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AnnvoTanus. The paper studies the asymptotics of the Brownian integrals with
paths restricted to a bounded domain of R¥, when the domain is dilated to
infinity. The framework is that of the Bose-Einstein statistics with paths observed
within random time intervals which are integer multiplies of some fixed 8 > 0.
The three first terms of the asymptotics are found explicitly via the functional
integrals. In the case of a gas of interacting Brownian loops an expression for the
volume term of the asymptotics of the log-partition function is found and the
correction term is proved to by order be the boundary area of the domain.

1. INTRODUCTION

In [1} the large volume asymptotics of the Brownian integrals with paths observed
in a fixed time interval 3 restricted to a bounded domain of R” was studied.

In the present paper we consider similar problem for the Brownian integrals with
random time intervals which are integer multiplies of 3. This problem can be conside-
red as a natural generalization of the famous Kac problem [2] on the asymptotics of

o]
the function Y e~ #* as 3 goes to zero, where \; are the eigenvalues of the Laplacian

i=0
—A in a bounded domain A.

In the special case where the integrand is one, the Brownian integrals are nothing
else but the logarithms of the grand canonical partition functions of the ideal quantum
gases in their functional integral representations {3]. The functional integration met-
hod allows one to replace the quantum mechanical problem by a corresponding
classical problem for a system of interacting Brownian trajectories. This method with
application of Feynman-Kac formula was used first by Ginibre in [4]. The systems of
interacting Brownian trajectories we call Ginibre gases (see {5] and [6]).

The case considered in [1] corresponds to the Ginibre gas with Maxwell-Boltzmann
statistics while the present paper considers the case of Ginibre gas with Bose-Einstein
statistics. The class of admissible domains A consists of bounded convex domains with
convex holes possessing smooth boundaries of the class C°.

We obtain the three first terms of the asymptotics for the case of small activity
(Theorem 1 and 2). The first two terms are proportional respectively to the volume
and to the area of the boundary of A. We prove that in two dimensional case the
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third term is proportional to the Euler-Poincare characteristic of the domain. In this
part our analysis relies on the modified techniques from [1] and involves some specific
properties of the Brownian bridge process outlined in the Appendix.

We consider also the Ginibre gas with repulsive two-body interaction at low activi-
ty. Applying the previous results together with the results on the decay of correlations
from [6] we find an explicit expression for the pressure in terms of functional integrals
and prove that the correction term is of order of the area of the boundary of A
(Theorem 3). The proof is based on the cluster expansion method.

Similar result for the case of Maxwell-Boltzmann statistics was obtained in |7].

2. GINIBRE GAS WITH BOSE-EINSTEIN STATISTICS

For B > 0 fixed and j = 1,2,... let X;5 be the space of Brownian loops of time
interval 553 in R”, v > 1, defined by

Xjs ={X € C([0,55,R") | X(0) = X(j0)}
In the topology of uniform convergence Xz is a Polish space with Borel o-algebra 95, 3.
Let Xj{; be the set of loops X which start and end at the point u € R”. In (X;3,B;5)
we consider a non-normalized Brownian bridge measure P} : Pjj; (X;5) = (7] 6)"/ .
(see the details in [6])

The underlying one particle space X is defined as a topological sum of the spaces
Xjﬂi

X =]
j=1
The natural o-algebra in X generated by the o-algebras 8,3 we denote by B(X).
The elements of X we call composite loops and put |X| =7 if X € Xjs.
Let 0 < 2 <1 be a parameter called activity or fugacity. We define a measure P}
on XY = jgl ijﬂ by the formula

P;:Z_'P;Lﬂ'
=17

Evidently P! is a finite measure for all 2z, 0 < z < 1. Using a natural bijection

7: X% x RY — X defined by 7 (X% u) = X? 4+ u, X° € X" u € R”, we define a
o-finite measure p, on X by
Pz = (PS X )\) or 1,

where A is the Lebesgue measure on R”. The triple (X, B(X), p.) is the one particle
space of our system.
The configuration space of our system is

MX) = {w C X ||w| < oo}
where | - | stands for the number of elements in a finite set.

An element w € M(X) is a finite configuration of composite loops in R” of random
time intervals multiple to 3. We denote by F(X') the canonical o-algebra in M(X).
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On M(X) we consider the following o-finite measure W,_ given by the formula
— 1
(21) Wo =305 [ 00 Ko X))
n—= X

(For the details, see [6}).
For any domain A € R” let X'(A) be the set of all composite loops “living” in A:

X(A) ={XeX|X(t)eA, Ve, X3}

In the same way, let
MA)={w C X(A)||w| < 0}
be the set of finite configurations of composite loops in A. The restriction of the
measure p, on X(A) (respectively of W, on M(A)) we denote by p. a (respectively
by W, a). The triple (M(A),F(A), W, o) we call the ideal Ginibre gas in A with
Bose-Einstein statistics and activity z.
Note that for A bounded both measures p, o and W, 5 are finite. Moreover

— 1
22) WarMA) =Y [ ealdXo)epaldX,) = exp oo (X(4)
n=0 Xe(A)
is the grand partition function Z;4(A, 2) of the ideal Ginibre gas in A.
To define the energy of configuration w € M(A) we consider the space C ([0, 5], R¥)

of all continuous trajectories of time intervals § in R” which we call elementary
trajectories. We will say that an elementary trajectory z is an elementary constituent

of a composite loop X € X, and we will write z € X, if for some i, i =0,1,...,|X|—1,
z(t) = X(ip+1) for all t € [0, 3.
Let
&
(23) Ba) = [ By, zeCopRY),
0

where ¢ : RY — R is a continuous function (see below for the conditions on ®). The
energy U(w) of a configuration w € M(X) is given by

V=Y Xy Y BEY),

Xecw X, Yew, X£Y

where

N(X)== >, Oar—m),

z1,22EX, x1F 22
X, Y)= > -y
zeX,yeY
The Boltzmann factor f is defined as

flw)=exp{-U(w)}, weM(X).

The triple (M(A), W, o, ) we will call the Ginibre gas in A with activity z, interaction
® and Bose-Einstein statistics.
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The main object of our interest is the grand partition function Z(A,z) of the
Ginibre gas in a bounded A C R” which is defined by

(2.4) =0 ) = Waalh) = [ exp{~U(w)} We(do)
M(A)
We want to study the asymptotics of logZ=(A, 2) for large bounded A. As in the

case of Maxwell-Boltzmann statistics (see [7]) the Brownian integral of a single

loop constrained to a bounded domain A, [ p,A(dX) has its own, non-trivial
X (A)

contribution to the asymptotics of log Z(A, z). This is purely “quantum” effect which

is not the case for the classical analogue of our model. Note that by (2.2),

/ Pz A (dX) = log W, A(M(A)) = log Zia(A, 2).
x(A)

Thus we need to study first the asymptotics of log Z,4(A, z) for large A.

3. CONDITIONS ON THE POTENTIAL AND
THE CLASS OF ADMISSIBLE DOMAINS

We suppose that the function ® which defines the interaction ® between loops (see
(2.3)) satisfies the following conditions:
(a): ® is an even function: (—u) = ¢(u), u € RY;
(b): & is repulsive: ¢ > 0;
(c): ® has the following power decay at infinity:

/|<I>(u)|(1+|u|)ldu7 1>0.
]RV

The class of potentials ® satisfying conditions (a)-(c) we denote by P,'.

The class of admissible domains A consists of open bounded convex subsets of R”
with n, n > 0, convex closed holes. We assume that the boundary A of A consists of
n+1 (v — 1)-dimensional closed C* manifolds. At each point r € A we define local

coordinates (n,&1,...,£,-1) so that 5 is along the inward drawn unit normal n and
&1, ..., &, 1 are along the directions of principal curvatures of A at the point r. In
this local coordinates A is given by a C® function f,:

(3.1) n=fr, .., &—1) = fr(&), [[&ll <9

for some ¢ > 0 small enough, € = (&1,...,&,1).

4. MAIN RESULTS

Let F(X), X € X be a translation invariant function: F(X + u) = F(X), for all
X € X and u € R”. Hence we can think of F as a function on X° and we assume
that I € La(X°, P2) for some z > 0. Let

AR=R-A={R ulueA}.
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Theorem 1. For any admissible domain A and for oll z from the interval 0 < 2 <Z
the following expansion holds true

/ F(X)pann(dX) = RY|Alag(F,z)+ R lai(A, F, 2)
X(AR)
+R"2ay(A, F, 2) +o(RY™?)
as B — oo, where |A| is the volume of A and the coefficient ap, a1 and as are

given explicitly in terms of functional integrals by formulas (5.3), (5.29) and (5.30)
respectively.

In the case where the function F' is in addition rotation invariant the coefficients
a1 and ag have simpler form.

Theorem 2. If under the conditions of Theorem 1 the function F is in addition
rotation invarient, then

[ FXpnn(dX) = RAlao(F )+ B A ()
X(Ar)

+RY2 [ Hp(r)o(dr)ay(F, 2) 4+ o(R"?)
oA

where @ and @y are given by (5.31) and (5.32), HA(r) is the mean curvature of OA
at the point r € ON and o is the v — 1-dimensional surface measure.

Remark 1. In dimension two, v = 2, according to Gauss-Bonnet theorem

/HA(r)a(dr) = 27T(A),
A

where T(A) is the Euler-Poincaré characteristic of A, T(A) =1 —n, if A has n holes.
Therefore the corresponding term is purely topological.

Remark 2. In particular case where ' =1 Theorem 2 gives an asymptotic expansion
of the log-partition function log Z;4(A R, 2) of the ideal Ginibre gas in Ag, as R — oc.

The next result gives the main term of the asympotic expansion of the log-partition
function of the Ginibre gas in Ag with interaction &.

Theorem 3. Let ® € 77l+, Il > 1 and z be from the interval

1/2
1—v/2 = /

(4.1) 0<z<expq — 3257TV/2 Zj%l“/?)/ D(u)du

v

j=1
then for any admissible domain A CRY
logE(AR, 2) = R - p(®, 2)|A| + O(R"™) as R — oo,
where p(P, z) is given by

p(@,2) = [Prax) [ 29Xy )
Iy

lw] +1
M(X)
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and B~ 1p(®, 2) is called pressure.
Here and below, without confusing the reader, we write (X, w) for the configuration
{X} Uw. The Ursell function g is defined below by formula 6.1.
5. PROOF OF THEOREM 1
Let
1R = [ PX)peay(aX)
X(AR)

By definition of the measure p, A5
I(R,z) = /du/]l (X + u) F(X)P2(dX)
X(AR)
AR X0

where ][A is the indicator function of a set A.
We decompose this integral as follows

(5.1) IR, 2z)=1s(R,2) — I1(R, 2),
where

Io(R, z) = /du/F(X)Pf(dXL

%o
(R, 2) /du/ (1—][ _ X+u)> F(X)P2(dX).

This gives the volume term:

(5.2) Io(R,z) = R” - |A] - ag(F, 2)

with

(5.3) ao(F, 2) = / F(X)P?(dX).
X0

To study I from (5.1) we put

Ano = {ue Apld(u,00) < 5VR}
where d is the Euclidean distance in R”. Then
(5.4) I(R,2) = (R, 2) + I}(R, 2),

where

5(R, 2) / du/ (1— X+u)> F(X)P?(dX),

IN(R, 2) / du/ (1—]1 ) X+u)> F(X)P(dX).

ARr\AR,s
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Evidently
IR, 2)| < / d/][ X) |F(X)| P2(dX
BRA< [ odefr XX PAX)
AR\ARs  X°
By Schwarz inequality and Lemma 1 from {6]

(5.5) Xfo Lo qu>5f}(x) |F(X)| P)(dX)

<1, [P (sup X0 2 0vE)] " < 0.w) 514 P, expl=C(4, 2)0R]

1/2
and

1/2
1R, - (x/ FA(X )) .

Hence (for simplicity we denote all the constants by the same letter C indicating only
the dependence on the parameters)

\ln\

for all z, 0 < z < 1, where C(3, z)

(5.6) [I5(R, 2)] < |A|C (v, B, 2) | F'l| L, exp[—C(, 2)d R].
Now consider I5(R, z). We have

(5.7) (R, z) = I3(R, z) + I4(R, 2),

where

(R, 2) = d 1-— X X)F(X) PP (dX
e = [ [(1o0, Xrw)T L XOROPAX),
AR,s X0

0
IL(R, %) / du/ (1—]1 o X )) L sy PO (X),

AR,s
According to (5.5)
(5.8) [I5(R, 2)| < [A|C (v, B, 2) || ]| L, exp[—C(5, 2)0 R].

To estimate I3(R,z) we use the local coordinates. Similarly to (3.1) dAg is given
locally by

n=Frr(€), &l <dVER.
We have the following relations between the functions f, r and f, = f, 1:
(59) f'r,R(g) = Rfr,l(Rilg)'

Let k;(r|R),i=1,...,v—1, be the principal curvatures of A g at the point » € A g.
From (5.9) it follows that

(5.10) ki(r|R) = R ki(r1), i=1,...,v—1.
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Then (see, for example, [§])

5@1/71
I3(R,2) = /UR dr) / (1 —7k;i(r|R)) dr
OAR o =1
: 1-— X X)F(X)P2(dX).
/( L +r+m>) L s OFOPX)

XO
For each X € X such that sup || X|| < 6v/R we put

¥(X) =v,r(X) = inf (Xa(t) = fr,r(Xr ()]
Here
(5.11) Xan(t) =(X(t),n), Xpt)=X(#)— (X(t),n)n

where (-,-) stands for the scalar product in R”. It is easy to check that, for any
X € X° with sup || X]|| < 6VR, ]IX(A )(X +7+7n) =0 iff 7 + (X) < 0. Therefore
R

VR v—1
I3(R,2) = [ orldr) [ II (0 = 7hki(r|R)) dr
IAR 0 i=1
(5.12) -1 X1 (X)F(X)PP(dX).

Xfo 020 M g ) <ovm

Using the equality

1 =1 +1 I
sup [ Xl <6VE  sup |X|<6VE | sup |X|>8VE sup | Xn| <5VE

we can rewrite (5.12) as

VR v—1
I(R,z)= [ ogr(dr) [ H (1 —7k;i(r|R)) dr
IAR 0 i=1
(5.13) )!0 ][T+7(X)<O X)]IsupHXDH<5\/§(X)F(X)PS(CIX) —
VR v—1
— [ or(dr) | H (1 —7hi(r|R)) dr
IAR 0 i=1

[T X)I
;(fo T+7(X)<O( )supuxuzé@(

=T4(R,2) + I*(R, 2).

X)L s KIFOPI(AX) =

Let us estimate the second term I4(R, z). It is clear that for each admissible domain
A

k= ki(r]1 :
22, T ] <o

—1
Assuming § < k , we have that
v—1

[[a-rkir|R)

i=1

<27l 0<71<éR.
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Hence using (5.5) we see that

(5.14) ‘fA(RwZ) < IA[C (v, B, 2) [|[Fl| L, exp[-C(8, 2)dR].

The first term I(R, 2) in (5.13) we decompose as

O y—

IMR, 2) = [ orldr) [
IAR 0

1 (X)1

yo THYX)<O sup | Xal|<6vVER

11 (1 —7k;(r|R)) dr -

(X)P(X)P)(dX) —

oo py—1

(5.15) — [ ogrldr) [ IT (1 = 7hki(r|R)) dr -
OAR SvR i=1

e X)1 X)F(X)P(dX) =
X0 T+7(X)<O( ) SUPHXDH<5\/§( ) ( ) z( )
= IR, 2) + [A(R, 2)

Let us show that

(5.16) ‘fA(R o) < Cexp (~C(53,2)0VR)

where C = C(v, 8, 2, A, F,0) does not depend on R. >From (5.10) it follows that
v—1 v—1 v—1

(5.17) [[Q=rki(rR) =D as(r|R) = > R™*r*a(R™'r]1),
i=1 s=0 s=0

where ap(r|R) =1,
as(r|R) = (=1)° > ki (rlR) - ki, (r|R), s =1, v =1
1<iy < <<y —1

Hence

2 [ lastrlRlontar) /Ood

\fA(R 2)
5=0pAR SVE

e X)1 X)|F(X)|P2(dX).
/ 7'+’Y(X)<O( ) SUPHXnH<5\/§( )| ( )| z( )
X0
Now with the help of (5.9) and the condition that f, g is of class C® one can easily
obtain that

v—1

(18)  for(©) = RS R(RNE + R 6 a(e), 16l < 0VE
s=0

where

(519) (6] < COICE]?

uniformly in » € dAg and R > 1. This implies that for all &, ||¢]| < dR and R large
enough

|fr R (E)] < RS>,
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Using the fact that sup, || X(¢)|| > 7 — k6 for any loop X starting at the point  +7n
with 7 > §v/R and such that 7 + v(X) < 0, we can write:

I X)1 X)|F(X)|PY(dX
/T+’Y(X)<O( )SupHXnH<o\/§( NE(X)|P; (dX)
XO

0
<1 RIP)PX)

XO
<P, [P (sup | Xall > 7 —F6%)] "
< Cw)B"1|P|| 1, exp|C(8, 2)E6%) exp|—C(5, 2)7].

Hence
. v—1 o0
[IA(R,2)| < Cv, 8,2,k )| FllL, Z / as(r|R)or(dr) / 7% exp|—C(, 2)7]dr
s=V9g o
(5.20) < Cw, 3,2 A, )| Fll1, exp[=C(8,2)6VR],

which proves the formula (5.16).
Hence combining the formulas (5.1), (5.4), (5.6)-(5.8), (5.13) and (5.16) we find
that

ocoy—1

Li(R,2) :aAf or(dr) bf 1;[1 (1 —7k;(r|R)) dr -

X)1

I X)F(X)P2(dX) + O(e-CVER),
o T+w<x><o( supuxnu«s@( JEX)P(dX) + O )

Applying Fubini’s theorem and formula (5.17) to the last integral we have

v—1

Li(R,z) = ag(r|R)og(dr I X)F(X)PO(dX) -
(B =T [ alriRiondn) [1 L OOFX)PaX)
—¥(X)
f TSdT+O(670\/§)
0
or
v—1
(5.21) L(R,2) =Y Ly(z,R) + O(e “VE),
s=0
with
(5.22) Ls(z,R) = Sil | as(r|R)og(dr) -
AR
I X)F(X) (—y(X)*H PO(dX).
T sy OOF OO (A 00) ! P aX)
Let ey, ..., e,_1 be unit vectors drawn along the directions of the principal curvatures

of OAg at the point » € dAg. For each X € X, with sup ||X| < §R, we choose
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ty = tn(X) and tg = tr(X) from the interval [0, |X|5] so that Xu(tn) = irtlf Xa(t)
and
Xa(tr) = fr,e(Xr(tr) = mf(Xa(t) = fr,r(Xr(1))).

By Proposition 1 from Appendix 1 ¢, is P-almost surely unique and by Proposition
2 from Appendix 2 t, — tg, as R — oo, P-almost surely for all z, 0 < z < 1.
Let us show that the following representation of y(X) is valid:

1 v—1
(5.23) —Y(X) = —Xu(ta) + RTl k(R (1) (X (ta), €)” + R & n(X),
i=1

where
v—1

(5.24) & r(X)| <C(v,B) {Z <<XT(tR)7 6i>2 — (Xp(tn), 6i>2) + R1||X||3} )
i=1

Note that from Proposition 2 and the Lebesgue dominant convergence theorem it
follows that

(5.25) / or(dr) /énR(X)Pf(dX) =o(R"'), asR— oo
g X0
Let us prove (5.23). We have that
—v(X) = fr,r(X7(tn)) — Xalta) + A(X]|r, R),
where
0 < AX]r, R) = fr,r(Xr(tr)) — Xaltr) — fr,r(Xr(tn)) + Xa(ta).
Using 5.18 we find that

1 v—1
AP RB) < frn(K(tr)) = fr,a(X(tn)) — RTZ/@ L)1)

N(Xr(tr), e)? — (Xr(ta), 6i>2] + R e n(Xr(tr)) — err(Xp(ta))] -

This according to 5.19 and Proposition 2 implies (5.23) and (5.24).
With the help of (5.23) we can treat the terms L,(z, R) from (5.22). Consider
Lo(z, R). We have that

Lo(es ) = B [ o(ar) [ FOX) (—Xalta) 52 S itri)
IA X0 i=1
(Xe(ta) )’ + B e (X)) PRAX) =
(5.26) — —Rv! f o(dr) f F(X)inf X, PO(dX) +
+85= [ oldr) [ Zk JF(X) (Xr(ta), )" P(dX) + o(R"?)

A X0 i=
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In a similar way, according to (5.17),

(5.27) Li(sR) = —4R"2 | Vzll ks(r| D)o (dr) -
- f F(X)Xfl(tn)P;?d;) +O(R"3).
0

It is easy to check that

v—1
(5.28) > Li(z,R) = O(R"®).
s=2

Indeed for R large enough |v(X)|® < C'sup || X])°.
By Lemma 1 from [6] it is easy to check that sup | X||* € Li(X°, P?). Therefore

v—1 v—1
IACIEDY = 8{ Ray(r|1)o(dr) -

- [ FX)sup [ X||*H P2(dX) = O(RY ™).
X0

Now from (5.21), (5.26)-(5.28) it follows that
Il(R7 Z) - Ryilal(A7 F7 Z) + RV?ZCLQ(A7 F7 Z) + O(RV*Q)

where
(5.29) ay = — [ o(dr) | F(X)inf X,P)(dX),
[l
v—1
630 =5 [o@) [ POOY K1) [t e - Xi(ta)] P2aX)
oA X0 =1

This together with (5.1) completes the proof of Theorem 1.
Now suppose that the function F(X) is in addition rotation invariant. Then the
integral

/ F(X)inf X, P2(dX)

X0
does not depend on the orientation of the unit normal n in R, because the measure
PzO also is rotation invariant. Hence a1 takes a simple form:

ay = |OA[a (F, z)
with
(5.31) a(F,z) = —/F(X) inf(X, d;)PO(dX)
X0
where d; is any fixed unit vector in R”. In the same way

1 & - 2 - 2] 5o
0= [ S ket [ FX[(Xe@, o)’ - (Xal®)’] PX),

oa =1 X0



ASYMPTOTICS OF BROWNIAN INTEGRALS AND PRESSURE 35

or
as = /HA(r)a(dr)Eg(R z),
IA

where

yv—1+4

v—1
1
Ha(r) = > ki(r(1)
i=1
is the mean curvature of JA at the point » and

[ [(Xe®, )

X0

2

(5.32) @(F,z) = —{(X(®), d1>2] PY(dX).

Here di, ds is an arbitrary fixed pair of orthogonal unit vectors in R” and 7 is defined
by (Xn(#),d1) = inf (Xu(t),d1). Theorem 2 is proved.

6. PROOF OF THEOREM 3
Let g be the Ursell function given by the formula:

(6.1) glw)=J[ > > I (e*U2(XvX>—1)7
Xew YET o (@) (X X]E ()

where v € T'.on(w) is the set of all connected graphs consructed on w, E(~) is the set
of edges of the graph ~.

To develop the large volume asymptotics of the log-partition function log E(ARg, 2)
of the Ginibre gas with interaction we use the cluster representation log=(Ag, 2) in
terms of the Ursell function:

logE(AR, 2) = / GW)W; pp (dw)
M(AR)
(See for details [6]). It follows from Corollary 3 and formulas (12) and (32) in {6] that

the Ursell function g € LY (M(AR), W, A), R > 1, for all 2 from the intervall (4.1).
An appplication of formula (4) from [6] gives

logE(AR,2) = / p.(dX) / 91(X, W)W A g (dw)

X(AR) M(AR)
where g1(w) = %, w € M\{0}. This implies
(62) IOgE(AR7Z) = Ao(R7Z) —Al(R7Z)7

where
AofR, =) = / G.(X)p,(dX),
X(AR)

Ai(R,2) = / p.(dX) / g1( X, w)W,_(dw),

X(AR) Me(AR)

G.(X) :/gl(X7w)sz(dw).
M
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Note that G is translation invariant function: G.(X + u) = G,(X), for any v € R¥
and X € M. This follows from the translation invariance of the Ursell function and
the measure W,_. By [6], Lemma 4, G, € L?(X°, P?) for all 2 from the intervall (4.1).
According to Theorem 1

Ao(R, 2) = R|Alag(G) + R"ay(A, G.) + R ?ag(A, G.) + o( R ?).

Now consider A;(R,z). We will show below that A;(R,z) = O(R*"1). Similarly to
(5.4) we decompose A; as:

(6.3) Ai(R,2) = As(R, ) + Ay(R, 2),
where

Ak = [du [1, OPHX) [ X W, (o),
AR5 Xu Me(AR)

AY(R,2) = / du/ ][X(AR)(X)P;‘d(X) / g1(X, w)W,_(dw).

ARrR\AR,s X Me(AR)
Applying Corollary 1 from [6] we find that
[Ay(R,2)| < [ du [ PHAX) [ |ou(X w)| W, (dw) <
Ar\Agps  X*® Me (B, (5R)
(6.4) < C(1+46R) "RYIA| = O(R¥ 1),
where C = C(9,5,v,2,1) > 0 and B,(R) is a ball in R” of radius R centered at

u € RY.
Consider As(R, z). Using the local coordinate system we can write

dRy—1
(6.5) Ay(R,z)= [ ogldr) [ (1 —thk;(r|R)) dt -
OAR 0 =1
1 (X0 + 7 +m)PI(dX") [ gi(X°+7r+tn,w)W,, (dw).
Xo X(Ar) Me(AR)

Again applying Corollary 1 from [6] we have that

SR
(6.6) |As(R, 2)| < 2v—1 J or(dr) [dt | PY(dX") .
OAR 0 X0
. f ‘gl(XO+r+tn7w)‘sz(dw) <
Me(Bryen(t))

<C(®,8,v,2,1) [ or(dr) 70(1 +4) tdt = O(RV).
dAgR 0

This completes the proof of Theorem 3.

Acknowledgments: We thank Sylvie Roelly for useful discussions.
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7. APPENDIX

Proposition 1. The time t at which one dimensional composite Brownian loop
attains its infimum is P2-almost surely unique for all z 10 < z < 1.

Proof: Let X¥ be the space of all one dimensional composite Brownian loops. Let
T(X) = {t e [0, [X|B3||X(¢) = irsle(s)} .

We need to show that

PYX € X|cardT(X) > 1} = 0.
Let 7(X) = sup T(X) and A(X) = inf T(X), X € X°. For each X € X° let X € x°
be defined by X(t) = X(j8 —t) if X € XJ;. Evidently * : X° — X is one to one
mapping which preserves the measure Pjoﬂ, j = 1,2,..., on each &jz. Therefore X
preserves the measure PC. Taking into account that 7(X) = h(X) we have that

/ B(X)PO(dX) = / B(X)PO(dX) / h(X)PO(dX)

X0 X0 X0

Thus k — k > 0 with
[ @) - 1) P2ax) ~ 0
X0
which implies that P2{X € X°|cardT(X) > 1} = 0.
Proposition 2. For each X € X°, and all 2,0 < 2 < 1, tp(X) — t,(X), as R — oo,
P?-almost surely.

Proof: It is sufficient to show that
(7.1) | Xn(tr) — Xnltn)] — 0, as R — oo,

for each X € X°. Indeed, if 7(X) is a limiting point for the set {tz(X), R > 1}
then (7.1) implies that (X - n)(7) = (X - n)(t,) = inf(X - n) and by Proposition 1
T(X) = ta(X) Pl-almost surely.

Let us prove (7.1). By definitions of tg and {,

inf (X(tn) — fr5(Xr(£))) — inf Xa(t) < Xa(tn) — fr.r(Xr(tn)) — Xn(ta)
which implies
Xa(tr) = fr,e(Xr(tr)) = Xalta) < = fr,r(Xr(tn)),
which together with the bound

|£r.r(E)] < CR7YE)%,

(see (5.18)) gives
0 < Xqa(tr) — Xa(ta) < 20R7Y X))

Formula (7.1) is proved.
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