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Abstract. The mathematical formalism of quantum mechanics can be interpreted 
as a method for approximation of classical (measure-theoretic) averages of functions 
f : L2(K3) —> IR. These are the classical physical variables in Prequantum Classical 
Statistical Field Theory (PCSFT), as we call our model with hidden variables. The 
present paper provides a simple stochastic picture of a quantum approximation 
procedure equivalent to an approximative method for computation of averages of 
random variables. Since in PCSFT the space of hidden variables is L2(1R3), the role 
of a classical random variable is played by a random field. In PCSFT we consider 
Gaussian random fields representing random fluctuations at the prequantum length 
scale. Quantum mechanical expression for the average (given by the von Neumann 
trace formula) is obtained by moving from the prequantum to the quantum length 
scale (the scale that enables to perform measurements). The order of deviations of 
quantum (approximative) averages from the classical ones is given by the length 
scaling parameter, which is extremely small for quantum systems, e.g., k ~ 10՜69 for 
an electron.

§0. INTRODUCTION

The problem of coupling of classical statistical mechanics and quantum mechanics 
has been the subject of stormy debates since the first days of quantum mechanics, 
before the first rigorous analysis was presented in the book of J. von Neumann [1]. His 
conclusion was rather supporting for the orthodox Copenhagen interpretation and is 
known as von Neumann’s no-go theorem. It is also a rather common viewpoint that 
Heisenberg’s uncertainty relations strongly support the Copenhagen interpretation, 
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see, however, Ballentine [2] and De Muynck [3] for the opposite viewpoint. Later there 
were proved various no-go theorems, the most popular nowadays is Bell’s theorem [4]. 
In spite of all no-go theorems and other arguments in support of impossibility of a 
prequantum classical statistical model, a search for such a model never ceased (double 
solution approach of De Broglie, Bohmian mechanics, see, e.g., [5] , SED, see, e.g., 
[6], [7] Nelson’s stochastic mechanics [8], [9], Davidson’s random field approach [10]). 
In a series of papers [11] the author developed a prequantum classical model where 
the role of hidden variables is played by classical fields. That Prequantum Classical 
Statistical Field theory (PCSFT) is a close relative both to SED and to Davidson’s 
random field approach.
It was shown that the mathematical formalism of quantum mechanics can be 
interpreted as a method for approximation of classical (measure-theoretic) averages 
of functions f : Z2(1R3) -> IR. In this paper we describe a simple stochastic quantum 
approximation procedure equivalent to an approximative method for computation 
of averages for functions of random variables. Since in PCSFT the space of hidden 
variables is L2(IR3), the role of a classical random variable is played by a random field. 
In PCSFT we consider Gaussian random fields representing random fluctuations at 
the prequantum length scale.
Quantum mechanical expression for the average (given by the von Neumann trace 
formula) is obtained by moving from the prequantum to the quantum length scale that 
enables measurements. The order of deviations of quantum (approximative) averages 
from the classical ones is given by the length scaling parameter. If one considers the 
Planck scale as the prequantum length scale then that scaling parameter is extremely 
small for quantum systems, e.g., k ~ 10՜69 for electron. But it increases as

k ~ m3,

where m is the mass of a system. This, on one hand, explains well why quantum 
mechanics provides excellent approximation for statistical behavior of ensembles of 
’’quantum particles”, electrons, neutrons and even for hypothetical gigantic particles 
as Higgs bosons. On the other hand, it becomes clear why quantum mechanics does 
not work for relatively heavy systems as compared with the Planck mass.
The Planck scaling of masses is a consequence of Gaussian random fluctuations at 
the Planck length scale. In contrast with the Planck length or time, the Planck mass 
is macroscopic - a disturbing fact for those who tried to couple this mass with micro­
world. In PCSFT the Planck mass is simply a characteristic mass for our measurement 
devices which are used to investigate "quantum systems.” The latter should be not 
too heavy as compared with the Planck mass.
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To simplify the presentation and to emphasize length scaling procedure, we cling to 
the case of the real Hilbert space. The complex quantum mechanics can be developed 
in the same way as in [11].

§2. AN APPROXIMATE METHOD FOR CALCULATION OF 
MEAN VALUES IN CLASSICAL PROBABILITY THEORY
Let y = /(®), where f is not linear but differs not too much from a line on some 
interval [m, — <J,m, + <J], where r) = jj(w) is a random variable,

m, = E = y r)(u] dP(w)

is its average and 6 > 0 is sufficiently small. Writing the first order Taylor expansion 
at the point m,,

J/M w/(mJ + /'(mJM<J-mJ, (1)

and taking the average of both sides one obtains :

my « /(mJ. (2)

The crucial point is that the linear term /'(mj(»?(w) — mJ does not give any 
contribution. We remark that the approximative formula (2) was first discovered by 
Gauss and in the probabilistic literature it is sometimes called the Gaussian formula 
for averages.
Now we take the first three terms in the expansion of f into the Taylor series at the 
point mx :

j/(w) fs /(mJ + /'(mjfr(w) -m,) + |/"(mj(7?(w) - m,)2. (3)

Hence 2
my w/(mJ + ^/"(mj, (4)

where
°՜, = E (V “ m^)2 = y (»/(w) - m,,)2 dP(w)

is the variance of the random variable r).
Let us consider the special case of symmetric fluctuations m։/ = 0, and assume that 
/(0) = 0. Then we obtain the following special form of (4) :

2
m, « -^/"(0). (5)
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Thus at some level of approximation we can calculate averages not by using the 
Lebesgue integral (as we do in classical probability theory), but by finding the 
second derivative. Such a “calculus of probability” would match well with experiment. 
Probably the reader has already found analogy with the quantum calculus of 
probabilities. This analogy is better seen in the multi-dimensional case. Let

r)=

so we consider a system of n random variables. We consider the vector average

m, = (m,i։...,in,n)

and the covariance matrix

Bij = E ~

For the random variable j/(w) = /(»?i(w), ..., 7?n(w)) we write the second order Taylor 
expansion :

1 v” ■> 32 f

<J=1 * J
and hence

1 vn A f 
my w (7)

i,j=l ’ J

In vector notations

y(w) rs /(m,) 4- - m,) + |(f"(m,)^) - m,),»j(w) - m,). (8)

and
my rs /(m,) + |Tr (9)

For the special case m, = 0 and /(0) = 0 we have

™y « |tt Byf"(0). (10)
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The Hessian /”(0) is always a symmetric operator. Let us now represent f by 
its second derivative at zero :

/-+A=|/"(0).

So at some level of approximation, instead of Lebesgue integrals, one can use linear 
algebra :

rriy ps Tr BnA. (11)

§3. GAUSSIAN RANDOM FIELDS ON PREQUANTUM AND 
QUANTUM LENGTH SCALES
Let us consider a prequantum length scale lpq and the corresponding system of 
coordinates y = (j/i, 3/2,1/3). The problem of the correct choice of lpq is complicated. 
We shall come back to this problem in §5.
Let w) (y 6 ®'-3) be * Gaussian random field with zero mean value ("symmetric 
fluctuations of vacuum”) :

E (X» ^y^P^y,U^d3y') = °’

which is determined by its covariance operator p.

&([ fa(y)£p(y,w)d3y\ ( [ tl>2(u)^p(u,w)d3u\ = [ p(y, u)fa(y)i/>2(u)d3yd3u.
MR’ / MR’ / JR’

Here p(y,u) is the kernel of the covariance operator p. We shall assume that the 
prequantum fluctuations are normalized, i.e.

Trp= [ p(y,y)d3y= E ( [ |£/’(y,w)|2d3y) = 1. 
JR’ MR’ /

Such a random field can be considered as a Gaussian random variable taking values 
in the Hilbert space H = L2(IR3).
We now consider the characteristic length scale of quantum mechanics lq and the 
corresponding system of coordinates x = (xi,x2,X3). The problem of the correct 
choice of lq will be discussed in §5. Our basic assumption is that the prequantum and 
quantum length scales are coupled through a linear scaling, i.e.

x = yy.

The prequantum interval of the unit length rpq = y/yl + j/2 + j/3 = 1 corresponds 
to the quantum interval of the length rq = y/x% + x% + x% = 7. If 7 —> 0, then
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_> Q. Thus a "quantum point” has an extended prequantum spatial structure. On 
the other hand, the quantum interval of the unit length rq = t/x$ + x$ + x% — 1 
can be considered as the image (available from the measurement devices) of the huge 
prequantum interval rpq = y/yl + y2 + I/2 = I/7 -> oo as 7 -> 0. Thus, systems 
which are commonly considered as point-like particles have huge spatial structures in 
the prequantum space (prespace).
We now consider the Gaussian random field Tf(x,w) (x G IP.3) that corresponds to 
a prequantum Gaussian random field £p(y,u) (y G IK3) through transition from the 
prequantum length scale to the quantum one :

»/’(XjW) = £p .

The mean value of the quantum-scale random field r]p(x,w) is zero and the variance

Thus, transition from the prequantum space-scale to the quantum induces a rescaling 
of a prequantum Gaussian random field :

Prob, distr. {t/₽(x,w) : x G K3} = Prob, distr. {73',2$*>(j/, w) : y G IR3}.

Consider a map f : Z/2(K3) —> №., classical physical variable - a functional of classical 
fields i/' G £2(IR3). We are interested in the average of the function f(r]p(x,w')) of 
the random field tjp(x,u). To find Ef(r)p(x,u')'j precisely is a complicated problem. 
Therefore, we use the approximation method of functions of random variables based 
on the Taylor formula (see §2). The only difference is that we now consider f = 
to be a function of a Hilbert vector. However, there is a well developed differential 
calculus on Hilbert spaces, as well as general normed spaces. So we obtain the 
asymptotic expansion (see [11])

_  fT
Ef{rf (®,w)) = Ef^p{y,u)) = —Tr p /"(0) + O(k2), (12)&

where
k = 73.

To produce observable effects, the classical physical variable f should be strongly 
amplified : 

0
/֊>AW = ֊/W./v
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For the mean value of such an amplification we obtain the asymptotic expansion :

EfK(v>>(x, w)) = Tr p /"(0) + O(«). (13)

Thus, the average with respect to fluctuations at the prequantum length 
scale can be well approximated by the von Neumann trace-average basic 
for quantum mechanics.
From the point of view of PCSFT, quantum mechanics is an approximative 
statistical theory providing first order approximation with respect to random 
Gaussian fluctuations at the prequantum space-scale.

§4. HIDDEN VARIABLES ։ SPACE OF CLASSICAL FIELDS
For the space of hidden variables we choose

H = L2(R3).

We repeat that we consider the real theory and generalization to a complex theory 
can be obtained by methods developed in [11]. The scalar product is given by the 
formula

(^1,^2)=/
Jr».

and the norm is
H^ll2 = = f ip2(y)d3y.

Jr*
Let us consider the functional space V(H) of those functions f : H -> R for which 

a) the state of vacuum is preserved, i.e.

/(0) = 0,

b) f is four times continuously differentiable as a functional (generally nonlinear) 
on thé Hilbert space H,

c) the fourth derivative of f is of exponential growth, i.e. 1117^^(^)111 < cyer/IMI for 
some Cf,rf > 0 and for all tp Ç. H.

The last two conditions have purely mathematical significance. They are necessary 
for rigorous treatment of expansions of the averages by small parameters (see (13), 
details can be found in [11]).
The space of all Gaussian random fields £p(y,w) of the type considered in §3 we 
denote by S(H). We consider a classical statistical model on the space H with physical 
variables of the class V(H) and the statistical states given by Gaussian random fields 
of the class S(H) - prequantum classical statistical field theory, PCSFT :

MPCFT = (S(H),V(H)).
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We recall that the conventional quantum statistical model with the real Hilbert state 
space H = j&2(K3) is described in the following way :

a) physical observables are represented by operators A : H ।—> H from the class 
£, = £, (ff) of continuous self-adjoint operators,

b) statistical states are represented by von Neumann density operators (the class of 
such operators is denoted by T> =

c) the average of a physical observable (which is represented by the operator 
A G £,(H)) with respect to a statistical state (represented by a density operator 
G I’(-ff)) is given by von Neumann’s formula

(A)p = Tr pA. (14)

The quantum statistical model is the pair Mquant = (&, £,).
We define T to be maps from the classical model into the quantum model:

T : S(H) —» T(£p) =p, (15)

T:y^֊>£,(ff), T(/)=/"(0). (16)

Theorem 1. Both maps (15) and (16) are mappings onto the corresponding spaces. 
The map (15) is even and one-to-one. The map (16) is not one-to-one and is linear. 
The asymptotic equality (13) between the classical and the quantum averages is valid.

§5. THE MAGNITUDE OF LENGTH-SCALING
The small parameter of our model

/e = 73,

we depends on the choice of the quantum and the prequantum length scales. We 
now choose the atom length-scale in QM .and the Planck length-scale in the 
prequantum classical theory. We start with the Planck scale based on the Planck 
length

w 1.616 x 10-33sm (17)

The Planck length Ip can be expressed as

h 
mpc (18)

mp x 10 8kg

where
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is the Planck mass. We apply the generalization of the formula

(20)

(21)

(22)

to a system with an arbitrary mass m and find the corresponding length scale by 
formula (19). To obtain the atom time-scale, we choose the electron mass scale 
me Ri 9.109 x lO՜31^. This mass scale induces the length scale which is in the 
limits of the atom length scale :

I. = Ze = —— m 3.86 x 10֊11sm. 
mec

We recall that the Bohr radius is

a0 = Ri 5.292 x 10-9sm, 
meac

where a is the fine structure constant. Therefore,

7 = lj£l = 1p w 4186 x 1Q֊23

We also remark that
me

Thus, our length-scaling parameter has the magnitude

7 ~ 10՜՜23.

Under such choice of the prequantum scale, the difference between statistical 
predictions of PCSFT and QM (given by (13)) is of the order

k ~ 10՜69.

For instance, for the quantum observable A is given by (16) and the classical physical 
variable

ZM = |<^M) + |(^M)2, A ec,

the difference between the quantum prediction for the average of its quantum image 
(A)p = Tr pA and the PCSFT-prediction for the average of /(V1) should be of the 
order 10՜69 (under the assumption that the Planck length Ip really provides the 
correct prequantum time-scale, for this we do not have any internal justification of 
such a choice inside PCSFT).
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If we choose the characteristic atom length scale to be the Bohr radius, then the 
deviation would be IO՜6 times smaller.
As mentioned above, we cannot guarantee that the Planck length really provides the 
right prequantum scale. The main problem induced by such a choice is that there is 
a huge gap between the atomic and the Planck scales. A scale between the Planck 
and atomic scales can be more natural. In that case k could be larger, simplifying the 
experimental verification of PCSFT. On the other hand, choosing the Planck scale 
and the corresponding « = «e ~ 10՜23 clarifies why predictions of QM have not yet 
been violated since the deviation is really negligibly small.
One of the reasons in favor of the Planck scale as the scale of prequantum fluctuations 
is that the Planck mass has macroscopic magnitude.
Let a system have a mass m. Then choosing the corresponding time scale lm = we 
obtain 7 = —. Therefore QM should be violated for systems of macroscopic mass 
(as compared with the Planck mass). In principle, one may expect that it would be 
easier to produce deviations from QM for heavy elementary particles, e.g., muons. 
Let us take m = rrimuon and the corresponding time scale

^rnuon
''frnuon — T'e _me RS 2077g.

Then statistical deviations for muons become essentially larger than for electrons, 
but they are still very small Kmuon ~ 10՜63.
For the neutron, i.e. for a quite heavy quantum system we have

ln = —~ 10~14sm.nine

We remark that the experimentally defined radius of neutron is about rn rs 8 x 
10-14sm. Thus

7n ~ 10՜19, ~ 10՜57.

PCSFT predicts that for neutrons QM works 106 worse than for muons, but this is 
still a negligibly small deviation.
Let us now consider the hypothetical particles such as e.g. Higgs bosons. Some models 
with supersymmetries predicts

rriHigg, ~ 120GeV.

Here
“yuiggt ~ 10 17) &Higgt '՝■՛ 10 51.
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Thus even possible discovery of Higgs bosons would not induce visible violations of 
laws of quantum mechanics. On the other hand, decreasing of the mass strongly 
increases the precision of the quantum approximation. For electron neutrino and 
antineutrino

„ me—neutrino . . 7 in—30
T^e—neutrino — Уе---------------  < 4.31 X 10 ye ~ 10

Here Ke—neutrino '՝"՛ 1O~90.
It is impossible to interpolate directly our theory to photons, since we considered 
nonrelativistic QM. By a direct interpolation yphoton = 0. Thus it would imply 
that the QM model is precise for photons. However, as already mentioned, such an 
interpolation can be too straightforward.

Резюме. Математический формализм квантовой механики можно интерпрети­
ровать как метод для приближений классических усреднений (по мере) функций 
f : Z2(K3) -> Ж. Они являются классическими физическими переменными 
в Предквантовой классической статистической теории поля (ПКСТП). Так 
мы называем нашу модель со скрытыми переменными. Настоящая статья 
даёт простую стохастическую картину процедуры квантового приближения 
эквивалентную аппроксимативному методу вычисления средних для случайных 
переменных. Поскольку в ПКСТП пространством скрытых переменных является 
7/2 (JR3), роль классической случайной величины играет случайное поле. В 
ПКСТП мы рассматриваем гауссовские случайные поля, представляющие слу­
чайные колебания на шкале предквантовой длины. Кванто-механическое вы­
ражение для среднего (задаваемого формулой следа фон Неймана) получена 
движением из предквантовой к квантовой шкале длины (шкала, которая даёт 
возможность проводить измерения). Порядок отклонений квантовых (аппрокси­
мативных) средних в классическом случае задаётся параметром определяющим 
масштаб длины, который очень мал для квантовых систем, например, для 
электрона равен к ~ 10՜69.
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