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The paper shows for several cases of compact, convex sets K that G(z) = 1/z2 is not a 2-dimensional Haar space generator for K. implying that it is not a universal Haar space generator for K. 1 he above G is not a 3- dimensional Haar space generator for all regular polygons with smoothed vertices. The paper contains an overview of the joint work of Walter Hengartner and the present author.

§1. INTRODUCTIONWe start by explaining what a Haar space is and mention some of its properties. Let C denote the field of all complex numbers and let K C C be a non empty, compart subset of C and X = C(K) the space of all continuous, complex valued functions equipped with the uniform norm ||/|| = max|/(z)|.ADefinition 1.1. With the above terminology let n € N = {1/2....} be hxed and
tj.tkEK. = 1.2,...,n. (1.1)Any n-dimensional linear subspace V of C(K) will be called a Haar space (Alfred Haar, Hungarian mathematician, 1885-1933) for K if the interpolation problem

= ty« J =An obituary including a photograph has been published by Bshouty & Fournier [1|.



14 G Optetlias a unique solution h € V. »Let W c X be a non empty but otherwise arbitrary set and f € A. An 
approximation problem consists in finding all w € W with w € Fw (/) where

Pw (/) = (w : II/- w|| = inf ||/-w||}. (1.2)
The set Pw(f) may be empty or contain several elements. All elements w E Av(/) will be called best (uniform) approximations of / with respect to W. W.՝ arr mainly interested in the case where Pw(f) contains exactly one element for all f, which means that the approximation problem is uniquely solvable for all / € X. In this case /’n X ►—♦ W is a mapping, called a projection or a projection map. Thr approximation problem will be called linear if W is a linear subspace of A՜ with finite dimension. The importance of Haar spaces is expressed in the following theorem.
Theorem 1.2. Let V c X = C(K) be an n-dimensional linear subspace of X. Then 
the following statements are equivalent :
(a) V' is a Haar space for K.
(b) Let hi.h;.........be a basis for V. Then the matrix

M = (hj(tk)), J. k = l,2,...,nis non singular for all choices oft* € K. k = 1,2,..., n which obey (1.1).
(c) All elements v € V{0} have at most n - 1 zeros in K.
(d) Each element f E X has a unique best (uniform) approximation in V.Proof : Meinardus |7]. 1967. pp. 1 19, Haar [4], 1918.Example 1.3. (a) Let K C '֊ and let fln_i be the n-dimensional linear space of all polynomials of degree at most n - 1 with complex coefficients. Then, fln_j is a Haar space of dimension n for all K with sufficiently many points.(b) Let K C C and 0 € K. Then V = (x,z3..........z2”՜1) is an n-dimensional linearspace which is not a Haar space for K. By (...) we understand the linear hull (also called the span) of the elements ... between the brackets.$2. SHIFT GENERATED HAAR SPACESLet K C C be non empty and compact and let t} E C, j = 1,2,. ,.,n be mutually distinct.Example 2.1. In this example we define two shift generated linear spaces ofdimension n ;
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Shift generated Haar spaces on track fields 45W = ֊ t|)։),exp(-(z - t։)։)..........exp(-(z - t«)1)). z £ KIt is easy to sec that V is a Haar »pare if we choose all t, g X. regardless of the definition of K. The only restriction on K is that it contains sufficiently many points. The second space W is a Haar space in case K C R and it is in general not a Haar space if K C C. This is implied by the periodicity exp(z) = exp(z + 2kni) for all x g C and all k £ IL. Both spaces. V. W are shift generated, V by Glz} = - and W by G(z) = expt-*2) >n the »ense that they coincide with
Vn = (G(z-ti),G(z-t2)..........G(z-։*)), ։£K, (2.1)

where in the case of W the multipliers of the span have to be restricted to R.The question which functions G generate (real) Haar spaces by applying (2-1) was posed by Cheney and Light [2]. p. 76.Definition 2.2. Let K C C be non empty and compact and let G : ? \ (l)| •—* _ be a function defined on C \ {0} with values in C.1. Let n € H be fixed. The function G will be called an n-dimensional Haar space generator for K if for each set of n pairwise distinct points t։. tj....t„ € 2\K(i.e. outside of K) the functions hj defined by hy(z) = G(z - t,), j = 1.2.........nspan an n-dimensional Haar space for X.2. The function G is called a universal Haar space generator for K if G is an n-dimcnsional Haar space generator for X for all n € J I.The set of universal Haar space generators is not empty. Take (7(z) = * and refer to 
V of Example 2.1. Slightly more general is the following example of a universal Haar space generator G :

G(x) = rap(°Z t*l. a, teC. (2.2>It is easy to show, that the space defined in (2.1) for this G is a Haar space for all n and all K (non empty, compact, sufficiently many points).$3. SHIFT GENERATED HAAR SPACES ON DISKSIn our first paper Hengartner and the present author (5) investigated the case where K = {z G C : |z| < 1) is the closed unit disk and G G H(C{0)). which means that 
G is holomorphic on C with the possible exception of the origin. We also say that G is an analytic Haar space generator, tacitly assuming that G is defined on J with the exception of the origin. We obtained the following main result.Theorem 3.1. Let K be the unit disk and G G H(C(0|). Then. G is a universal 
Haar space generator if and only if G is of the fonn(2.2).



46 G. ()pfetFor the proof we proceeded stepwise. First wc assumed that G is a one dimension*] Haar space generator which is equivalent to the fact that G(z t) has no zeros in 
K for all t £ K. Then we assumed that G is a one and two dimensional Haar space generator, etc. In this way wc found the following surprising result.Theorem 3.2. Let G t H( C{0)) be an n-dimensional Haar space generator for the 
unit disk for n - 1. 2. 3. 4. Then G is a universal Haar space generator. This result is 
best possible in the sense that 4 cannot be replaced by a smaller number.՜
We have always assumed that G is holomorphic on C{0). If we would admit entire function- for G (i.e. holomorphic on the whole of C). then our proofs show that we would not find any universal Haar space generator. Thus, the hole in the domain of definition for G is essential.§4. SHIFT GENERATED HAAR SPACES ON GENERAL COMPACT SETSIn a second paper Hengartner and the present author [6] investigated the case of a general compact set К 6 C. Wc found the following main result.
Theorem 4.1. An analytic universal Haar space generator G for an arbitrary, non 
empty, compact set К (with sufficiently many points) must be necessarily of one of 
the two forms : \ r՝—■*' ж. expfaz +.6)

<ад=—-------— or (4.1). exp(az + b) _
G(z) = a, beC. (4.2)Dy K՝ we denote the interior of K. by № we denote the closure of №. In order to prove Theorem 4.1 we had to distinguish between the following two cases : К \№ /0 and К = №.The first сам would apply if K° is empty. An example is a segment S in C :

S = [z։. z2) - (z : z = (1 - A)zj + Az2, A € [II. 1||.

We have found an important additional information for the case (4.2) of Theorem4.1. ? mww
Theorem 4 2 An analytic universal Haar space generator G of the form (4.2) 
in Theorem 4.1 is possible only under the following additional conditions for 
K :
(i) K =
(ii) K is convex,
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(Щ) the boundary dK of К has no corner,
(iv) К is not an ellipse (including disks).Actually, the authors conjectured that сале (4.2) will never happen. It was already shown by Hengartncr and the present author [6]. Lemma 1.6. part 1, that сале (4.2) can be reduced to the simpler case

G(z) ֊ z # 0. (4.3|Conjecture 4.3. Let K have the properties mentioned in Theorem 4.2. Then G defined by G(z) = Jy is never a universal Haar space generator. It should be repeated that the conjecture is true in case K does not have the properties mentioned in Theorem 4.2. In order to prove the conjecture it is sufficient to prove, that G is not an n-dimensional Haar space generator for one specific n > 1 since G is always a one dimensional Haar space generator (G is non vanishing for all z # 0). So it might be of interest to study some special cases, e. g. a track field.|5. TRACK FIELDSA track field is a sort of oval which in our model will consist of a rectangle adjoined by two halfdisks. For two given positive reals c.dgR let
R(c,d) = {z € 0 : |Rz| < c, |3z| < d}

be a rectangle, where ft, 9 stand for real part, imaginary part, respectively. Now define two halfdisks
D( = {z G C : |z + c| < d. Rs < -c}, DT = {z € C : |z - c| < d, Hz > c}.

Then, a track field is defined by
T(c.d) = R(c,d)U Di uDr, c > 0. d > 0. (5.1)

Apparently. T(c, d) is the closure of its interior points, is convex, is not an ellipse and the boundary has no corner. All conditions of Theorem 4.2 are satisfied. One example of a track field is shown in Figure 1.Instead of putting the half disks on the left and right side of the rectangle R(c.d) we could have put half disks on top and on the bottom of the rectangle. However, n-dimensional Haar space generators G of the form (4.3) are invariant under transformations of K of the type aK + 0 where a € C \ {0} and 0 € C, [6]. Lemmal.6, part 2. We want to show that G. defined in (4.3) is not a universal Haar
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Track field T (2.11

Figure 1. Example of track field for c = 2, d = 1.space generator for T = T(c.d). For this it is sufficient to show that G is not a 2- dimensional Haar space generator. We repeat three lemmata (Lemma 2.3. Lemma 2.4. Lemma 4.10) from [6] which arc valid for all compact sets K.Lemma 5.2.Let G defined by G(z) = -j. s. t £ K, a / t And let t>](z) = G(z - s), £r»j(z) = G(z - t|. Then V — (i»։, vj) is a Haar space of dimension two if and only if 
p{z;s.t) =

G(z — s) 
G(z-t)

z € K, s,t € C \ K. s / t (5.2)
is injective on K which means p(u; s.t) — p{v;3,t) implies u = v.Lemma 5.3. Let G(z) = ֊7 be a two dimensional Haar space generator for any 
compact K Then the function

F(t: u, i») = ( —— ) ։ f€C\K, u, u€K, u / v (5.3)
is injective in C \ KLemma 5.4. Let K Q C be a compact set containing the two distinct points 
zi՝z2 € K. If both points Uitj = 0.5(zj + Zj ± i(zi — zj)) do not belong to K. 
then G(z) = 1/z3 is not a two dimensional Haar space generator for K.This lemma is good enough to solve the track field problem.Fheorem 5.5. Let K = T(c,d) be a given track field, defined in (5.1). Then. 
G(z) = 1/z2 is not a 2-dimensional Haar space generator for T(c,d).



Shift generated Haar spaces on truck fields 40proof: Define zli2 = ±(c + d) which are both in K. Then, ut , - 0.5(z։ + z, ± i(z։ - aa)) = ±«(c + d) $ К. Lemma 5.4 prove« the theorem.We нес that in the limit case c = 0 the track field T(c,d) degenerates to a disk with radius d and the above proof would not work. In this case. Glz) - 1/z2 is indeed a 2-diniensional Haar space generator for the disk. Sec [6). Lemma 4.12. This is another proof for the fact that the dimension n is not continuous with reaper t to the monotone convergence of compar t sets ([6]. Lemma 1.6. part 5). But we have alw» shown in 5]. Lemma 19 that G(z) = 1/z2 is not a 3-dimensional Haar space generator lor any disk with positive radius.§6. ADMISSIBLE CONVEX SETSThe proof for the above case (Theorem 5.5) can be transferred to all convex sets for which Lemma5.4 is applicable. In that lemma two points u։ ։ = 0.5(zj + z2±i(z։ -z2)| arc computed from two given, distinct points zi,z։ € K. Define the two segments Si = [zj,z։], Si - [utiU2]. It is easy to see that - «» = ։(z։ - z2) and («1 + ։‘2)/2 = (zj + Zj)/2. For the segments that means that they are diagonals of a square.Let us denote this square by Q(z։,z2). It is that square whose one diagonal is the segment Si = [zj.zj]. Lemma 5.4 now says that G(z) = 1/z2 is not a 2-dimensional Haar space generator for a compart, convex set К if there arc two distinct points Zj.z2 € К such that the other two corners of the square Q(Z|.z2) are outside of A՜Definiton 0.1. Let A' C C be a non empty convex set. W<՝ call A՜ admissible if there are two points Zi.z2 6 K such that the square Q(zj, z2) defined above has the property that the two other corners of Q(zi.z2) are outside of K.Au example of an admissible set (an ellipse) is sketched in Figure 2. Let △ be the regular (equilateral) triangle with the corners (-1.0), (1. 0). (0. vz3). Then. A is admissible. To see this, choose z։ — 0 € △. z2 = v'S* € Then. u։ = 0.5v/3(-l + t), u2 = 0.5\/3( 1 + «) are both outside of △.Iheorem 6.2. Let P„ be a regular polygon with n > 3 vertices. (i) Un is odd. then is admissible, (ii) If n is even. then (a) Pn is admissible if n is not divisible by 
four, (b) Otherwise (i.r. n is divisible by four) Pn is not admissible.Proof : Assume that the vertices of Pl։ are represented by - exp(^~h J - 0» 1,...»n - 1. Let n be odd and let nx = (n — 1 )/2. nj = (n+ 1 )/2+ Then n2 - nx = 1. Let zx = V0| and z2 = 0.5(r>M, + n„ J. Clearly, Xi G P.. and the convexity of Pfl implies ’2 € P„. The two other corners of Q(zi,xa) arc Ujj = 0.5(zi 4 z2 1 i(z։ and iliry are outside of Pn. Let n be even. We use mainly the same construction
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U»

«1
Example of slim convex set

Figure 2. Example of an admissible set (ellipse).
Let z\ = wo, z2 = Since Z\.Z2 are both vertices located on the z-axis. we have U| 2 = ±i. In case n is divisible by four, ui coincides with vertex un/4 and uj coincides with vertex i'a/4+n/2՛ ^ase n is not divisible by four, the two points ui,uj arc different from vertices and are therefore necessarily outside of Po.The general theory says that convex sets K with corners never have G(z) = 1/z2 as universal Haar space generators. So polygons are actually not of interest. However, we may think of slightly perturbed polygons where the corners have been smoothed The problem could be solved if one could prove the following conjecture.Conjecture 6.3. Let K CC be a 

(i) K=K\
compact convex set with the following properties :

(ii) the boundary OK of K is smooth.
(Hi) K is not admissible.

Then, G(z) = X/z2 is not a 3-dimensional Haar space generator for K and thus, not a urn versa/ Haar space generator for K.



Shift generated H<«ar spaces on track field» 51Examples different from a disk, satisfying (i) to (iii) are according to our Theorem 6.2 regular polygons with n = 4k, k — 1,2,... vertices with (slightly) rounded corners. \Ve will show that G(z) = 1/z2 is not a 3-dimensional Haar space generator for all such regular polygons. We start with the following theorem.Theorem 6.5. Let Q — {z : |J?z| < 1, |$z| < 1} be a square and Q the same 
equate with rounded corners (e.g. by using small circular arcs near the corners). 
Then G(z) = 1/z2 is not a 3-dimensional Haar space generator for Q and thus, not a 
universal Haar space generator for Q.Proof : We show that Vj = (G(z — f j). G(z — tj). (?(z — tj)) is not a Haar space for suitable shifts f3.f3.f3. We take t3 = exp(-2ir«/3)f։ =: at։.t3 = exp(2»«/3If։ = M։ and leave f։ as a real parameter, to be suitably adjusted. One element in VS is1 a2 62 1 a1 b2“ (s-tj)1 + (z-t3)’ + (*-h)a ~ (*-<։)* + * (z֊bti)2Since ab = 1 we have

W(Z) (z-h)a + (bx֊t։)։ + (az֊tif
Now. t>(z) = 0 if and only if z € {z1.z3.z3) where za = -l/2fj. j - 1.2.3. If we choose f։ = 1.2. then <3,3 = -0.6 ± 1.0392«. Thus, f 1.3.3 £ Q For the zeros we obtain z։ = -0.9524, z2.3 = 0.4762 ± 0.8248« which are all in Q.It should be observed that the above proof will work also for values of f։ which are slightly different from the given value 1.2. For t։ € [116,1.26] the proof still works, but for f։ < 1.15 and t > 1.27 the proof does not work. Nevertheless, the idea of the proof is good enough to settle the problem for all regular polygons. It should be noted that this proof is adapted from [5]. Lemma 19.Theorem 6.6. Let P„ be a regular polygon with n > 3 vrrti< < > and P.. th՛ amc 
polygon with slightly rounded vertices. Then. G defined by G(z) = I/s* is not a 
universal Haar space generator for Pn.Proof ։ We only need to show, that G(z) = 1/z2 is not a 3-dimensional Haar space generator for Pu-i k > 2. The case P\ was already settled in Theorem 6.5. All other cases arc settled by Theorem 6.2. We use the same proof as for Theorem 6.5 and assume that the vertices have the form Vj = x/2exP ( ^T ) CXP ( -֊y )• 7 = 0,1,...,4k - 1. This form guarantees that the vertices of the square Q defined in Theorem 6.5 arc included in that definition of the vertices. Also note that all polygons are included in the centered disk of radius \/2. Now we refer to the proof ul



r»2 G OpferTheorem 6.5 and put tj = 3/2. Then tj.j = 3/4( —1 ± v^») «nd |f2 j| = 3/2 Hence, all shifts ft 2 3 are outside the disk of radius \/2 and thus, outside of all P„. The zeros zi = -3 • 2՜*/3 = -1.1906, z1>3 = 0.5953 ± 1.0310« are inside P։ and inside P։2. We have Pi C Pi i C P20 ■ • ՛ and P9 C Pie C Pjs • • and therefore, the zeros arc all inside of P^k. for all k > 2.§7. EXTENSION TO UNBOUNDED SETSIt is interesting that even for non compart sets in C some analogue results can be derived However, the class of continuous functions has to be restricted such that the uniform norm is still (finitely) defined. The results of this section are by Maude Giassou Waller Hengartner and the present author. [3. 2003|. Let F C C be non empty aud closed. We will restrict the continuous functions to the cases where
II/IIf = sup |/(z)|

is still finite. For this purpose it is sufficient to require that
Jim /(z) = 0. rÇF, x-400 (7.1)

We will denote the class of continuous functions for which (7.1) is valid by C°(F).There is the following basic theorem.Theorem 7.1. Let F C C be non empty and closed and V an n-dimensional linear 
subspace of C°(F). The approximation problem has a unique solution in V for all 
f € C°( F) if and only if V is a Haar space for F.Proof : [3]. Theorem 1.2.It should be noted that the above theorem is not valid for the larger class of continuous and bounded functions. There is a counterexample in [3], Example 1.3.Theorem 7.2. Let F C C be non empty and closed and

-a: +tG(z) = ------- and ||ea։ IIf < 00 a, 5 E C, z / 0.Then G € H(C{0) ) and G is a universal Haar space generator for F.Proof : [3|. Example 1,5.The proof is actually straightforward, and depending on F there is a table [3. Tablel] showing the actual restriction of a induced by ||e°"' ||p < 00. To mention two examples.
F ~ ^+- 1 hen ftl«) < 0. In case F = {z : |z| > /1} for a positive P, we have u = 0.



Shift generated Иллг spaces on track fields 53There are several theorems in which universal Haar space generators are characterized for closed, but unbounded sets. Let e.g. F contain {z : |z| > R), then under some additional conditions on F a universal analytic Haar space generator must necessarily have the form G(z) = 1/z ([3]. Theorem 4.5).Acknowledgments. The author thanks Professor Ron B. Guenther. Oregon State University. Corvallis. Oregon. USA for reading this manuscript and giving advice for improvements. Thanks go also to Dr. Наук Mikayelyan. Max Planck Institut. Leipzig. Germany who provided the translation of the abstract into Armenian language.
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