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Abstract. A holomorphic function <p in a Jordan domain G in the complex plane 
is constructed with all its derivatives extending continuously up to the boundary dG 
that happens to be a natural boundary of <p. In addition, the action of a certain class 
of operators on y? presents some universal properties related to the overconvergence 
phenomenon.

§ 1. INTRODUCTION AND NOTATION
In this paper, we are concerned with the problem of the existence of holomorphic 
unctions defined on a Jordan domain G of the complex plane that enjoy simulta-
eously several properties, namely :
- The boundary of G is the natural boundary of those functions.
- They are boundary-regular, that is, their derivatives of all orders extend 

continuously up to the boundary of G.
- The power series expansion of each such a function around a prefixed point of 

G presents "gaps outside a prescribed sequence S of integers with upper density 
= 1.

The action of a certain class of operators -including, for instance, the identity 
and the differentiation operators of all orders- on the partial sums of their Taylor
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expansions satisfy some kind of “external universality" which is, in fact, a strong 
version of ovcrconvcrgencc.

The aim of this note is the construction of a function with all above properties. The 
precise statement together with its proof will be postponed till Section 3. In the 
remainder of this section, the pertinent terminology will be fixed, and some historical 
or bibliographical notes will be pointed out. A number of preparatory results will be 
stated in Section 2, where we also introduce a new class of operators, which are rather 
“natural" to our goal.
As usual, by C, D, Q, N. No we denote the complex plane, the open unit disk, the set of 
rational numbers, the set of positive integers and Nu{0}, respectively. A subsequence 

or will always mean a strictly increasing sequence ni < n2 < • • •. If 
M C C then M°, M, OM will stand for the interior, the closure and the boundary, 
respectively, of M in C. If G is a domain (i.e. a nonempty, connected open subset) 
of C, then H(G) represents the set of holomorphic functions on G. Let be given a 
function f G H(G), then we say that f is holomorphic exactly on G (or G is the 
domain of holomorphy of /, or dG is the natural boundary of /) if f is analytically 
noncontinuable across any point of dG or, more precisely, for every a 6 G, the radius 
of convergence of the Taylor scries of f with center at a equals the Euclidean distance 
between a and dG. Dy He(G) we abbreviate the class of all functions which are exactly 
holomorphic on G. Mittag-Leffler discovered in 1884 that He(G) 0 for all domains 
G, see [15, Chapter 10]. It is clear that if f € He(G) then f has no holomorphic 
extension to any domain containing G strictly.
Let G C C be a domain. Then A^(G) denotes the class of holomorphic functions in 
G with very regular behavior at the boundary, that is,

A'x (G) — {/ 6 H (G) : /*Z| has a continuous extension to G for all No}.

Notice that while H(G) is a Frechet space (i.e. a completely metrizable locally convex 
space) when endowed with the topology of uniform convergence on compacta. In the 
case that G is boundes then the class A°°(G) also becomes a Frechet space under the 
metric topology defined by fn -> f in A°°(G) if and only if ֊> /(') uniformly in 
G for every I G No-
For a domain G C C (a compact set L C C, respectively) we denote by M(G) (A4(L), 
respectively) the collection of all compact sets K C (K C Lc, respectively) with 
connected complement in C. If K C C is compact, then by A(K) we mean the family 
of all functions which are continuous on K and holomorphic in its interior K°. The 
class A[K) becomes a Banach space under the maximun norm.



Lacunary non-continuablc boundary-regular holomorphic functions ... 29

Note that j4°°(G) Cl HC(G) may well be empty or not. For instance, the function 
with <p(z) := J2^°=o exp(-2n/2)x2՞ belongs to A°°(D) Cl 2/c(D) (see [30, Chapter 16]), 
but A(G) A ffc(G) = 0 if G := D\ [0,1). Another interesting example of a function 
ip E A°°(ID>) A He(D) is given by

oo 2«

^2” n=0

It turns out that <p is one-to-one on O and hence mapping D conformally onto a 
Jordan domain G whose boundary 0G is a C°°-curve which is nowhere analytic.
Let us recall that J. Siciak proved in [31] a strong statement about noncontinuability
in a TV-dimensional setting (his proof leans on typical methods of several complex 
variables) whose one-dimensional instance asserts that if G C C is a bounded domain 
such that G = G° and G? is connected then He(G) A A°°(G) 0.

Suppose that S = be a subsequence of No and let ^s(n) be the number of
m E S with m < n. Then the upper and lower density of S are defined as

d(S) := limsup 
n—>oo

^s(n) 
n

d(S) := lim inf -5 n- 
n-too n

If d(S) = d(S) =: d(S) then S is said to have the density d(S).
If now G C C is a domain and zq E G then by Hs,Zo(G) we mean the class of 
holomorphic functions in G whose power series expansion around zq presents gaps 
outside S or, equivalently,

HS,։.(G) = {/€ H(G) : /<">(zo) = 0 for all n£S}.

Therefore if f E Hs)Zo(G) we have in a neighborhood of zq that

OO
/(2) = - Zo)p

«/=0
with av = 0 for all v S. .

For the sake of simplicity, we set Hslo(G) = Moreover, Ps will stand for the
oo

family of lacunary polynomials P(z) = cvz1' with gaps outside S.
i/=0, ^€«5

If f E ff(C), z0 E G and n E No, then we denote by S(f, z0,n) the partial sum of 
order n of the Taylor expansion f(z) = (* — ^o)1՜ of f around zo, that
is, S(f, ^o, n)(z) := E;=o (z - zo)“.
A century ago Porter discovered that certain Taylor series with radius of convergence 
1 enjoy the property that some subsequences of their sequences of partial sums (with
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zq = 0) converge at some points outside the closed unit disk D. This phenomenon 
is called overconvergence. Starting from 1970, this idea has been largely developed 
and strengthened along various ways, as for instance : the partial sums have been 
replaced by the action of certain infinite matrices -with constant or non-constant 
entries- ; the overconvergence has been reinforced to the universal property of uniform 
approximation to any function f E A(K) for certain compact sets К -with KC\G = 0 
or even К C\G = 0, where G is a domain-; the Taylor series have been generalized to 
Laurent series or Faber series ; and some properties have been shown to be generic 
in the space X С H(G) where they are studied (that is, the subset of functions of X 
satisfying each of such properties is residual in X). These improvements are contained 
in a number of papers by Chui-Parnes, Melas, Nestoridis, Costakis, Katsoprinakis, 
Papadoperakis, Vlachou, Gehlen, Müller and the authors, among others (see [18, 
7, 19. 27, 20, 13, 16, 24, 25, 32, 33, 2, 3, 28, 9, 4] and the references contained 
in them). Finally holomorphic functions satisfying both properties of universality- 
overconvergence and lacunarity have been found by Gharibyan, Müller and the third 
author in [14].

§ 2. PRELIMINARIES AND A NEW CLASS OF OPERATORS
This section is devoted to state several auxiliary results to be used later, and to 
consider certain classes of operators which are adequate for the statement of our 
main result.
Let be given a fixed a € R and consider the logarithmic a-spirals

Lo := {z = t e R} U {0}.

Then a set M С C is called a-starlike with respect to zq = 0 if

M • (LQ n ID) := {z = <w, ( € Af, w E La n 0} = M

and M is called a-starlike with respect to zq E M if Л/.,, •— — C ~ z(h С € Л/} is
a-starlike with respect to the origin. If a = 0 then M is starlike in the traditional 
sense.
The content of the following lemma can be found in [13] and [20].

Lemma 2.1. Let S be a subsequence of No with d(S) = 1 and suppose that K is a 
compact set with connected complement and 0 E K°. Assume that f is holomorphic 
on K with 

oo
f(z) = 12 A«* where /„ = 0 for all v $ S

i/=0
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near the origin. Suppose in addition that one of the two conditions is satisfied :
(a) d(S) = 1,
(b) d(S) — 1 and the component of К which contains the origin is а-starlike with 

respect to the origin.
Then for every € > 0 there exists a lacunary polynomial P £ Vs such that

Recall that a power series ~ Zo)*z is said to have Ostrowski gaps (pk,Qk)
(к G N) if Рк, <Jk are positive integers such that

Pi < 91 < P2 < 42 < ’ * ’

and lim lavl1^ = 0, 1/-4ОО 1 1

.. Якhm — = oo,*-юо Рк
where /= [J (рк, Qk)-

Jt€N

Lemma 2.2. Assume that G is a domain. Let zq € G and let f € H(G) such that 
the Taylor expansion of f around zq has Ostrowski gaps (pk,Qk) (h 6 N). Then

sup sup |S(/, zq,pk){z) ֊ S(f,C,pk)(z)\ -► 0 (h —> oo) (1)

for every pair K, L of compact sets with K C C, L C G.

Proof : In [19, Theorem 1] it is shown that the expression in (1) without “sup^j/ 
tends to zero for each compact set K. But its proof reveals in fact that such 
convergence to zero holds uniformly with respect to £ whenever £ belongs to a compact 
subset of G.
Next we are going to consider two kinds of operators (i.e. continuous linear self
mappings) on the space £ := H(C) of entire functions. This first kind is that of 
operators T : £ —> £ having dense range. For instance, if T(£) D {polynomials) then 
T has dense range. Trivially, T has dense range if it is surjective. The second kind of 
operators is less usual, and it is fixed in the following definition.

Definition 2.1. Let L C C be a compact set and T be an operator on £. Then we say 
that T is compactly L-externally controlled if the following property is satisfied :

Given e > 0 and a compact set K C A4(£), there are 6 > 0 and M € A4(L) 
such that

h 6 £ and implies sup |(TA)(z)| < €. 
г£К
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Examples 2.3. 1. Let <I»(z) = 5Z7=oan2" be an entire function. Then *1» is said 
to be of exponential type provided that there are positive constants A, B such 
that |$(-z)| < A exp(B|z|) for all z E C. Consider its associated formal linear 
(in general, infinite order) differential operator 4»(D) = 527=oa«L*" defined as 
$(D)f = 52,7=0anf(n} (/ £ Then $(D) is in fact a well-defined operator on 
£. This is easy to see just by taking into account the Cauchy estimates as well as 
the fact that 4’ is of exponential type if and only if the sequence {(n!|an |)1 „> i is
bounded. By the Malgrange-Ehrenpreis theorem (see [11] or [23]) we have that 
is surjective (so it has dense range) as soon as $ ÿ 0.
Assume now that <!’ is of subexponential type, that is, for given £ > 0 there is 
a positive constant A such that |4>(z)| < A exp(f|z|) for all z E C; equivalently, 
limn_,oo(n!|an|)1?'n = 0 (see for instance [6] ; see also [1] for a good exposition about 
the corresponding operators (£>)). Then $(D) := T is compactly ^-externally 
controlled for every compact set L C C. Indeed, if £ > 0 and K E M(L) are fixed, 
we can choose a Jordan domain J such that K C J°, L A J = 0 and 7 := dJ is 
rectifiable. Recall that (n!|an|)x/n —> 0 (n —> 00). Therefore given £ ՝.— d^s^(A\7) there 

is a constant A E (0,+00) such that n!|an| < Ae” (n E No)« Let us define

M := J and £ • dist(A',7) 
A • length^)

Then M E A4(L) and 6 > 0. Now, if we make 7 oriented counterclockwise, we get 
from the Cauchy integral formula for derivatives that for every z E K and every h E £ 
one has

|(77.)(z)| =
00

n=0

suPte-r • length(7) 
(dist(K,7)"+i

A«length(7)sup2e7|/i(t)| 
2«dist(K,7)

A«length(7) x.

Hence supz€K |(T/i)(z)| < £ whenever supi6A/ |/i(z)| < 5, as required.
2. The second part of the above example covers the cases T = Dn (n E No), 

where D" := I = the identity operator. Indeed, just take <I*(z) := zn. However, if £ 
is of exponential type then d’(D) is not always controlled in the sense of Definition 
2.1. For instance, if we take ^(z) := e* then ^(D) is the translation operator that 
takes a function h E £ to the function z •—> h(z 4- 1), which is not controlled for 
some compact set L C C. In fact, more is true : If ip £ £ is not the identity then the 
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composition operator : £ —> £ defined as C^h = ho<p is not compactly L-externally 
controlled for some compact set L. Indeed, fix a G C such that (3 := v?(q) / a and 
choose L '.=■ {/3}, fo •= 1, = {a}. Observe that K E M\L). Now fix 6 > 0 and 
M E M(L)- By the Runge approximation theorem (see [12]) -applied to the compact 
set M U {/3}- we can find a polynomial h such that |h(z) - 0| < 6 (z E M) and 
|/i(/3) - 2| < 1. Hence sup,€M |h(z)| < 6 but supz6K |(Ov»h)(x)| = |h(/3)| > c0, as 
required. It is clear that is £-controlled for all compact sets if <p is the identity. If 
<p is not the identity but it is a nonexpansive similarity -that is, <p(z) = a(z — b) 4֊ 6, 
where |a| < 1 and b is the (unique) finite fixed point of <p- then C^> is compactly 
L-externally controlled, where L is any closed ball with center at b.
As for the density of the range, we claim that if ip E £ then has dense range if and 
only if <p is a similarity p(z) = az 4֊ b (a,b E C with a 0). Indeed, the part “if* is 
evident because would be surjective. Finally, suppose that C? has dense range and 
that, by the way of contradiction, <p is not one-to-one. Then there are points a, b E C 
with a / b such that y>(a) = <p(b). By density, there is sequence {fn}n>i C £ for 
which fn o ip —> g (n —> oo) in £. where g(z) = z. In particular, limn_,oo fn(<p(a)) = a 
and linin^oo fn(¥>(b)) = 6, which is absurd because y?(a) = <p(b). Therefore <p is an 
injective entire function, so it is a similarity, which proves the claim.

3. Let a E £ and consider the multiplication operator MQ : /E£>—>cr/E£. 
It is easy to see that MQ is always compactly L-externally controlled for all compact 
sets L C C and that, in addition, Ma has dense range if and only if a has no zeros.

4. Given a compact set L C C, the family A of compactly L-externally controlled 
operators is a vector algebra in the space of all operators on £, that is, if o,/3 are 
complex numbers and Ti, are in A. then the operators aTi 4- /3T2 and T\ o T2 are 
in A too. Indeed, this is evident for aT\ 4- PT2. As for the composition Tj oT2, fix a 
number e > 0 together with a compact set K E Af(L). Then there are Ai > 0 and 
Afi E A4(L) such that ||Ti/||k < e whenever f E £ and ||/||Af։ < <h- By using now 
that T2 is controlled, there are 6 > 0 and Af E A4(L) such that [h E £ and ||h||s < <f] 
implies ||7^2/i||Ml < Then if ||h||jf < 6 we obtain 117\T2h||k < £» and we are done.

§ 3. CONSTRUCTION OF A UNIVERSAL FUNCTION 
■ We are now ready to construct the promised universal function with respect to 
loverconvergcnce having moreover additional properties of lacunarity, boundary- 
1 regular behavior and non-continuability.

I 1 heorem 3.1. Suppose that G is a Jordan domain, that zq E G and that S is a 
subsequence of satisfying at least one of the following conditions :



34 L. Bernal Gonzalez, M. C. Calderon-Moreno, W. Luh

(a) d(S) = 1,
(b) d(S) = 1 and G is a-starlike with respect to zq E G.

Then there exist a function <f> E A°°(G) fl He(G) A Hsil0(G) and a subsequence 
{pfc}fc>i C No for which the following properties hold :

(A) For each compact set L C G we have S(<p,CiPk) (k oo) in A^ (G') 
uniformly for all (EL-

(B) For each compact set K E A4(G), each compactly G-extcrnally controlled 
operator T on £ with dense range, and each f E A(K), there exists a subsequence 
{MjeN c suc^ that

lim sup sup |(TS(y>,C,pjtJ))(z) - f(z)\ = 0 
i-+°° <€£

for every compact set L C G.

Proof: 1. Without loss of generality, we can assume that zq = 0. Let {A'*}„>i be an 
exhausting sequence for A4(G), that is, K* E Af(G’) for each p and, given K E A4(G), 
there is p E N depending on K such that K C Ap (see for instance [Lemma 2.9][5]).
Let {II* }p>i be an enumeration of all polynomials with coefficients in Q 4- iQ.
Suppose that {(An, IIn)}n>i is an arrangement of all A* and FI* in which any 
combination (A*,IIJ) occurs infinitely many often.
We choose a sequence of Jordan domains Gn with rectifiable boundary satisfying

G C Gn|i C Gn+i C Gn (n E N),
OO

GjUn=fl (new) and p|Gn=G. 
n = l

In the case that G is a-starlike with respect to zq = 0 then we assume in addition 
that all Gn are a-starlike also (see for instance Duren [10], Theorem 2.19).

2. We construct sequences {pn}n>i, {qn}n>i C No and a sequence {P„}n>i of 
polynomials by induction. First, we define

6n := dist(G, dGn), Xn := length (dGn),
n!n2An (n E N).

Without loss of generality we may assume<fn < 1 (nE N).
By Lemma 2.1 there exists a polynomial

p>
Pi(z) = ^2 «„z1՜ with 0^ = 0 for P s

p=0
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which satisfies

max|Pi(z)| < and max |Pi(z) - TIi(z)| < 1.
2 € K i

We assume that P1։..Pn have already been determined and that Pn has the form

Z
V = <]n-1

with au = 0 for v S.

We have set go •= 0. Choose gn £ N with qn > npn. Observing that Sn := {t € S : 
t> qn} also satisfies d(Sn) = 1 if (a) holds and d(Sn) = 1 if (b) holds we can find by 
Lemma 2.1 again a polynomial

which satisfies

and

J'n + 1

Pn+i(z) = with av = 0 for v S

If’n +1 (-2) | < n +1max
*€^»„ + 1

(1)

(2)

(3)

By induction we get {₽„}„>,, and {P„)„>i.
3. For fixed I 6 No and n > I we obtain from the Cauchy integral formula for 

derivatives (we can assume that dGn is oriented counterclockwise) that

max|P^'։(z)| = max 
։£G

Therefore the series Pn\z) converges for each I E No uniformly on (7, and it 
follows that the function <p, which is defined by

oo

V7 ( ^ ) • — Pn ( ^ ) »
n=l

is holomorphic on G and that each derivative has a continuous extension to G.
In other words, £ A°°(G).

4. We consider the power series of <p around the origin. By the special form (1) of the 
polynomials P„ and by the property qn > npn (n £ N), the powers in Pn and Pm do 
not overlap if n / m and therefore the power scries of is given by

oo
y>(z) = V avzv with av = 0 for v £ S. (4)

u=O
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Thus, <p E Hs(G)> For its partial sums S(<p, 0,n) we obtain especially

5(^,0,pfc)(z)

and we get for each I E Mo

k 
(S(p,0,p։))<'»(z) = -+ ¥>('»(z)

v=l
(k —> oo)

uniformly on G. Hence

S(<p,0,pk) ֊> <p in A°°(G). (5)

Let us define the functions of two complex variables F* : G x C —> C (k E M) by

:= %,(,»(*) ֊ S(^,0,pfc)(z = £ ֊H* ֊ 0" ֊ 
£51

Then every Ft is separately analytic with respect to £, z; whence it is analytic in 
G x C by Hartog's theorem [pages 25 and 93-95][17]. Note that, due to Lemma 2.2, 
Fk tends to zero compactly in G x C. Therefore the Weierstrass convergence theorem 
for several variables (see [page 154][2G]) guarantees that dlFk/dzl —> 0 (k —> oo) 
uniformly on compacta in G x C for each I E No. Finally, this combined with (5) 
shows that, for every compact set L C G, one has S(^, <,pfc) -> y? (fc —> oo) in 
A°°(G) uniformly in < E L. This concludes the proof of (A).

5. It remains to prove (B) and that <p E He(G). With this aim, fix any K E M(G) 
and any f E A(K). By Mergelyan’s theorem (see [12]) there exists a sequence of 
polynomials {!!£, }j>x with

(k —> oo) uniformly on K. (6)

The set K is contained in some KJ and by our construction there exists a sequence 
{*>}>>! c n with k; = Kki, = n*, (j e N).
From (3) we obtain

and together with (6) we get

5(^,0,pfcj.)(z) = ^ClpZ*՜ = 
v=0

V. P-(x) ֊+ /(z)
F=1

(k -> oo) uniformly on K.



Lacunary non-continuable boundary regular holomorphic functions ... 37

6. The power scries (4) has Ostrowski gaps (pk,Qk) (k € H) with qk/pk -> oo. 
By the universal properties established in step (5), the sequence {S(p, O,pjij)}J>1 
cannot converge at any point of G .It therefore follows from Ostrowski’s theorem on 
ovcrconvergence (see for instance [page 314][15]) that e He(G).

7. Finally, fix again a set K € -M(G) and a function f E A(K). Fix also a compactly 
G-cxternally controlled operator T : £ —> 8 with dense range. Let € > 0. Then there 
exists g such that

sup l(Ts)(z) - f(z)| < ֊. (7)
z€A' 2

By the control property, we can find a number <5 > 0 and a set M € A4(G) such that

h 6 £ and sup |h(z)| < 6 implies (8)

By step 5 (with X, f replaced by Af. g, respectively) we can get a number
k = k(e) E N satisfying

sup |5(y?, 0,Pk)(z) - </(z)| < 6.

Hence (8) tells us that

sup |(TS(p,0,p*))(z) - (T$)(z)| < ֊, 
z£K 2 (9)

where we have used the linearity of T. Therefore, (7), (9) and the triangle inequality 
yield

sup |(TS(^,0,pk))(z) - /(z)| < €. 
։£K

By choosing e = 1/j (j 6 N), it is evident that there is a sequence {£(1) < k(2) <

sup |(T5(^,0,pMj)))(z) - /(z)| -4 0
1€A'

(10)

In order to prove (B) it is enough ֊thanks to (10) and the linearity of T- to select a 
sequence {j(^)}u>i C N such that

sup sup |(T(5(v?, C, Pk(j(v)}) ֊ $(¥>>0,Pfc(>(։,)))))(z)l 0
C€L։€K'

(j -> oo) (11)

for all compact sets L C G. Finally, we would re-label Pk(j) = Pk(j(v)) and this would
conclude the proof. With this aim, the control property of T comes anew to our help.

• • •} C H for which

sup |(77»)(z)| <
2

(1 -> oo)-
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Fix an increasing sequence of comact sets Lv C G (p G N) with the property that 
every compact set L C G is included in some Lv (see for instance [3(J, Chapter 13]). 
By Lemma 2.2, we have for all compact sets L C G, M C C that

sup sup |S(y>,<,Pi-(j))(z) ֊ S(^,0,PMj))(z)I 0
<€L։€A/

(j ֊> oo)- (12)

Given y G N, there exist > 0 and Mv G .M(G) such that supz€K- |(77i)(z)| < l/v 
for every h G £ with supxeAf |/i(z)| < &v՝ Fr°m (12)» there is j(p) € N (by induction, 
it can be obtained j(l) < j(2) < • • •) with

SUp |S(V?, C, Pk(J(i/)))W ֊ 0, P*(j(i,)))(*)| < <k (Cei„). (13)

Let us prescribe a compact set L C G. Then there is pq G N such that L C Ly for all 
v > pq. Consequently, (13) and the control property give us for all p > pq that

sup sup |(T(S(^,C,Pfc(j(v))) ֊ 5(<p, 0,pfc(j(„)))))(z)|

< sup sup |(T(S(^,C,pt(>(։,n)-S(^,0,Pk(>(lz)))))(z)| < ֊֊>0 
CC-L.. zC-K P

(p —> oo).

Thus, (11) is derived, as required, and the proof is complete.
We conclude the paper by gathering a number of comments concerning Theorem 3.1 
and its proof.

Remarks 3.2. 1. Observe that the proof of the last theorem is rather constructive, 
in the sense that it is not based on Baire-category arguments.

2. A closer look at the proof reveals that one can weaken slightly the hypothesis 
of denseness of the range of T. In fact, it is enough to assume that T(£) is dense 
for the topology on £ defined by the uniform convergence on all sets in A4(G). For 
instance, if a € £ and 0 a 1 ({0}) C G, then the multiplication operator Afo has 
not dense range but it still satisfies the conclusion of Theorem 3.1.

3. In the case that d(S) — 1 our theorem remains valid if the Jordan domain 
G is replaced by, more generally, a bounded domain G with G = G՛ and G? 
connected. Indeed, in step 1 we still can find Jordan domains Gn with G C Gn and 
Gn A = 0 (n G N); then one would take 6n := min{l, dist(G, <9Gn)} to make the 
adequate estimations. Finally, in step 6, from the application of Ostrowski’s theorem 
it follows that the largest domain contained in G -that is, G°- is the domain of 
holomorphy of p. But G = G°, so p G Ht(G). The remaining steps of the proof 

may stay unchanged. Consequently, we have obtained the one-dimensional case of
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Siciak’s theorem mentioned in Section 1, hut enriched with lacunarity and universality 
properties.

4. Concerning (A), even in the familiar case G = 0, £ = 0 one may well have 
for a function <p € that S(y>, 0,n) -ft (n —> oo) in A°°(1D)). In fact, there are 
functions E A(D) such that its sequence of Taylor polynomials at the origin does 
not converge to in A(ID>) (that is, uniformly on D). Only it is true that <p(rz) —> ip(z) 
(r —> 1՜) in A(D) for all <p 6 A(D), see [8, p. 28G]).

5. Concerning (B), we may wonder whether the compact sets K might be allowed 
to satisfy merely K Cl G = 0 instead of the stronger condition K Cl G = 0. The answer 
is negative. In fact, we cannot even construct a universal function <p G A(G), see [25, 
Proposition 5.6].

Резюме. В работе рассматривается голоморфная функция в жордановой 
области (7 комплексной плоскости, все производные которой непрерывно про
должены до границы дС, являющейся естественной границей функции <р. Далее, 
определяется действие некоторого класса операторов на функцию и исследуют
ся некоторые универсальные свойства явления сверхсходимости.
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