)dt.$$

Рассмотрим следующую задачу факторизации: для операторов $T^*_\eta \in \Omega^*$ и $L_\eta \in \Omega^-$ найти такой оператор $Q^*_\eta \in \Omega^*$, чтобы имело место равенство

(77)
$$I - T_{\eta}^* + L_{\eta} = (I + L_{\eta}) \left(I - Q_{\eta}^* \right)$$

как равенство операторов, действующих в $W_1^1(\mathbb{R})$.

Используя лемму 1 и соотношения (69) и (75), легко можно доказать следующую лемму.

Лемма 6. Имеет место факторизация (77) как равенство операторов, действующих в $W_1^1(\mathbb{R})$, где ядро оператора Q_n^* имеет вид

(78)
$$q_{\eta}^*(x,t) = \lambda(t) \left(T_{\eta}(x) - A \int_0^{+\infty} e^{-(\eta + A)z} T_{\eta}(x+z) dz \right).$$

Теперь используя факторизацию (77) перейдем к решению уравнения (74). Используя (77), уравнение запишем в следующей форме $(I+L_{\eta})\left(I-Q_{\eta}^{*}\right)f=g_{\eta}$, решение которого сводится к последовательному решению следующих уравнений:

$$(79) (I+L_{\eta})\,\zeta=g_{\eta},$$

(80)
$$(I - Q_n^*) f = \zeta.$$

Предположим, что $g_{\eta} \in L_1(\mathbb{R})$. Тогда решение уравнения

(81)
$$\zeta(x) = g_{\eta}(x) - A \int_{x}^{+\infty} e^{-(\eta + A)(t - x)} g_{\eta}(t) dt \in L_{1}(\mathbb{R}).$$

Перейдем к решению уравнения (80). Не вдаваясь в подробности, предполагая, что $q_n^* \ge 0$ и используя тот факт, что тогда

$$\sup_{t \in \mathbb{R}} \int_{-\infty}^{+\infty} q_{\eta}^*(x, t) dx \le 1 - \frac{A}{\eta + A},$$

можно получить аналогичные теоремам 1, 2, 3, 4, 5 результаты.

Авторы выражают благодарность профессору Н. Б. Енгибаряну за ценные замечания.

Abstract. The paper considers the solvability of the integro-differential equation

$$-\frac{d\varphi}{dx} + A\varphi(x) = g(x) + B \int_{R} k(x-t)\lambda(t)\varphi(t)dt, \quad x \in R,$$

where the desired solution $\varphi(x)$ is searched in the class of functions which are absolutely continuous and of slow growth on \mathbb{R} . It is assumed that A and B are some nonnegative parameters, $0 \le g \in L_1(\mathbb{R}), \ 0 \le k \in L_1(\mathbb{R}), \ \int_{\mathbb{R}} k(x) dx = 1$ and $0 \le \lambda(x) \le 1$ is a measurable function in \mathbb{R} . The considered equation is solved by combination of a special factorization of the corresponding integro-differential operator with some methods of function theory and generalized methods of the theory of convolution type integral equations.

Список литературы

- [1] Е. М. Лифшиц, Л. М. Питаевский, Физическая кинетика (Наука, Москва, 1979).
- [2] А. В. Латышев, А. А. Юшканов, "Точное решение задачи о прохождении тока через границу раздела кристаллитов в металле", Φ TT **43** (10), 1744-1750 (2001).
- [3] Х. А. Хачатрян, "Интегро-дифференциальные уравнения физической кинетики", Изв. НАН Армении, Математика 39 (3), 72-80 (2004).
- [4] A. Kh. Khachatryan and Kh. A. Khachatryan, "On Solvability of Some Integral-Differential Equation with Sum-Difference Kernels", Int. J. of Pure and Appl. Math. Sci. (India) 2 (1), 1-13 (2005).
- [5] A. Kh. Khachatryan and Kh. A. Khachatryan, "On Structure of Solution of One Integral-Differential Equation with Completely Monotonic Kernel", in International Conference "Harmonic Analysis and Approximations" (2005).
- [6] А. В. Латышев, А. А. Юшканов, "Электронная плазма в полубесконечном металле при наличии переменного электрического поля", Журнал выч. и мат. физики 41 (8), 1229-1241 (2001).
- Л. Г. Арабаджян, Н. Б Енгибарян, "Уравнения в свертках и нелинейные функциональные уравнения", Итоги науки и техники, Мат. анализ 22 (1984).

- [8] Н. Б
 Енгибарян, Л. Г. Арабаджян, "О некоторых задачах факторизации для интегральных
- операторов типа свертки", Дифф. уравнения **26** (8), 1442-1452 (1990). [9] А. Н. Колмогоров, В. С. Фомин, Элементы теории функций и функционального анализа
- [9] А. Н. Колмогоров, В. С. Фомин, Эмементы теории функции и функционального инализи (Наука, Москва, 1981).
 [10] Л. Г. Арабаджян, "Об одном интегральном уравнении теории переноса в неоднородной среде", Дифф. уравнения 23 (9), 1618-1622 (1987).

Поступила 18 ноября 2006