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Abstract. A stability principle concerning solutions of sequences of nonlinear 
equations for continuous operators on Rn is described that can be applied to a 
wide class of operators for which point-wise convergence already implies continuous 
convergence, in particular to sequences of monotone operators.

§1 . INTRODUCTION
The following theorem is of central significance for stability investigations :

Theorem 1.1 (see [4]). Let X and Y be metric spaces and let (fn : X »—> Y) be a 
sequence of continuous functions that converges point-wise to a function f : X •—> Y. 
Then the following statements are equivalent :

1. {/„} is equicon tin uous,
2. f is continuous and (fn) converges continuously to f,
3. (/n) converges uniformly on compact subsets to f.

If continuous convergence of a sequence has been established for a certain class 
of functions then this property is inherited by compositions (even though these 
compositions may not belong to the original class) in the following sense :

Theorem 1.2. Let X,Y, and Z be metric spaces, (fn : X ՛—> Y) be a sequence of 
functions that converges continuously to a function f : X ■—> Y, and (gn : Y •—> Z) 
be a sequence of functions that converges continuously to a function g : Y »—> Z. 
Then (gn o fn : X •—> Z) converges continuously to g o f. In particular, if

• f is continuous then f o gn »—> fog continuously,
• if g continuous then g o fn ►—> g o f continuously.
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For sequences of convex functions, equicontinuity and hence continuous convergence 
already follows from pointwise convergence ([4], Satz 3, p. 219). Subsequently we will 
show that a similar statement holds for sequences of monotone operators. Continuous 
convergence in turn implies stability of solutions under certain conditions on the 
limiting problem.
Both, solutions of equations and optimization problems, can be treated in the 
framework of variational inequalities. In fact, sequences of variational inequalities 
show a similar stable behavior, where again continuous convergence is of central 
significance ([4], Satz 1, p. 245). We employ this scheme in the context of two-stage 
solutions (Section 4).
Stability questions for minimal solutions of point-wise convergent sequences of convex 
functions have been treated in a number of publications. It turns out that stability 
can be guaranteed if the set of minimal solutions of the limit problem is bounded (see 
[4]). As an application, ill posed optimization problems are replaced by sequences 
of (numerically) well posed problems (see [9, 10]). The question arises, whether a 
corresponding statement holds on the equation level for certain classes of mappings 
that are not necessarily potential operators. Questions of this type arise e.g. in the 
context of smooth projection methods for semi-infinite optimization (see [6]).
A general framework for treating stability questions involving nonlinear equations for 
sequences of continuous operators on Rn is given by the following scheme (see [6]) : 

Theorem 1.3. Let U C R and : U *—> Rn be a sequence of continuous operators 
that converges continuously on U to a continuous operator A : U »—> Rn with the 
property :

there exists a ball K(x0, r) C U, r > 0 such that

(Az,r-zo)>0 (1)
for all x in the sphere S(x0, r)..

Then there exists some k0 € N such that for any k > k0 each equation Atx = 0 
has a solution xt in K(x0, r). Furthermore, every point of accumulation of (xt) is a 
solution of Ax = 0. , M/
The above theorem is a consequence of the following well known lemma.

Lemma 1.4. Let A : U •—> Rn be continuous. If there is r > 0 and a ball 
K(x0,r) C U such that {Ax,x-xo) > 0 for all x e S(x0,r), then the nonlinear 
equation Ax = 0 has a solution in K(x0, r).

Proof: Otherwise Browder’s fixed point theorem applied to the mapping 
/ x / Ax \
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would lead to a contradiction.

§2. STABILITY FOR MONOTONE OPERATORS
A large class of operators can be treated using the above stability principle, where 
point-wise convergence already implies uniform convergence on compact subsets. 
Among them are the monotone operators according to :

Definition 2.1. Let X be a normed space and let U be a subset of X. A mapping 
A : U »—> X* is called monotone on U if for all x, y 6 U,

{Ax - Ay, x - y) > 0.

Lemma 2.2 (see [13]). Let U be an open subset of№n and let Ak : U -> Rn be 
a sequence of continuous monotone operators that converges point-wise on U to an 
operator A : U —> Rn. Then for every sequence (zjt) C U that converges in U it 
follows that the sequence (Akxk) is bounded.

Proof : Assume that there is a sequence (zjt) in U with limzjt = xq 6 U such 
that (AfcZfc) is unbounded. Then there is a subsequence (A*,.!*,) with the property 
||Ajt։.ZfcJ| > t for all i 6 N. As A*,. is monotone we obtain for all z 6 U :

{Akixk. - Ak,z, xki - z) > 0.

If now yk. = then we can w.l.g. assume that the sequence (y*,) converges to
some y in the unit sphere. If the above inequality is divided by HAijUjI we obtain
for all z G U :

Akiz
IIAiXfc.il

Point-wise convergence implies Aktz —> Az and hence

lim
oo

J/fc, -
Akiz

IMfc.zfcj
= {y, x0- z) > 0, z G U.

As U is open, it follows that y = 0, a contradiction completing the proof.
The following theorem states that point-wise convergence of continuous monotone 
operators already implies continuous convergence.

Theorem 2.3 (see [13]). Let U be an open subset of Rn and let Ak : U <—> Rn 
be a sequence of continuous monotone operators that converges point-wise on U to a 
continuous operator A : U »—k R" then (Ak) is equicontinuous on U.
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Proof: According to Theorem 1.1, it is sufficient to show the following : convergence 
of a sequence (zfc) in U to an element xqEU implies lim A&Zfc = Axq.
Assume that there is a sequence (zj.) in U convergent to zo 6 U such that {Akxk) 
does not converge to Azo, i.e. there is € > 0 and a subsequence (Aj-z*,.) with the 
property

IHfciXk( - Az0|| > e

for all i 6 N. By Lemma 2.2 (Akixki) is bounded and w.l.g. we can assume that it 
converges to some g E IRn. Because of the previous inequality we have ||</ — Azo|| > 6. 
On the other hand we obtain by the monotonicity of A^ for all u 6 U :

{Ak,xki - Akiu,xk. - u) > 0,

and hence, using point-wise convergence we get {g — Au, xq — u) > 0 for all u E U. 
By theorem 2.4 below it follows that g = Azq, a contradiction yielding the proof.

Theorem 2.4 (Browder and Minty [12]). Let E be a Banach space, U an open 
subset of E and A : U >—> E’ a semi-continuous operator. If for a pair uq E U and 
vq E E* and for all u E U the inequality :

{Au - vo, u ֊ uo) > 0

holds, then vo = Auq.
An immediate consequence of the theorem of Browder and Minty is the following 
characterization theorem for solutions of the equation Ax = 0, if A is a monotone 
operator.

Theorem 2.5 (see [12]). Let E be a Banach space, U an open subset of E and 
A : (7 •—> E’ a continuous and monotone operator. Then Au0 = 0 for u0 E U if and 
only if for all u E U

{Au, u- u0) > 0.

Proof: the if-part follows from Theorem 2.4 for v0 = 0. Let now Au0 = 0 then, from 
the monotonicity of A, we obtain :

0 < {Au — Auq, u — u0) = (Au, u — u0).

Remark 2.6. tf U is convex then the above theorem directly implies that the set 
’= {z E D|Az = 0} is convex.

For monotone operators we obtain the following existence theorem which in a way is 
a stronger version of Lemma 1.4.
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Theorem 2.7. Let U C Rn be convex and A : U in be a continuous monotone
operator. If there exists a ball K(xOyr) C U and r > 0 such that (Ax,x - x0) > 0 
for all x E S(x0,r), then 0 SA C K(xq,t), where SA is the set of solutions of the 
nonlinear equation Ax — 0.

Proof : The first part follows from Lemma 1.4. For the second part let À, p E R with 
A > p and let x E 5(zo,r). Then monotonicity of A yields

<A(A(x - z0) 4֊ ^o) - A(p(x - z0) 4- z0), (A - p)(x - z0)) > 0.

Let I be the intersect of U with the straight line passing through x and xq. From the 
above inequality it follows that g : I •—> R with g(A) := (A(A(z - z0) 4- z0), x - z0) 
is an increasing function. In particular </(l) = (Ax,x - xq) > 0. Suppose there is 
a 1 < A, E I such that A(A, (z — zo) 4- zq) = 0 then <?(A*) — 0, a contradiction 
completing the proof.
We are now in the position to present a stronger version of Theorem 1.3 for sequences 
of monotone operators.

Theorem 2.8. Let U C Rn be open and convex and Ak : U —> be a sequence1!«

of continuous monotone operators that converges point-wise on U to a continuous 
operator A : U •—> Rn with the property :

there exists a ball K (zo, r) C U, r > 0 such that (Ax, x — zq) > 0 for all x on the 
sphere S(zq, r).
Then there exists some h0 6 N such that the set of the solutions of the equation 
Af-x = 0 is nonempty Vh > ho and contained in K(xq,t). Furthermore, if Xk E {z E 
U |Aj,z = 0}, k > ho, then every point of accumulation of (zt) is a solution of Ax = 0. 
Property (1) is satisfied by various classes of operators, among them the derivatives 
of convex functions.

Lemma 2.9. If a monotone operator A defined on R” has a convex potential f with 
a bounded set of minimal solutions M(f, Rn) (which, of course, coincides with the 
set of solutions of Ax = 0), then A satisfies the property (1).

Proof : Apparently for each xq E Af(/, R") there is a sphere S(xo,r) such that 
/(z) — /(zo) > 0 for all z E S(xo,r). As A = the subgradient-inequality on that 
sphere yields :

0 < /(z) - /(z0) < (Ax, x - z0)

The proof is complete.
For general monotone operators such a statement is not available, i.e. the 

property (1) docs not follow from the boundedness of the solutions of Ax = 0, as 
the following example shows.
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Example 2.10. Let A : R2 »—> R2 be a linear operator that represents a y-rotation.
A is monotone as

(Ax - Ay, x~y) = (A(x -y),x-y) = 0,

but on any sphere around the origin we have (Ax,x) = 0. Obviously, {z|Az = 0} = 
{0}.
An important class of operators in this context are the Fejer-contractions.

Definition 2.11. An operator P : Rn •—> Rn is called Fejer-contraction w.r.t. zo 
(see [1]) or strictly quasi-non-expansive (see [3]) if xq is a fixed point of P and there 
is an r > 0 such that ||P(z) - zq|| < II1 — zo|| for »11 x £ K(xo,r).

Remark 2.12. The above definition of a Fejer-contraction differs somewhat from 
that given in [1].

Remark 2.13. It follows immediately from the definition that the set of fixed points 
of a Fejer-contraction w.r.t. zo is bounded.
If P is a Fejer-contraction w.r.t. xq then the operator A := I — P has property (1) as 
the following lemma shows.

Lemma 2.14. Let P R" ।—> Rn be a Fcjer-contraction w.r.t. z0. Then for A := I-P

(Ax, x - z0) > 0

for all z £ K(xq, r).

Proof : If z £ K(xQ, r), then we obtain :

(Ax, x xq) — (x xq — (P(x) — zq), z — xq) = ||z - zq||2 — (P(x) — Zq, z — Zq) >

> II® - xo||2 ֊ IIp(x) - xolllli - loll > 0.
Remark 2.15. If P is also non-expansive on Rn then A = I - P is apparently 
monotone and continuous.
It is easily seen that a projection P onto a bounded convex set is a non-expansive 
Fejer-contraction. It can be shown that the same is true for certain compositions of 
projections (see [6]).

§3. STABILITY FOR WIDER CLASSES OF OPERATORS
A large class of operators can be treated using the above stability principle, where 
point-wise convergence already implies continuous convergence. To illustrate this 
consider acontinuous operator A : R" _ R" satisfying property (1). Then it is easily 
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seen that in the following situations continuous convergence, and hence stability of 
the solutions follows from Theorem 1.1 :

1. Ak = akP+A, where (or*) be a sequence in tending to 0, while P : Rn •—> Rn 
be continuous.
Proof: let Xk —> io then the sequence (P(zt)) is bounded, hence akP(xk) —> 0 
and Ak (x^ —> >l(xo) because of the continuity of A.

2. 4*. : R" ।—> Rn is continuous and Ak ՛—> A component-wise monotone, i.e. 
for Ak(x) = (/fc։)(T))"=i and A(x) = (/(,) (x))"=i one has point-wise monotone 
convergence of f^ —> for i =■ 1,..., n on Rn.
Proof: follows from the Theorem of Dini (see [4]) applied to the components of 
Ak and A respectively.

3. Ak is continuous, Ak A point-wise on Rn and 4* — A is
monotone for all fc €
Proof : we have A* — A —> 0 point-wise on H n and from Theorem 2.3 continuous
convergence follows.

4. Compositions of continuously convergent sequences of functions preserves conti
nuous convergence, 
i.e. if gk : Rn * 
fk : Rn —► Rn

is continuously convergent to g Rn «—> Rn and
is continuously convergent to f : Rn »—> Rn then fk o gk

»

converges continuously to fog.
A special case is obtained if either (fk) or (gk) is a constant sequence of a continuous 
function, e.g. if B : Rn »—> Rn is linear, Ak : R" »—> Rn is continuous and monotone, 
and Ak —> A point-wise on Rn, then B o Ak converges continuously to B o A.

§4. TWO-STAGE SOLUTIONS
Two-stage solutions have been studied in [4, 8, 9, 10] in particular for sequences 
of convex functions. The following theorem (see [4], p. 246) gives a framework for 
sequences of nonlinear equations, where the second stage is described in terms of a 
variational inequality.

Theorem 4.1. Let X, Y be a normed spaces, (A : X —> K) continuous and for 
the sequence of continuous operators (Ak : X -> Y) let L = limjt-^ool^Mfc1 = 
0} C {x|Ax = 0} =: Sa- Let further (a*) be a sequence of positive numbers and
B : X •—► X* a continuous mapping with B(0) = 0 such that

1. B o A : X »—> X* is monotone,
2. Ok(B o Ak — Bo A) converges continuously to a mapping D : X >—> X*. 

IfxEL then for all x E Sa the inequality (Dx, x — x) > 0 holds.
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Proof : Let Zfc€{z|Afcz = 0} such that (xk) converges to an x E X, i.e. z G L. Let 
z G Sa, i.e. Ax = 0. Since B o A monotone and continuous it follows that

ak((B o Ak — B o j4)z*, x — Xk) — o.k{B o Ax^ xk — x) > 0.

Since ak(BoAk-BoA) converges continuously to D it follows that ak(BoAk — BoA)xk 
converges to Dx in the norm, and hence inequality (Z)z,z — z) > 0 follows.

Example 4.2. Let Ak = a^P + X, where >1 is monotone, P is a positive definite 
linear operator, and (Qfc) is a sequence of positive numbers tending to 0 (compare 
with class 1. of previous section). Then, choosing at = , D = P and the inequality
(Pz, z - x) > 0 for all z G Sa is the characterization of a minimal solution of the 
strictly convex functional z *-> (Pz, z) on the convex set Sa (compare with Remark 
2.6). In this case, convergence of (z*) to z follows.

Example 4.3. Let A,C : R" Rm be linear operators, b E Rm and let

Sa := {z G Rn|Az = 6} be nonempty. Let further (a*) be a sequence in IL< + tending
to zero and let Xjt := otkC -I- A. Then for a* = -7- and B = AT it follows that

at(BAk - BA) = ֊-(atATC + ATA - 4T>1) = ATC =: D 
&k

and hence (ATCx,x — z) > 0 for all z in the affine subspace Sa, in other words : 
ATCx is orthogonal to kernel of A.

Example 4.4 (see [6]). LP-problem : for c, z 6 Rn, A E L(Rn,Rm), b E Rm we 
consider the following problem

min{(c, z)|Az = 6, z > 0}

with bounded and nonempty set of solutions. We chose the mapping P = Pm oPm-i ° 
... o Pi of the successive projections P, onto the hyperplanes

Hi = {s G Rn|(a.,a) = 6,} i G {!,..., m),

where a, denotes the i-th row of A, and the projection PK onto the positive cone 
R>0, given by

Pr(z) = ((xi)+,...,(zn)+)).

As PK is non differentiable, a smoothing of the projection PK is obtained by replacing 
8 > (s)+ by a smooth function : R —► R (a > 0) that approximates (-)+.
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The projection PK is then replaced by PQ = (y>Q(zi),..., y>a(zn)). By use of the 
Newton-method the nonlinear equation

Fq(x) := x — PQ о P(z) + ас = 0

can be solved very efficiently.
It can be shown that Pk oP is a non-expansive Fejer-contraction w.r.t. any z G S := 
{z 6 Rn|Az = b, x > 0} and that Pa o P is non-expansive. Let (at) be a positive 
sequence tending to 0. Stability then follows from Theorem 2.8 for the sequence 
of monotone operators A*, = PQh converging point-wise to the monotone operator 
A = I - Pk o P satisfying (1).
Application of Theorem 4.1 yields a condition upon <pQl, that enforces continuous 
convergence. We have for a* = ~ :

— A) — a*( —P о P) 4- c.

It follows that if -^(<pQk — (•)+) —> 0 uniformly on compact subsets of R, then 
Uk(Ak — A) converges continuously to c. If z is any limit point of the sequence of 
solutions of the equations (A*z = 0) then for all z C S we obtain (c, z — z) >0.

Remark 4.5. Convex optimization problems with linear constraints can be treated 
in the same manner. For convex and differentiable f : Rn »—> Rn consider

min{/(z) : Ax = b, x > 0}.

The (monotone) operator Fa becomes

implying (/'(z), z —z) > 0 for every point of accumulation z and all z 6 S. According 
to the Characterization Theorem of convex optimization, x is a minimal solution of 
f on S.

Резюме. В работе описан принцип стабильности, касающийся решений пос
ледовательностей нелинейных уравнений для непрерывных операторов на Щп, 
который можно применить к широкому классу операторов, для которых из 
поточечной сходимости всегда следует непрерывная сходимость. В частности, 
этот принцип применяется к последовательностям монотонных операторов.
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