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S t a t i o n a r y a n d i s o t r o p i c r a n d o m t e s s e l l a t i o n s of t h e e u c l i d e a n p l a n e a r e 
s t u d i e d which have t h e c h a r a c t e r i s t i c p r o p e r t y to b e s t a b l e wi th r e s p e c t 
to i t e r a t i o n (or n e s t i n g ) , S T I T for s h o r t . S ince the i r cells a r e not in a 
f ace- to- f ace p o s i t i o n , t h r e e d i f ferent t y p e s of l inear s e g m e n t s a p p e a r . For 
all t h e t y p e s t h e d i s t r i b u t i o n of t h e l e n g t h of t h e typ ica l s e g m e n t is g iven . 

§1. I N T R O D U C T I O N 

In this paper we study the length distributions of edges of a certain class of 

random planar tessellations - the STIT tessellations. These tessellations have the 

characteristic property to be Stable with respect to Iteration (also referred to as 

nesting) of tessellations. 

The mathematical motivation for these tessellations goes back to a problem that was 

posed to two of the authors by R. V. Ambartzumian already in the 80-th. Also, we 

first learned from him the idea of the operation of iteration for tessellations. 

The iteration generates a new tessellation X(Y°, У) from a 'frame' tessellation Y° and 

a sequence У = { Y 1 , Y2,...} of independent identically distributed (i.i.d.) tessellations 

by subdividing the i-th cell pj of Y° by intersecting it with the cells of Y՝, i = 1, 2, . . . 

E.g., this operation can be applied to Poisson line tessellations in the plane and it 
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results in another tessellation. This operation of iteration can be applied repeatedly, 

combined with an appropriate rescaling. The problem arises whether there exists a 

limit tessellation when the number of repetitions goes to infinity. A further question 

is how such limit tessellations can be described if they exist. 

The existence of such tessellations was recently shown in [11], and their construction 

within bounded windows was described. They are STIT tessellations. 

In the present paper we deal with these STIT tessellations without regarding the 

above mentioned process of repeated rescaled iteration. 

F i g . 1. Simulation of a stationary and isotropic STIT tessellation (provided 

by J . Ohser). 

An important feature of stationary STIT tessellations is that the interior of the typical 

cell - i.e. a random convex polygon - has the same distribution as the typical cell of 

a Poisson line tessellation. Hence, several results can easily be derived for stationary 

STIT tessellations. 

STIT tessellations have T-shaped nodes only, and their cells are not necessarily in 

a face-to-face position. Therefore, when speaking about edges or linear segments of 

these tessellations, it is appropriate to apply Miles' classification which is introduced 

in [2], and to consider I-, J- and K-segments. 

§2. S T I T T E S S E L L A T I O N S 

The tessellations are assumed to be stationary and isotropic which means the 

invariance of their distribution under translation and rotation. For an exact definition 

see [7], [8] or [13]. 

In the paper we consider random tessellations of the two-dimensional Euclidean space 

Ш.2, i.e. random locally finite partitions of the plane into polytopes (compact convex 
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polygons). These polygons are referred to as the cells of the tessellation. The vertices 

of the cells are called the nodes. 

There are different ways to describe a random tessellation. We will write Y for the 

random closed set (RACS) of all boundary points of the cells, and C(Y) = {pi,i = 
1, 2 , . . . } for the process that describes the cells p8՛. Since Y is considered as a RACS 

its distribution is uniquely determined by its capacity functional. 

For tessellations, the operation of iteration (also referred to as nesting) is defined 

as follows. Let Y ^ Y 2 , . . . be a sequence of i.i.d. stationary tessellations in Ш.2 

and denote У = { Y 1 , Y 2 , . . . } . Further assume that Y ° is a stationary tessellation 

which is independent of y. Assume that the cells of Y ° are numbered and that 

C ( Y ° ) = {p i ,p2 , . . . } . 

The iteration of the tessellation Y ° and the sequence У is defined as the tessellation 

I ( Y ° , y ) = Y ° U ( J ( Г П К ) . (1) 
PI£C(Y°) 

This formula describes the operation in terms of the boundaries of the cells. For the 

cells themselves it means that the cells pj of the so called 'frame' tessellation Y ° are 

independently subdivided by the cells рц., к = 1, 2, . . . (or their faces respectively) of 

the tessellations Y ! which intersect the interior of pi, i.e. the new cells are of the type 

Pi C\pik. 

A list of references concerning iteration was given in [9]. 

For a real number r > 0 the homothetic tessellation r Y is generated by transforming 

all points x G Y into rx. Accordingly, гУ means that this transformation is applied to 

all tessellations of the sequence y . Let L a be the mean total length per unit area, the 

length intensity, of any of the tessellations Y ° , Y 1 , . . . . Then X(Y°, У) has the length 

intensity 2LA, and 1 ( 2 Y ° , 2У) has the length intensity LA, respectively. 

Let Y ° be a stationary tessellation and У 1 ^ 2 , . . . a sequence of sequences of 

tessellations such that all the occurring tessellations (including Y ° ) are i.i.d. Then 

the sequence I 2 ( Y ° ) , I 3 ( Y ° ) , . . . of rescaled iterations is defined by (see [9]) 

12(Y°) =l(2Y°,2y1) 

Im(Y°) = I(mY°, тУ1,..., тУ™՜1) 

= X(X(mY°, тУ1,..., т У т ՜ 2 ) , тУ"1՜1) , m = 3, 4, . . . 

Here m is the rescaling factor which is chosen to keep the parameter L a of the 

tessellation Im(Y°) constant for all m. We use the abbreviation Im(Y°) since it is 

assumed that all the other tessellations in the sequences У 1 ^ 2 , . . . are independent 

and have the same distribution as Y ° . 

The symbol = is used for the identity relation of distributions. 
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Definition 1. A stationary tessellation Y is said to be stable with respect to iteration 

(STIT) if 

Y = lm(Y) for all m = 2 ,3 , . . . , 

i.e. if its distribution is not changed by repeated rescaled iteration with sequences of 

tessellations with the same distribution. 

2.1. D e s c r i p t i o n of t h e S T I T t e s s e l l a t i o n s — c o n s t r u c t i o n in b o u n d e d 

windows . 

Here we give a short sketch of the construction which was described in [11] in full 

detail, in arbitrary dimension and also for the non-isotropic case. Here we restrict it 

to the planar and isotropic case. Let W С Ш.2 be a bounded rectangular window and 

а > 0 a positive real number. 

The intuitive idea of the construction is the following : The window W has an 

exponentially distributed 'life time'. At the end of this time interval a random 

line is thrown onto W, which divides W into two new 'cells'. These two cells have 

independent and exponentially distributed life times until they are divided further by 

random lines. After any division, exponentially distributed life times of the new cells 

begin, and they are independent of all the other life times. Special attention has to 

be paid to the adjustment of the parameters of these exponential distributions. In the 

isotropic case, these parameters are proportional to the perimeter of the respective 

cells such that smaller cells have a stochastically longer life than larger ones. This 

procedure of repeated cell division is stopped at the fixed time а > 0 and the state 

at this time is interpreted as a realization of the tessellation Y(a, W). 
More formally, let (77,7^), г = 1 ,2, . . . be i.i.d. pairs of random variables т, that are 

exponentially distributed with parameter a /2 , and isotropic uniform random (IUR) 

lines 7i on W ; т, and 7,- independent. The perimeter of a convex polygon p is denoted 

by U(p). We define a set-valued process Y(t,W), Է > 0, with Y(t,W) = 0 for 

0 < Է < f 1 w i t h f i = T1/U(W). T h e n Y(H,W) = W Ո 7 1 w i t h 7 1 = 7 1 , a n d 

Y(T,W) remains constant until the next update. The chord W Ո 71 divides W into 

two polygons, զշ and q3 say. Their lives start at time ՜դ and last քշ = 7շ/£/՝(ցշ) and 

T3 = тз /и(дз) respectively. Now consider a general polygon that is generated 

by the construction at a time r . It lives from r to r + т, with т, = Ti/U(qi). 

At the end of its life it is divided by the line 7 w h i c h has the distribution of 

7i restricted to [g,-], the set of all lines that hit ց8 ՚. The update at that time is 

Y(T + f j , W) = ( J Y(T, W) U (QI Ո 7i). 
t<T + ?i 

Thus the process is updated by adding the new linear segment qi Ո դ, whenever the 

lifetime of a polygon qi is over. There arise two new polygons that are generated 
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from qi by the chord Ո71, and they are then treated as described above. The state 

У (a, W) of the process at time a is a random tessellation in W. 

Figure 2 illustrates the result of the construction with a small number of edges. A 

larger simulation is shown in Figure 1. 

F i g . 2. Illustration of the construction of a STIT tessellation (provided by 

J . Ohser). 

2.2. R e v i e w of e s sen t i a l p r o p e r t i e s . 

We summarize some results for the described construction. The proofs were given in 

[11]. For a fixed value a the construction yields a non-degenerate tessellation in any 

bounded (rectangular) window W. Moreover, for any a > 0 there exists a random 

stationary tessellation Y(a) in IR2 such that Y( a) Ո W = У (a, W), i.e. the restriction 

of У (a) to the window W has the same distribution as the construction inside W as 

described above. These tessellations Y(a), a > 0, are STIT. The length intensity LA 
is proportional to the parameter a, and in the isotropic case we have LA = тта/2. 
Even for the whole distribution of the tessellations the parameter a commutes with 

the homothetic transform such that 

Therefore we will mostly consider У"(1) only, and denote it by У. 

It is intuitively clear for the construction and it can be shown strictly, that the 

continuation of the process from time a to time a + b corresponds to an iteration of 

tessellations with parameter b, i.e. 

aY{a) = У(1). 
D 

(2) 

У (a + b) = I{Y{a),y{bj), a > 0, b > 0, 
D 

(3) 
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where У(Ь) = {У 1 (6) , Y2{b),...} is a sequence of i.i.d. tessellations, distributed as 

Y(b). 

Given the length intensity LA and the directional distribution of the edges - in our 

case the uniform distribution on [0, 7r) - the distribution of a stationary tessellation 

is uniquely determined by the STIT property. 

We emphasize two further properties which we will make use of in the following. 

Lemma 1. The interior of the typical cell of the stationary and isotropic 
STIT tessellation has the same distribution as the interior of the typical cell 
of the stationary and isotropic Poisson line tessellation with the same length 
intensity LA. 

The difference in the distributions of the two mentioned cells arises when the nodes 

on the boundaries are taken into account, cf. subsection 2.3. 

It is easy to see that the STIT property of a tessellation Y (a) transfers to intersections 

with lines. This yields 

Lemma 2. The intersection point process that is induced by the STIT 
tessellation Y(a) on any line is a stationary Poisson point process, and its 
intensity is 2 La/k = a. 

2.3. Relations for mean values. 
A variety of mean values for general stationary random tessellations was studied 

systematically in [6], cf. also [14] and the references given there. The properties 

of STIT tessellations mentioned in the previous paragraph yield several particular 

relations for those parameters. 

The following formulas have already been published, also for non-isotropic stationary 

STIT tessellations in [12] and [10]. We summarize them briefly, since they provide a 

useful tool to check results for distributions. 

As usual in the theory of tessellations, an edge is a linear segment in Y(a) between 

two nodes and without further nodes in its relative interior. Later in this paper these 

edges will also be referred to as K-segments. We use the following notation for mean 

values. 

LA — mean total edge length per unit area, edge length intensity ; 

LK — mean length of the typical edge (i.e. K-segment) ; 

Սշ > А-г — mean perimeter and mean area, respectively, of the typical cell; 

No — mean number of nodes per unit area ; 

N i — mean number of edge centers per unit area ; 

N2 — mean number of cell centroids per unit area ; 
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N01 = 7Vo2 — mean number of edges emanating from the typical node = mean 

number of cells which contain the typical node ; 

N20 = N21 — mean number of nodes = mean number of edges on the boundary 

of the typical cell. 

We present the formulas together with well known results for Poisson line tessellations 

in order to compare both tessellations. We will use the upper index x to indicate that 

a symbol refers to the Poisson line tessellation Y x . The Poisson line tessellations have 

X-shaped nodes (crossings) only. 

Lemma 3. lfY(a) is the stationary and isotropic STIT tessellation described 
above and Y / the stationary and isotropic Poisson line tessellation with the 
same intensity LA then 
Դ LK = Ж _ 2 ТК 

3LA ~ 3 

2)- Սշ = 2 7Г ГГХ 
LA ~ U 2 ' 

3). A2 = ՅԼ_ _ iX 
LA~ 2 ' 

Դ N0 = lL2A = 2^o x 

5). N1 = I L \ = fTV*, 

6). N2 = ±L*A=N2\ 
7). N01 = N02 = 3, N* = NQ2 = 4, 
8). N20 = N21 = 6, N20 = N* = 4. 

2.4. I-, J - a n d K - s e g m e n t s . 

For a tessellation Y where the cells are not necessarily face-to-face, it is useful to 

consider different types of edges, namely I-, J- and K-segments, according to [2]. A 

K-segment is an edge of the tessellation without any node in its relative interior. 

A J-segment is a one-dimensional face of a cell of Y. Thus different J-segments can 

overlap, e.g. BD and AC in Figure 3. Any point in Y which is not a node belongs to 

exactly two J-segments. An I-segment is convex and a union of collinear K-segments, 

that cannot be lengthened by an additional K-segment of Y. The I-segments are 

the chords qi Ո դ, that appear during the construction of the STIT tessellations as 

described in subsection 2.1. For an illustration see Figure 1. 

For the stationary and isotropic STIT tessellation Y (a ) denote by NK, N J , N1 the 

mean number of centers of K-, J-, /-segments respectively, per unit area. By LK, 
L J , L 1 denote the mean length of the typical segments of the respective types. For 

the J-segments their multiplicity has to be taken into account. 

Lemma 4. 
(1). NK = N1=*-L\, 



46 J. Mecke, W. Nagel, V. Weiss 

F i g . 3. Illustration of different types of segments : A E is the only /-segment. 

AB, ТТЛ, ТГЁ, AC, СЁ are the J-segments. ~AB, ՝BC, CD, ТГЁ are the if-segments 

in this example where А, В, C, D, E are nodes of a tessellation. 

(2). N J = 2N* = ±L\, 
(3). N1 = ±L\, 

(Դ L K = з Ь 
(5). ւ յ = LKx = ֊ է շ , 

(6). L1 = f ֊ A . 

One can conclude from this lemma that in the stationary and isotropic STIT 

tessellation Y (a) the mean number of nodes in the relative interior of the typical 

/-segment is 2 and for the typical J-segment it is 1/2. The mean number of J-
segments on the boundary of the typical cell of У is 4 and that one of К-segments 

(edges) is 6. 

3. L E N G T H D I S T R I B U T I O N S O F I- A N D O F K - S E G M E N T S 

In this section we consider the length distributions of the different types of segments 

for the stationary and isotropic STIT tessellation У = У(1) only. The results can 

easily be transfered to Y(a) for any a > 0, due to (2). 

As a corollary of Lemma 1 we obtain immediately that the distribution of the 

length of the typical J-segment is the exponential distribution with parameter a = 1. 

3.1. T h e l e n g t h d i s t r i b u t i o n of t h e ' r e m a i n i n g I - s e g m e n t ' . 

In order to find the length distribution of the typical I-segment, we start with a 

functional equation for the survival function of the length of the 'remaining I-segment'. 

Let the tessellation у be a realization of У, the point z E у and s the I-segment of 

y — z with the origin o £ s . The remaining I-segment s is the intersection of s with the 

closed upper half-plane. For stationary and isotropic STIT tessellations these objects 

are a.s. uniquely defined. The length of a segment s is denoted by |s|. 

Let У 0 , Y1,... be i.i.d. STIT tessellations, distributed as У and У = (У 1 , У 2 , . . . ) . 
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Denote Y1 = Y°, Y2 = l{Y1,y), Y3 = 2 Y2 and Y4 = Y2 \ Y1. All these are RACS 

but У4 is not a tessellation ; it consists of those parts of tessellations that are nested 

into the cells of Y\. The length intensity of Y2 is 2La = 7Г, the other RACS have 

length intensity La - The tessellation Y\ is referred to as the 'frame' for the iteration. 

Any Yj, i = 1, .. . ,4, induces a random measure on Ш.2, that corresponds to the one-

dimensional Hausdorff measure, i.e. a random length measure. We make use of Palm 

distributions w.r.t. these measures. Denote by P = Руг,у the joint distribution of 

Y\ and the sequence У. In the integrals below, the realizations of the RACS Yi are 

denoted by յ/8 ՚, and A8՛ denotes the length measure on Ш.2 that is induced by յ/8 ՚. For 

a Borel set В С ГО.2, 

Xi(B)... the total length of յ/8՛ Ո В, 

cf. [13], p.131. 

Let С be a measurable set of closed subsets of ГО2, i.e. an element of the Մ-
algebra, sometimes referred to as the 'hitting сг-algebra' which is used for the definition 

of RACS, cf. [3], [14] or [13]. 

The value of the function ! ( • ) is defined as 1 if the statement in brackets is valid and 

0 otherwise, i.e. it indicates whether a condition is satisfied or not. We denote the 

realizations of the sequence У by у. 

For i = 1, 2, 3 we define the Palm distributions Qi by 

Q'(C) = ֊ j P ( d ( y i , y ) ) J Xt(dz)l(yt-zeC)l(ze[Q,l}2). 

On the other hand, Q4 is defined as the Palm distribution of Y2 w.r.t. the length 

measure of У4 ; intuitively, the 'distribution of Y2 under the condition that a point of 

the subset У4 is in the origin'. Accordingly, Q5 is the Palm distribution of Y2 w.r.t. 

the length measure of the frame Yi, i.e. the 'distribution of Y2 under the condition 

that a point of the frame is in the origin'. This can be written as 

Q , ( C ) = l b J p ( d ( J / 1 ' y ) ) / M d z ) % 2 - z e C ) J ( z e [ 0 , 1 ] 2 ) 

for i = 4, 5 with A5 = Ai. Notice that there is y2 instead of յ/8՛ in the integrand. 

The corresponding survival functions of the length of the remaining I-segments are 

denoted by Tii, i = 1,..., 5, such that 

Ui{x) =Qi{\s\>x) for ж > 0. 

In particular, ԳԼ = ԳԼ\ is the survival function of the length of the remaining I-segment 

of the stationary and isotropic STIT tessellation with LA = 
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Lemma 5. 
Щ2х) = ^Щх) • e~x + ^H{x) for all ж > 0. (4) 

Proof : Obviously, for any realization (j/i ,y) of ( Y i , y ) we have the equation 

A2 = A4 + A5. This yields 

Q2 = \ Q a + \ Q z . (5) 

Hence 

« 2 = ^ 4 + ^ 5 , (6) 

Since any I-segment of the frame tessellation remains an I-segment after iteration, we 

have 

П Ъ = П 1 = П . (7) 

Since all the considered tessellations are STIT, we obtain ԳԼշ = ԳԼ\ = ԳԼ. Thus the 

equation У3 = 2 У2 yields 

%2(x) =П3{2х) = Щ2х). (8) 

Finally, we derive an expression for ԳԼվ, i.e. we consider the remaining I-segment 

s in the origin that is located in the cell po of the frame Y\ with о £ po- The 

definition of iteration provides s = йПро, where й is the remaining I-segment of the 

tessellation from the sequence У that is nested into the cell po• Thus |s| = \й Ոթօ| = 

min{|w|, and է is a random variable, exponentially distributed with parameter 

1 and independent of |w|. The independence is a consequence of the independence 

assumptions for the tessellations У 0 , У 1 , . . . . The exponential distribution of £ follows 

from Lemma 2, applied to the frame tessellation Y\ and its intersection with the line 

through u. Hence, for x > 0 

П4{х) = Г(\йГ)р0\ > x) = P ( m i n { | w | , £} > x)=V{խ| > x)-V{(, > х)=Щх)-е-х  

and thus 

П4(х) =Щх)-e-x. (9) 

Plugging equations (7)— (9) into (6) yields (4). Lemma 5 is proved. 

Since ԳԼ is a survival function of a positive random variable the additional condition 

Щ 0 + ) = 1 (10) 

has to be satisfied where ԳԼ{0+) = \\ш%{х). 
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Lemma 6. The unique solution of the functional equation (4) with the 
restriction (10) is 

1 — e~x  

Щх) = for all X > 0 . 

Proof: A straightforward calculation shows that the function ԳԼ given in (11) satisfies 

(4) as well as (10), i.e. H(2x) = \ԳԼ(ж)(1 + е~ж) . In order to prove the uniqueness, 

assume that Q is a solution of (4), i.e. Q(2x) = |(?(ж)(1 + е~ж) and <?(0+) = 1. This 

yields 
Q(2x) _ Q(x) 
Щ 2x) Щх 

A repeated application of this equation leads to 

Q{2nx) _ Q{x) 

for x > 0. 

for x > 0, n = 1,2, . . . 

for է > 0. 

Щ2»х) Щх) 

or, equivalently, 
Q{t) = g{2-nt) 
Ո{է) ~ Щ2-»ty 

With the restriction (10) we obtain 

l i m = 1, for all է > 0, ո^օօՈ(2՜ոէ) 

and thus Q = ԳԼ. Lemma 6 is proved. 

Summarizing the results of this section yields 

Theorem 1. The survival function of the length of the remaining l-segment 
of the stationary and isotropic STIT tessellation with LA = | is 

1 - e~x  

Щх) = for all ж > 0. (11) 
ж 

3.2. A l t e r n a t i v e r e p r e s e n t a t i o n s of ԳԼ 
Lemma 7. Let PA be the distribution of a stationary Poisson point process 
with intensity A on the real line Ш. and Ф be a mixed Poisson process with 
the distribution PA dA. Then 

Щх) = Т(Ф Ո [0, ж) = 0) for ж > 0. 

Proof : A straightforward calculation yields 

Ր1 1 — е ~ ж 

Р ( Ф Ո [0, ж) = 0) = / е~А ж dA = = Щх). 
Jo  х  

Lemma 7 is proved. 

ж 
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Lemma 8. Let 77 and Հ be independent random variables, 77 exponentially 
distributed with parameter 1 and Հ uniformly distributed on the interval 
(0,1). Then the survival function of the random variable ղ/Հ is equal to ԳԼ. 

Proof : For x > 0 we have 

v(- > x) =v{r) > = I r(v>xt)dt= I e- t xdt = n(x). 
Հ Jo Jo 

Lemma 8 is proved. 

3.3. T h e l e n g t h d i s t r i b u t i o n of t h e typ ica l I - s e g m e n t . 

Now we consider the set of the centers of I-segments of a STIT tessellation У as a 

point process in IR 2 . This is a stationary point process and we are interested in the 

distribution of the length of the I-segment that has the typical point as its center. For 

a realization у of У denote by tpy the measure on Ш.2 which is the sum of the Dirac 

measures for all centers of I-segments of y. Then the respective Palm distribution is 

given by 

p 0 ( c ) = ^ 7 J p ( d f ) / M d z ) l ( y - z e C ) l ( z e [ o , i ] 2 ) 

for measurable sets С of closed subsets of Ш.2. A systematic approach to Palm 

methods for stationary random tessellations was introduced in [5]. 

The survival function of the length of the typical I-segment can be defined as 

T(x) = P°('length of the I-segment in o' > x) for x > 0. 

Theorem 2. The survival function of the length of the typical I-segment of 
a stationary and isotropic STIT tessellation with LA = | is 

T(x) = — (1 - e~x - xe~x) for x > 0. (12) 
x 

1 /.1 

Proof : Let Q be the Palm distribution of У with respect to the length measure 

induced by У ; cf. Qi in subsection 3.1. Then Q can be related to P ° by 

L1 Q(C) = J P°(dy) J (da) 1(у-аеС), (13) 

where \ y denotes the length measure induced by the I-segment of у that contains the 

origin, and С a measurable set of closed subsets of Ш.2. This equation can be deduced 
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from the general theory of interrelations between Palm measures of a stationary 

random measure, see [4]. 

Denote by £(y) the length of the I-segment of у that contains о (in Section 3.1 

this length was denoted by |s|) and by u{y) the length of the intersection of that 

segment with the closed upper half-plane (above denoted by |s|), i.e. the remaining 

I-segment (defined Q-a.s. and P°-a . s . ) . Then it is possible to derive from (13) that 

for ж > 0 
ր ր r l(y) 

L1 J Q(dy)l(u(y) > x) = J P°(dy) J d e l (a > x). 

Hence, 

L1 Щх) = L1 [ Q(dy)l(u(y) > x) = [ P°{dy) Гл81(х<8<1(у)) = 

d 8 P°(dy)l(s<£(y)). 
J x J 

Since 

I P°(dy)l(0<s<t(y)) =T{8) 

we finally obtain 
րԾՕ 

L In(x)= / d s ^ ( s ) for all ж > 0. 
J X 

According to (11), the function ԳԼ is continuously differentiable, and this yields 

T(x) = ֊լէԱՂж) for all ж > 0. (14) 

As T is the survival function of a p o s i t i v e random variable it satisfies ^-"(0+) = 1 

and hence (14) implies 

-L In'(0+) = l (15) 

and thus 

T = w m n ' - ( 1 6 ) 

»From Theorem 1 we derive 

щ(х) = x e ~ x + x e ; x - 1 ( i t ) 

and 
n ' ( Q + ) = - ֊ (18) 

The combination of (16) ֊ (18) yields (12). 

Theorem 2 is proved. 

Formulas (15) and (18) imply L 1 = 2 what can also be deduced from Lemma 4. 
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3.4. A l t e r n a t i v e r e p r e s e n t a t i o n s of t h e l e n g t h d i s t r i b u t i o n . 

The distribution function (12) does not belong to one of the standard types in 

probability theory. Therefore, it is of interest to find interpretations and relations 

to well-known distributions. 

Lemma 9. Let PA be the distribution of a stationary Poisson point process 
with intensity A on the real line Ш. and Ф be a mixed Poisson process with the 
distribution [J PA dA. Then the survival function of the length of the typical 
interval of Ф is equal to T. 

Proof: The relation (16) between the length distributions of the remaining I-segment 

and of the typical I-segment is essentially the same as the relation between the 

distribution of length of the interval from о to the next point on the right and the 

distribution of the length of the typical interval of a stationary point process on the 

line. Thus the proof follows from Lemma 7. The proof is complete. 

Lemma 10. Let rj and Հ be independent random variables, rj exponentially 
distributed with parameter 1 and Հ uniformly distributed on the interval (0,1). 
Then the survival function of the random variable г]/лД is equal to T. 

Proof : For ж > 0 we have 

V(—>x ) = [ V{v > xVt)dt = [ e~xV*dt = 2 [ s e - " d s = f ( ж). 
vC Jo Jo Jo 

Lemma 10 is proved. 

3.5. T h e l e n g t h d i s t r i b u t i o n of t h e ' r e m a i n i n g K - s e g m e n t ' . 

The length distribution of the typical K-segment can be found in an analogous manner 

as that one of the I-segments. Again, we start with a functional equation for the 

survival function of the length of the 'remaining K-segment'. Let the tessellation у 

be a realization of Y, the point z E у and sx the K-segment of у — z with the 

origin о E sx- The remaining K-segment s x is the intersection of s x with the closed 

upper half-plane. For stationary and isotropic STIT tessellations these objects are 

a.s. uniquely defined. We consider exactly the same Palm distributions Q i , . . . , as 

they were introduced in subsection 3.1. The survival functions w.r.t. the remaining 

K-segment are now 

Ոք (ж) = QI{\SK\ > x), f o r ж > 0 , 

i = 1 , . . . ,5 . In particular, % K = ԳԼք՜ is the survival function of the length of the 

remaining K-segment of the stationary and isotropic STIT tessellation with LA = 
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Lemma 11. 

UK{2x) = ^ ֊Н к{х) -е՜* + \yHK{x) -е-2ж for all x > 0. (19) 

Proof : Obviously, an analogous formula to (6) follows from (5), i.e. 

Ո շ = խ + խ , (20) 

Also (8) transfers to the remaining K-segment, 

П^{х)=П^{2х)=Пк{2х). (21) 

Almost literally the arguments for ԳԼվ can be repeated, and this yields an analog to 

(9) 
n f { x ) = n K { x ) - e - x . (22) 

The difference between I- and K-segments appears in ԳԼք. A K-segment on the frame 

tessellation can be modified by iteration : it becomes shorter if the edges of the nested 

tessellations - of the RACS У4 in our notation - generate additional nodes on the 

K-segment. Consider a shifted realization յ/շ — z of the tessellation Y2 with z E J/i, i.e. 

on the frame. Let йц denote the remaining K-segment w.r.t. y\. Assume that in the 

two cells (of the frame tessellation) which are adjacent to и к the tessellations Y' and 

Y J are nested with the realizations y' and y>, respectively. Each of them generates the 

realization of a stationary Poisson point process of intensity 1 on the line through йц-

Independence implies that their superposition is a stationary Poisson point process 

of intensity 2. By definition sk is either the segment from о to the next point of the 

mentioned Poisson process, if there is such a point on йц or, otherwise йц itself. 

Thus |sk՝| = min{|w/f|, £к՝}, and ՀՀ is a random variable, exponentially distributed 

with parameter 2 and independent of \йк\ - The independence is a consequence of the 

independence assumptions for the tessellations Y°, Y1,.... Hence, for x > 0 analogous 

calculations as for ԳԼվ yield 

K f ( x ) =UK{x) -e~2x. (23) 

Plugging equations (23), (21), (22) into (20) yields (19). The proof is complete. 

Theorem 3. The unique solution of the functional equation (19) with the 
restriction Лк (0+) = 1, and hence the survival function of the length of the 
typical K-segment, is 

1 — p ~ x 

Пк(х) = e~x for all ж > 0. (24) 
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Proof : For ж > 0 denote U(x) = UK (x) • ex. Then 

U(2x) = ПК{2x) • e2x = \ l i K ( x ) • ex + ~HK (?) 

and hence 

U(2x) = ^U{x) + ^U{x) • e~x. 

This is the same functional equation as (4), and also W(0+) = 1. Thus Lemma 6 yields 

the result. The proof is complete. 

There is a simple relation between the survival functions of the remaining K- and 

I-segments, namely 

ПК(х) = Щх) - е " ж for all ж > 0. 

Since the length of the remaining J-segments is exponentially distributed with 

parameter 1, we obtain 

ПК (x) = Ո1 (x) • Ո յ (x)  f o r  a 1 1  ж > 0, 

where ԳԼ1 = ԳԼ, and ԳԼ յ denotes the survival function of the remaining J-segment. 

This can also be expressed in the language of random variables. Let r/1, r) J, r/K be 

random variables that have the same distribution as the length of the remaining I-, 

J- or K-segment, respectively. I f f ] 1 and ?j J are independent, then r]K = minj^ 7 , r ] J } . 

3.6. T h e l e n g t h d i s t r i b u t i o n of t h e typ ica l K - s e g m e n t . 

Analogously as for the I-segments we consider now the set of the centers of K-segments 

of a STIT tessellation У as a point process in Ш.2 and the distribution of the length 

of the K-segment that has the typical point as its center. For a realization у of У 

denote by the measure on Ш.2 which is the sum of the Dirac measures for all 

centers of K-segments of y. Then the respective Palm distribution is given by 

р 0 К ( с ) = ^ к J p ( d y ) / < ( d z ) l ( y ֊ z e c ) l ( z e [ 0 , i ] 2 ) 

for measurable sets С of closed subsets of Ш.2. The survival function of the length of 

the typical K-segment can be defined as 

T K { x ) = P0K('length of the K-segment in Ժ > ж) for ж > 0. 

The same method as it was used in the proof of Theorem 2 leads to 
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Theorem 4. The survival function of the length of the typical K-segment of 
a stationary and isotropic STIT tessellation with LA = § is 

T K ( x ) = — (1 + x- (1 + 2ж)е"ж) -e~x for x > 0. (25) 

3.7. A l t e r n a t i v e r e p r e s e n t a t i o n s of t h e l e n g t h d i s t r i b u t i o n 

The expression in (25) for the survival function T K does not have an intuitive 

meaning. But it is possible to show that it can be represented as the Laplace transform 

of a standard function. This allows a better insight into the length distribution of the 

typical K-segment. The following three statements can be shown by straightforward 

calculations. 

Lemma 12. The survival function ԳԼՃ : (0, oo) -»• [0,1] of the length of the 
remaining K-segment given by (24) can be represented as 

Пк(х) = / e~x tdt for x > 0. 
2 

e 
' 1 

This means that % K is the Laplace transform of the indicator է —)֊ 1(1 < է < 2) of 

the interval (1,2), and this function is a probability density. 

Corollary 1. Let P\ be the distribution of a stationary Poisson point process with 

intensity A on the real line Ш. and let Փ be a mixed Poisson process with the 
r 2 

distribution / d A P \ . T h e n 

Пк{х) =7>(ФП[О,ж) = 0) for ж > 0. 

Corollary 2. Let f] and Հ be independent random variables, rj exponentially 

distributed with parameter 1 and £ uniformly distributed on the interval (0, 1). Then 

the survival function of the random variable 77/(1 + Հ) is equal to % K . 

In the following lemma it will be shown that T K is the Laplace transform of the 

probability density i - > - ֊ i l ( l < i < 2 ) . 

Lemma 13. The survival function TK : ( 0 , 0 0 ) [ 0 , 1 ] of the length of the 
typical K-segment given by (25) can be represented as 

T K ( x ) = ֊ [ te~x tdt for ж > 0. 
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Proof : Analogously to the proof of Theorem 2, where T was related to ԳԼ, one can 

show that 

= - 2 ֊ { % K ) ' . (26) 

Thus Lemma 12 implies the assertion. (Of course, the statement can also be verified 

by a direct calculation.) The proof is complete. 

The following result is a consequence of Corollary 1 and (26). 

Lemma 14. Let PA be the distribution of a stationary Poisson point process 
with intensity A on the real line Ш. and let Ф be a mixed Poisson process 

with the distribution J dAP A . Then the survival function of the length of 

the typical interval of Ф is equal to TK. 

Lemma 15. Let -q and Հ be independent random variables, rj exponentially 
distributed with parameter 1 and Հ uniformly distributed on the interval (0,1). 
Then the survival function of the random variable r]/y/l + is equal to TK. 
Proof : For x > 0 we have 

Viv/V1 + 3£>x)=V{v> x\J 1 + 3 0 = [ е х р ( - ж У Г Т З ^ ) dt = \ [ se^ds. 
Jo 3 д 

According to Lemma 13, this last expression is equal to T K . Lemma 15 is proved. 

The results of this section can also be translated into the language of distributions. 

Theorem 5. Denote by DRI, DIR DRK, DK the distributions of the lengths 
of the remaining I-segment, the typical I-segment, the remaining K-segment 
and the typical K-segment, respectively. Further let Et be the exponential 
distribution with parametert, i.e. with mean value 1 jt. (All these distributions 
are regarded as probability measures on the positive real half-line.) Then 

Dri= [ dtEt, Drk= [ dtEt, 
Jo J1 

DJ = շԼ dt(t -Et), DK = ^J dt(t-Et) 

3.8. C o m p a r i s o n of t h e l e n g t h d i s t r i b u t i o n s of t h e typ ica l I-, J - a n d K -

s e g m e n t s . 

For a stationary and isotropic STIT tessellation with length intensity LA = § the 

lengths of the typical I-, J- and K-segments have the cumulative distribution functions 

for x > 0 

F I(x) = l ֊ ֊ ( l ֊ ( l + x)e-x), 
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F J ( x ) = 1 — e~x, 

FK(x) = 1 ֊ — ((1 + x)e~x ֊ (1 + 2x)e~2x) . 

Differentiation yields the corresponding density functions 

p J(x) = e~x, 

PK(x) = — ^ l + x + ֊ y ֊ x - ( l + 2x + 2x2)e ֊2x^j . 

The calculation of the moments, based on these densities yields the mean values 

L1 = 2, L J = 1, LK = - . 
3 

These mean values coincide with those ones given in Lemma 4 which was shown with 

other methods. 

For the second moments of the lengths the result of the calculation is 

1 16 
IE | s / | 2 = oo, IE | s j | 2 = 2, IE | s ^ | 2 = к 0.924 

о 

where |տյ|, |տյ|, denote the lengths of the typical I-, J- and K-segment, 

respectively. 

Also the survival functions as a whole can be compared. In this section denote 

J-1 = T, ԳԼ1 = ԳԼ and by T 3 and ԳԼ յ the respective survival functions of the lengths 

of the typical J-segments and of the remaining J-segment. The definitions of the 

different types of segments immediately yield 

T 1 > T J > T K . 

This can also be shown by a calculation based on the explicit formulas given above. 

Furthermore, also the remaining segments can be included into the comparison 

with respect to a stochastic order relation. 

Theorem 6. The survival functions satisfy the following chain of inequalities 

Ո 1 > T 1 > Ո 3 = T J > n K > T K . 
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Proof : Let г/ and է be independent random variables, г/ exponentially distributed 

with parameter 1 and է uniformly distributed on the interval (0, 1). Then, according 

to Lemma 8, Lemma 10, Lemma 1, Corollary 2 and Lemma 15 we have for x > 0 

n I(x)=V(v/C>x), T I(x)=V( v/VC>x), 

U J ( x ) = T J ( x ) = V(r) > x), 

-HK(x) = V(r]/(1 + 0 > x), T K ( x ) = V i r j / s / l T H > x). 

Since 0 < է < 1, we find 

£ 2 < £ < 1 = 1 < 1 + 2£ + £ 2 < 1 + 3£ 

and finally 

Theorem 6 is proved. 

e < v ^ < i = i < i + e < лДТн 

7} 7} ^ ^ ^ V — > —j= > Tj = Tj > > 
i - y / Հ - 1 + € - у г т з ё 

3.9. R e m a r k s on a n a l t e r n a t i v e p r o o f for t h e l e n g t h d i s t r i b u t i o n of t h e 

typ ica l I - s e g m e n t b a s e d on a d i f fe rent ia l e q u a t i o n 

The derivation of a functional equation for the survival function of the length of the 

'remaining I-segment' as it is given above uses the Palm distribution with respect to 

the length measure on the edges, i.e. the length weighted distribution of the typical 

segment. 

An alternative method uses the Palm distribution of the typical I-segment, i.e. 

the 'number-weighted' distribution. It is much more laborious, but nevertheless it 

can probably be a fruitful method to solve also other problems. This method is now 

sketched briefly. 

For e > 0 we consider the rescaled iteration 1(e) = X ( ( l + e)Y, ^j^y)- The 

rescaling factors are chosen such that the parameter La remains constant. For e = 1 

we have the equal homothetic factor 2 for both the 'frame' Y and the nested sequence 

y. 
The key observation is that for a STIT tessellation Y 

Y = I((l + e)Y, ^-^У) for all e > 0. (27) 
s 

This relation can easily be derived from the equations (2) and (3). 

or 
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The transform Y —У (1 + e)Y means that the I-segments are stretched with the 

factor (1 + e) and their mean number per unit area changes as N1 —>• (1 + e)~ 2N I. 

For small e > 0 the transform У provides tessellations with huge cells and 

low densities of edges. Thus, intuitively, the nesting of such tessellation into the frame 

(1 + s)Y yields either no new edges in the frame cells or exactly one new edge, which 

is a new I-segment. With a modification of the theorems by Korolyuk and Dobrushin 

(for point processes on the line) it can be shown strictly that the probability of the 

remaining cases (i.e. two or more new edges in a frame cell) is of order o(e). A version 

of such an assertion was already shown in [9]. 

Thus from (27) and the fact that the interior of the typical cell of (1 + e)Y is a 

Poisson typical cell, we obtain for the survival function of the length of the typical 

I-segment 

T(x) = Г T 
(1 + e ) 2 ՜ Vl + e 

This yields immediately 

1 + e 

ге  x + o(e) for all e > 0, x > 0. 

lim-
£->0 £ 

T x) - Г T 
(1 + e ) 2 ՜ Vl + e 

On the other hand, if T is differentiable, we obtain 

1 + e ( ч 1 _ ( 1 

= 2e~ 

= lim——— 
e - > 0 £ 

lim-
e - > 0 £ 

T(x) -T 

T ( x ) ֊ 

1 

= x • lim 
£->0 

1 + e 
£X 

1 + e 

T(x) — J- ( ж — 

(1 + e ) 2 ^ 

1 -

1 + e 

1 

( Г + ? 

. 2 + e 

T 

1 + e՜՜ J J ՝ (1 + e)x 

= ж • J՜'(x) + 2T(x). 

T 

1 + e 

1 
1 + e 

Hence 

T'(x) = ֊ ֊ F ( x ) for ж > 0. 

The solution of this differential equation with the condition ^-"(0+) = 1 is the same 

function as given in Theorem 2. 

x 

— x e 
x 

Р е з ю м е . В статье изучаются стационарные и изотропные случайные мозаики 
на евклидовой плоскости, обладающие свойством устойчивости относительно 
итераций (или гнездования), для краткости УСИТ. Так как стороны ячеек не 
соприкасаются, то образуются три различных вида прямолинейных отрезков. 
Для всех трёх видов найдено распределение длины типичного отрезка. 
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