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STABILITY PRINCIPLES AND APPROXIMATION PROBLEMS 
IN VARIATIONAL CALCULUS

Peter Kosmol, Dieter Muller-Wichards

Universität Kiek Germany, Hamburg University of Applied Sciences. Hamburg

Lhe problem of pointwise minimization of the Lagrangian is approached 
by a simultaneous optimization with respect to both state and control 
variables. The Legendre-Riccati condition ensures the existence of an 
equivalent convex variational problem, making possible application of 
the corresponding stability principles. 1'his approach also provides an 
elementary access to the fundamental theorems of variational calculus, 
without employing the theory of Helds of extremals. Applications are in 
the problems of modular and parameter-free approximation of time-series 
data by monotone functions. We present a method, based on variational 
calculus, to determine a smooth monotone function that approximates a 
given time-series data in the least squares sense.

5 1. INTRODUCTION

An important field for the application of stability principles of optimization theory is 
the calculus of variations. In the context of control theory, the problem of establishing 
the continuity of the control by using Pontrjagin's maximum principle - leading to a 
value of the control for fixed i - reduces to a stability question for finite-dimensional 
optimization. In our approach of pointwise minimization of the Lagrangian, we 
employ a simultaneous optimization with respect to both state and control variables. 
It in addition the Legendre-Riccati condition is satisfied, a condition that allows 
us to ensure the existence of an equivalent convex variational problem, we can 
apply corresponding stability principles, whose results carry over to the solution 
of the original problem. This approach also provides an elementary access to the 
fundamental theorems of variational calculus, without employing the theory of fields 
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of extremals.
In the sequel we shall consider variational problems in the following setting : 
let L : R2n + ։ -» R be continuous. The restriction set S for given a,0 e R" is a set of 
functions that is described by

|S C {։ € C‘[a. b)."| z(a) = a. x(6) = 0}.

The function f : S —> ÎP to be minimized is defined by

/(x) = f 
J a

The variational problem with fixed endpoints is then given by

Minimize f on S.

The function f is also referred to as the variational functional.

In the subsequent discussion we introduce a supplement in integral form that is 
constant on the restriction set. This leads to new variational problem with a modified 
Lagrangian. The solutions of the original variational problem can now be found as 
minimal solutions of the modified variational functional. Because of the monotonicity 
of the integral, the variational problem is now solved by pointwise minimization of 
the Lagrangian with respect to the x- and z-variables for every fixed t, employing the 
methods of finite-dimensional optimization.
This leads to sufficient conditions for a solution of the variational problem. This 
general approach does not even require differentiability of the integrand. Solutions 
of the pointwise minimization can even lie at the boundary of the restriction set so 
that the Euler-Lagrange equations do not have to be satisfied. For interior points the 
Euler-Lagrange equations will naturally appear by setting the partial derivatives to 
zero, using a linear supplement potential.

§2. EQUIVALENT VARIATIONAL PROBLEMS

We now attempt to describe an approach to variational problems that uses the idea 
of the Equivalent Problems of Caratheodory (see [5], also compare Krotov (15] and 
Klotzler (?|) employing suitable supplements to the original minimization problem. 
Carathcodory constructs equivalent problems by use of solutions of the Hamilton- 
Jacobi partial differential equations, in connection to the corresponding field of 
extremals, which are not needed in Klotzler's approach. In the context of Bellman s
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Dynamic Programming (sec [1]) the supplement can be interpreted as the so-called 
value function. The technique to modify the integrand of the variational problem 
already appears in the works of Legendre in the content of the second variation 
(accessory problem). For further reference also see [?).
The principal idea in this treatise is. to specify conditions that guarantee the existence 
of equivalent convex problems. As equivalent problems have identical extremals, 
the results obtained in the presence of convexity carry over to the solutions of the 
original problem. In this paper we shall demonstrate that explicitly given quadratic 
supplements are sufficient to yield the main results (in particular the Fundamental 
Theorems 1► -

Definition 2.1. Let F : [a. 6] x P" -> f? with (t.i) -> F\l.x) be continuously 
differentiable, and let F„. Frl. Ftr exist and be continuous. Then we call F a 
supplement potential.

Lemma 2.2. Let F : [a. b] x R" -> fi be a supplement potential. Then the integral 
over the supplement

[<F,(t,z(t)),i(t)>+Ff(f,z(t))]dl

is constant on S.

Proof : It suffices to see that 

fl<F' (t.r(O).r(f)) + F,(t.z(t))l dt = F(b.0) - F(a.a).

An equivalent problem is then given through the supplemented Lagrangian L :

L:= L-{F„i)- Ft

5 3. PRINCIPLE OF POINTWISE MINIMIZATION

The aim is to develop sufficient criteria for minimal solutions of the variational 
problem by replacing the minimization of the variational functional on subsets of 
a function space by finite dimensional minimization. This can be accomplished by 
point-wise minimization of an explicitly given supplemented integrand for fixed t 
using the monotonicity of the integral (application of this method to general control 
problems was treated in (14)) The minimization is done simultaneously, with respect 
to the z- and the z-variables in K'*. This is the main difference as compared 
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to Hainilton/Pontrjagin where minimization in done solely with respect to the i- 
variablcs. methods, which lead to necessary conditions in the first place.

Theorem 3.1 (Principle of Pointwise Minimization). Let a variational problem with 
Lagrangian L and restriction set S be given. If for an equivalent variational problem

Minimize g(x) := £(։(«),

where
L = L-(Fr.i)- Ft.

an x‘ G S can be found, such that for all t £ [a. b) the point (pt.qt) := (r*(t), i’(t)) 
is a minimal solution of the function (p, q) •-> L(p, q.t) =: ¥>t(p.q] on R2“.
Then x’ is a solution of the original variational problem.

Proof: According to Lemma 1.5. the integral over the supplement is constant.
It turns out (see below) that the straight forward approach of a linear (with respect 
to z) supplement already leads to the Euler-Lagrange equation by setting the partial 
derivatives of L (with respect to p and q) to zero.

§ 4. LINEAR AND QUADRATIC SUPPLEMENTS

Certain results of the classical theory are related to a linear supplement, where the 
supplement potential F has the structure

(1)

and A £ Cl[a, b]n is a function that has to be determined in a suitable way.
As F,(t,z) = A(t) and F։(f,z) = (A(t),z) we obtain for the equivalent problem :

Minimize y(x) = / L(r(f),i(/),t) - (A(t).i(t)) - (Â(t).z(*))df on S (2) 
Ja

Let L : R3n + J —> ]R be continuous and continuously partially differentiable with 
respect to p and q. If for fixed t € Mi a point (p։.qt) E P?" is a corresponding 
minimal solution, then the partial derivatives of ft have to be equal to zero at this 
point. This leads to the equations :

Lp(pt՝qt>0 - ■MO
I,(p»-<?r.O = A(t).

(3)

(41
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The point wise minimum (pf.<?c) yields a function t »-4 (pt,Qt). It is our aim to show 
that this pair provides a solution x* of the variational problem where x’(t) := pt 
and i*(t) = qt- In the spirit of the supplement method this means that the global 
minimum is an clement of the restriction set S. The freedom of choosing a suitable 
function A is exploited to achieve this goal. yAwH

Definition 4.1. A function x* 6 C’lu. b" is called an extremal, if it satisfies the 
Euler-Lagrange equation :

at
Vt G (a.b]

An extremal x* is called admissible if z* Ç S.
It is our primary aim to specify» under what conditions an extremal is a solution of 
the variational problem. This is the case for convex problems, i.e. for Lagrangians 
where L(-.-J) is convex for all t G [a, 6]. Obviously, then also linearly supplemented 
problems are convex, and vanishing of the partial derivatives of the Lagrangian is 
sufficient for a minimum. As equivalent problems have identical extremals it suffices
for a itive answer to the above question to identify an equivalent convex problem.

Theorem 4.2. Every extremal for the Lagrangian L is an extremal for the 
supplemented Lagrangian

L := L - (Ft,x) — Ft

and vice versa, where F is a supplement potential.

Proof: We have :

L* — Li ~ Er and Lz — Lx — iTFTX — Ftr,

Moreover,

-Fr(t,։(tn = FTi(t,x(t)) + i(t)TF„(t,®(i)).

If x satisfies the Euler-Lagrange equation in integral form with respect to L, i.e.

LTdr + c,

then there is a constant c such that

y LTdr 4֊ c,
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which we show using the continuity of Ft :

= Li ֊ F, 4- F,(z(a).a) - c = L* - c

Historically speaking, one would be satisfied to be able to answer the above 
fundamental question at least in a local sense. It turns out that such a convexification 
can already be realized through quadratic supplements in order to obtain the classical 
fundamental theorems of variational calculus.

։ •

Definition 4.3. A point z’ E S is called a strong local minimal solution if there is 
an « > 0 such that for all z E S with ||z(t) ~ ։’(t)|| < * for *11 f E [a. 6) we have for 
the variational functional /(։*) < /(z).
A point z* € S is called a weak local minimal solution if there is an f > 0 such that 
for all z E S with ||z(t) - z*(t)|| + ll®(0 “ < f f°r 1 € [a. b] we have for the
variational functional /(z*) < f(x).
For T = [a.b] the subsequent Lemma leads to conditions on the Lagrangian for 
obtaining a weak local minimum.

Lemma 4.4. Let T be a compact subset of R՞1 and let L : P.n x P" x T —♦ R and 
let '= L(’,՝,t) be twice continuously differentiable, and let £ : T —» ?'՞ with 
t >-¥ (pt.qt) be continuous, where (pt.qt) SIICL that for all f € T

1. Lf(pt.qt,t) = Lf(Pt. Qt.t) = 0
2. the Hessian <f>'t (pt.qt) positive definite

, Then there is a 6 > 0 such that

1. (P«-9r) is minimum of L(-,-,t) on Kf(t) := (pt.qt) + A’jfO. 0) for all t E T
2. L is uniformly strongly convex on K := IJieT՜{(p.t)|(p.q) € K*(0)-

Proof : As the set Si := {(p. q) E R2n|||p||2 + |kl|2 = 1| » compact and as 
t >֊-» <t>'t(Pt,qi) is continuous on T there is a positive c E R such that for all t E T

^”(Pt՝ ?։) (5)

n Sj, i.e. t »-♦ 4>'t{pt,qt) is uniformly positive definite on T, 
>et p > 0, then on the compact set in R3"*’ :

U *p(P-9‘-0
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WV have uniform continuity of (p. </.t) Hence there i» a a > 0 such that
for all (u. ։») € Ju(t) wr have

and hence on that set

Thus we obtain that (p. g) —> L(p, g,t) is uniformly strongly convex on A' for all 
t E T. i.e.

< -Z(p.ç.t) + - ^(||p- u||’ + I|ç ֊ v||2)
L & Z Z O

for all {p.q}. (u. ։<) € K and all t E T (see [9]. p. 39. Satz 4).

The above lemma assumes the perspective of pointwise minimization. If £.(•, •, t) is 
convex and the minima (p<. ) exist for every t € T and are unique, then, according to 
stability considerations, the mapping £ is continuous (provided that L is continuous) :

Theorem 4.5. Let the Lagrangian L be continuous, let L(-,-,t) be convex for aJl 
t E (a.6). and let (pt,g։) be the unique pointwise minimum for all t E [a,hj. Then 
C : T -֊» Rln with t <-> (p։.<Jt) is continuous.

Proof : This is an immediate application of Stabilitàtssatz 2 [8], p. 225.

Remark 4.8. If. in addition, the Lagrangian is twice continuously differentiable and 
the Hessian (for fixed t) is positive definite, then the implicit function theorem yields 
that £ is already continuously differentiable.

The following example shows that the convexity condition in the above theorem 
cannot be omitted :

Example 4.7. Let z : [0.1] x P: -♦ R with

z(t.s) := for t > 0 and

otherwise.

Apparently, z is continuous, in particular for t = 0 : let 6 >0 and s0 € R. Let 
|s - >ol < i and 0 < t < then |s - || > 1 and hence z(t,«) = 0 = z(0, s0).
Let further tj : [0,1] x R -» R with j(t, s) := s1 +«(t, s). The function g is differentiable 
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for t > 0 and |s - 11 < 1 and we obtain m a necessary condition for a minimum of 
the convex function g(t,-) restricted to the interval A := (} - 1. } + 1) :

0,(M) = 2»+2(|)’(,֊|) = O.

We obtain for the minima s(t) = [֊, ■ ֊ € (| - 1, | + 1) for t > 0 and s(0) = 0. For 
the function value we obtain for t > 0 :

g(ts(f)) = -(i + <3)2

and for t = 0 we have g(0,s(0)) = 0. As j(t,•) is nonnegative outside of It, the 
minimal solution s(t) is also a global solution of g(t, ■) for t > 0- Apparently neither 
the minimal solutions nor the minimal values converge to those of j(0, •).
If we define the Lagrangian in the following way : L(p,q,t) := g(p.t) + g(q, t) then 
Pi = s(t) and qt = s(t) for t € [0. 1] and are hence discontinuous at t = 0.

Remark 4.8. Below we will discuss the question, under what conditions a C1- 
solution x* of the Euler-Lagrange equations is a weak (or strong) local minimum 
of the variational problem. In that context the continuity of t ►-» (x*(t), x*(t)) is 
already implied. The positive definiteness of the Hessian will be guaranteed by the 
Lege i id re-Riccati condition. Finally, the necessary condition (gradient equal to zero) 
for a pointwise minimum of the Lagrangian, equipped with a linear supplement, leads 
to the Euler-Lagrange equation.

Definition 4.9. Let x* € Cl[a.h]" be an extremal, and let 

satisfy the strong Legendre-Clebsch condition, i.e. is positive definite on 
[a,b], then x* is called a regular extremal.

Remark 4.10. The Legendre-Clebsch condition, i.e. L°tr positive semi-definite on 
[a, 6). is a classical necessary condition for a minimal solution of the variational 
problem (see |6]).
The subsequent Lemma provides a tool to relate the Legendre-Riccati condition (see 
below) to the positive definiteness of the Hessian of the Lagrangian (compare with 
Lemma 4.4).

Lemma 4.11. Let M £ Z(RJ") be a matrix of the structure
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where A.C. D 6 L(P") Md D positive definite and symmetric Then M it positive 
(semi-) definite if Mid only if A - CT D~'C is positive (»emi-(definite.

Proof : Let / : R" X R" -» R dr fined by

/(₽•«):= (n ) ( = pT Ap+ 2qTCp +qT Dq

Minimization of the convex function /(p, •) yield« : 2Dq = -2Cp And hence

q(p}=֊DlCp.

By inserting this result into / we obtain :

ftp .?(p|) = pTAp - 2prCTD-lCp+ pTCTD~lCp = pTlA - CTD~lC)p.

Using our assumption A - CT D~XC positive (semi-) definite it follows that f(p,q) > 
f(P-QlP)) > 0 for p # 0 (/(p.fl(p)) > 0 in the semi-definite case). For p = 0 and q / 0 
obviously f(p. <?) > 0.
On the other hand, let M be positive (semi-)definite. Then (0,0) is the only (a) 
minimal solution of f Hence the function p -+ /(p, q(p)) has 0 as the (a) minimal 
solution, i.e. A - CrD~XC is positive (semi-(definite.

Definit ion 4.12. We say that the Legendre -Riccati condit ion is satisfied, if there 
exists a continuously differentiable symmetrical matrix-function W : [a, 5] -4 £(R") 
such that for all t G (a. 6] the expression

IS itive definite.

i;, ♦ nt + + tn («)

If the Legendre-Riccati condition is satisfied, we introduce a quadratic supplement 
potential 

F : [u. k] x R" -> J>

with F(t.p) - -|prW(f)p based on the corresponding matrix W such that the 
supplemented Lagrangian is strictly convex (see [13]).

1 heorem 4.13 (Fundamental Theorem). Let L : R" x R" x [a, 6] —♦ R be continuous 
Mid twice continuously differentiable. Then an admissible regulM extremal
z is a weai local minimal solution of the given variational problem if the Legendre- 
Riccati condition is satisfied.
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Proof : Let F(t.p) - - |prIV(t)p and let

20

i(p,f,t)» Hp^^)-{q.F^t.p)}~ F,(f.p) = Hp.q.t)- {q.Wp)- ’(p.Wp)

and let L{p,q,t] := L(p.q.t)- (A.p)— (A, p). Setting the partial derivative* of /,(• 11
to sero. yield« the Euler Lagrange equation« (see (4) and (5)) for L If r’ is an 
admissible extremal for L then also for L and vice ver«* (Theorem 4.2). Because of 
the Legendre Riccati condition and Lemma 4.11 the Hessian of L (and hence also of 
L) is positive definite. Lemma 4.4 then implies that x’ is a weak local minimum of 
the variational functional for L and hence also for that of L. a* the supplement u 
constant on S (see Lemma 2.2).
Using the subsequent

Lemma 4.14. Let A ; U —> R" be continuous. If there is r > 0 and a ball 
^(x0.r) C U such that (4x,x — Zq) > 0 for al! z € S(ro.r). then the nonlinear 
equation Az = 0 has a solution in TT(zo-r).

Proof : Otherwise Brouwer’s fixed point theorem applied to the mapping

( Az
liMTiLr10

would lead to a contradiction.
we will be able to establish that a weak local minimum is already a strong local 
minimum if the Lagrangian is uniformly convex with respect to the q-variable. This 
is due to

Lemma 4.15. Let T be a compact subset of R"* and let L : ₽" m R" x T -4 R and 
let L be continuously partially differentiable with respect to q
Let ( : T -4 R2" with t »-4 (pt.qr.t) be continuous with the following properties 
there exists a 6 > 0 such that for all t € T 

!• (pt.fi) i’» minimum of H , on Kj(t) := (pi.gi) + /G(0.0).
2. (a) L{p, t) is convex for ||p - p»|| < 6

(b) Up,. •, t) is locally uniformly convex for ||q - q(|| < 4 in the following sense 
there is a module-function, independent oft such that

L,(pi.<J.t) - L,(Pt.q« <) > ’’(119 ֊ ««ID-

Then there is a d> 0 such that for all p € R" with ||p - pf || < d. for all q C ~ . and 
for all t € T we have

L(Pt.qt.t} < L{p,q,t}.
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Proof : As the set К := Щт{(₽?• 0l< € ’» bounded in R2՞*՞1, Ц »
uniformly continuous on 7^. i.e. there is a 0 < d < 6 such that for all ||p — pill < d 
and all (p.?l € K* we have : * '• ■

|£,(p».?.t) - £,(p.?.0I < « < r(^/2) 
6/2

Let p := 6/2 and SP := {? € »"III? ֊ ?i|| = pb Then for all p e K{pt.d) and q € Sp 
we obtain : • ՛ . < • ՝it

(L,(p.?.t).?-?») = (£«IP?-<)՜ I,(p«.?.O.?-?t> + (b,(p».?.f).?-?,) >

> ’•(II? - ?»ll) ~ (₽• ?• П ~ ^(рь?« *)»? — ?»)l >
> ’■(II? - ?»ll) ֊ l|i»(p.?3) - Ц(р».?Л)||||? - ?dl > ’■(II? - V, 11) - e||? ֊ ?(|| =

= ’’(p) - « • p > 0.

Then, according to Lemma 4.14 there is a ?(p,f) € K(?».p) with the property 
L,(p.?(p, t),t) = 0. hence ?(p.t) is minimum of £(p,-,t). Suppose now there exists 
a (p.?l such that ||p ֊ p,|| < d where L(pt,qt.t) > L(p,q,t). Then, because of
Ip. ?(p. f))€ Kt(i) :

L(p».?։.f) < L(p.?(p.t).f) < h(p,?.t) < L(pt.qt.t),

which is a contradiction.
It appears that local uniform convexity of the Lagrangian in a C1-neighborhood of 
an extremal is guaranteed through the Legendre-Riccati condition (see [13]). Namely, 
the following theorem is true.

Theorem 4.16 I Uniform Strong Convexity of the Lagrangian) Let i’ be an extremal 
and let the Legendre Riccati condition be satisfied, then there is a 6 > 0 and a c > 0 
such that for all (p.?). (u. o) € Kr := K((x’(t), <5) and for all t € [a. b] we have

it.«) < 5 i(p.«. 0 + U(u... i) - ֊(IIP - -II’ + Ik - HI’)L L L L o

Theorem 4.17 (Strong Local Minimum). Let x* be an admissible, regular extremal 
and let the Legendre-Rjccati condition be satisfied. Besides, let there exist a k > 0 
such that for all f € (a,6] and all p with ||p — < * the function L(p.-,t) is
convex,
Then x9 is a locally strong minimal solution of the variational problem, i.e. there is 
a positive d, such that for all x € K := {x € S| ||x — z*||oo < d) we have :

L(x-(t).xe(lhOdt < L(x(t),z(t)J)df
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§ 5. approximation problems
As au application we consider a class of modular approximation problems in the 
following acnae : Let 4> ; ?2 —t R be a twice differentiable convex function with positive 
definite Hessian. let x € C2[o. 6) hr given and S := {t> € C2(a.6]|v(a) = v(B) = 0} 
We consider the approximation problem ;

minimize <»(x - v, i - i>)dt . v € S.

Then every admissible solution of the Euler Lagrange equation

d
—^(x - v, x - v) = <frr(x

is a strong solution of the approximation problem, in particular uniquely determined.

Example 5.1. Let a = 0 and b > 0 and let <fr(p, q) := pi2 4- q2 then for the Euler- 
Lagrange equation we obtain the linear second order ODE : 

with the solution

v ' sinh(t - r) ■ f(r)dr + i/(0) sinh t. 
0

where

v'(0) = sinh b
5.1. Parameter-free Approximation of Time-Series Data by Monotone 
Functions. In this subsection we treat a problem that occurs in the analysis of Time 
Series : we determine a parameter-free approximation of given data by a smooth 
monotone function in order to eliminate a monotone trend function from the data. In 
this way, investigations of cyclic behaviour of difference data (“Fourier-analysis") can 
be facilitated. In the discrete case, this type of approximation is known as monotone 
regression (sec [3], p. 28 f).

In addition to the data themselves, our approximation also lakes derivative^ into 
account, employing the mechanism of variational calculus :

minimize v - x)2 + (v - i)2dt on S.

where S := {v € 7ïCS։|«.fc)|v > 0).
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Remark 5.2. The problem under consideration is related to Example 51. However, 
on the one hand, the class of functions is larger (piecewise smooth), but on the 
other hand we impose the additional restriction that the approximating function is 
increasing.
We also have the transversality conditions : r)(o) = 0 = rj(fe) (see the existence 
discussion in subsection 5.2).

Linear supplement : F(t.p) = T?(t) •₽, then

•.»(•)) = Ft + Fp • v = rjv + T)i>. 
at

Using r/(a) = i)(b) - Owe obtain that the supplement is constant on S :

[ rp> + ijvdi = = 0-

Let L(p.q) := L(p.q)-T/p-T)q = |(x-p)2-»)p+ l(i-q)2-Tjq. Pointwise minimisation 
of L with respect to p and q is broken down into two separate parts :

1. inin{ j(i - p)2 - np|p € R} with the result : ij = p - x,
2. min{}{x - q)2 - G R>o}-

In order to perform the minimisation in 2, we consider the function j>(q) := 
j(i - q)3 - rjq. Setting the derivative equal to xero. we obtain for c := x + q :

V’, = q- i- q = <7֊c = 0.

For c > 0 we obtain c as the minimal solution of the parabola V’- For c < 0 we have 
q = 0 as the minimum of V' on P.>o because of the strict monotonicity of the parabola 
to the right of the global minimum. For c > 0 we obtain the linear inhomogeneous 
system of linear differential equations

For c(t) = x(t) 4֊ i)(t) < 0, this inequality holds, because of the continuity of c, on an 
interval /. i.e. v(t) = 0 on /, i.e. v(t) = 7 there. Hence rj(t) = 7 - r(t) on I, i.e.

»'*• - nUi) = / (1 ֊ *M)dT = 7(t - h) - / x(r)dr 
. . Jti

Algorithm (shooting procedure) : Choose 7 = v(a), notation : c(t) = x(t) + q(f), 
note : r/(a) = 0. Ml
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Start : c(a) - i(a) 
ifi(a) > 0 then »et t։ a. goto 1, 
if j(a) < 0 then set t0 — a. goto 2. 

]. solve initial value problem

/-։
v / \ 1 0/ \ u / \i

with the initial values q(tj), v(11), for which we have the following explicit 
solution» (see below)

*1(0 = = (v(t։) - ։(tj))»inh(t - ti) + n(ti)cosh(t - t։)-

v(t) = = x(t) + (»'(h) - i(l|))cosh(t - t։) + q(ti)sinh(t - t։)

Let to be the first root with change of sign of c(t) such that to < b. goto 2
2. jj(t) = v(to)(t - to) — z(r)dr + rj(toh Let t։ be the first root with change of 

sign of c(t) such that t։ < b. goto 1,
For given 7 = i>(a), this algorithm yields a pair of functions (rj-,. t»n). Our aim is, to 
determine a 7 such that i)-,(b) = 0. In other words : let 7 —► /(7) := (6). then we
have to solve the (1-D)- equation /(7) = 0.

Solution of Differential equation in 2 : Let <J>( t.) be a fundam> ntai system then 
the solution of the (inhomogeneous) system is given by

<J(t) = 4.(t)^ 4>-l(r)6(r)dr + 4>(f)D,

where D = $-l(ti)¥(<i). In our case we have the fundamental system 

*(') =
cosh t 
sinh t

sinh t 
cosh t

and hence
, ։. / cosh t sinh t \
* (l|=(֊Si..h< eo.l>J

which yields (using corresponding addition theorems) :

/cO8h(t-T) 8inh(t-T|\ 
\sinh(f — r) cosh(i — t) /

We obtain
*tt)= f («•«’M*-’՜) 8inh(f-rjW_'(;n<ir+

Jt \sinh(t-r) coshfl - r) / \ r(r) /
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/ cosh(t - h) *։nh(t - t>) \ /*?(*։) \
4 \ sinh(t - h) cosh(t — <i) ) \ v(t|) /'

i.e. *4
q(f) = J z(r) mnh(f - r) - r(r)co«h(< - r)dr+

+rj(t։) cosh(t - <։) + ®(h)8inh(t -1»),

w(t) = J i(r) cosh(t - r) - ։(r)sinh(t - r)dr+

4- i)sinh(f - G) 4֊ v(ti)cosh(t - tj)

The integrals can be readily solved using the product rule :

q(t) = (x(r)amh(t ֊ r))J։ 4֊ n(h)cosh(f -t>) 4֊ v(h)sinh(t - ti), 

v(t) = (r(T)cosh(t - r)]J։ 4֊ rj(h)s։nh(t - h) 4֊ v(fi)cosh(t - i։).

We finally obtain the following explicit solutions

rj(t) == (v(h) - x(h))sinh(t - G) + »/(ti)coah(t - t։), 

v(t) == r(t) 4- (v(*i) - x(#i))cosh(t - fj) 4- ^(ti)sinh(t - ti).

5.2. Existence. If we minimize the strongly convex functional /(։») := J*(v - z)2 4֊ 
(v - i)։dt on the closed and convex subset S of the Sobolev Space W2ll(a,6], where 
S ■= {։> € W,։ ։[a, b]|v > 0}, then, according to [8], p. 289. Satz 2. f has a unique 
minimal solution, which is in particular absolutely continuous (see [7], p. 35). In order 
to establish the existence of the function tj we make use of Pontryagin's Maximum 
Principle (see [7], p. 126 ff. compare also p. 208, Satz 1). Let

minJ(v, u):= / L(v, u)dt, v = u, 
J a

such that u(t) 6 (/ := R>o. h© = h։ = 0. We consider Pontryagin's function

H(v, u. T), A©) = q • u - A© ■ L(v. «)■

Let (։>.,u.) be a minimal solution of J, then there is a number Ao > 0 and an 
absolutely continuous function rj (not both identical to zero), such that the so-called 
adjoint equation :

q = -Ht = X0L, (v,,u.) = A0(v. - ։)

is satisfied, together with the transversality conditions

q(a) = r?(6) = 0.
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It turne out that in our situation AH > II, for suppose Ao = U. then q =- U and rjla) = 0. 
i.e. r/ = 0, a contradiction to the above cited theorem.

5.3. Smoothness Considerations. The adjoint equation now azurnes the form

r) = v. - x

which implies that q 6 C։[o. b] and c € C[a.b]. If x 6 C2[a.6j then c € С‘(ы.6]. 
According to Pontryagin's Principle, ii. is point wise maximum almost everywhere of 
the function H. As we have performed the pointwise minimization for all t Ç (u.A). 
according to the stability principle of convex optimization (see [8]), the resulting 
solution function v. is in C։[a, b) (L is continuous with respect to i).-

Реноме. Задача поточечной минимииции лагранжиана решаетга одновремен­
ной оптимизацией относительно обеих переменных состояния и контроля 
Условие Лежандра- Рикатти гарантирует существование эквивалентной выпук­
лин вариационной задачи, делающей возможным применение соответствующих 
принципов стабильности. Этот подход также допускает элементарное при­
менение фундаментальных теорем вариационного исчисления, не используя 
теорию экстремальных полей. Этот подход применяется в задачах модулярного 
и нспараметрического приближения обменных рядов монотонными функциями 
В статье предлагается метод, опирающийся на вариационное исчисление, для 
определения гладкой монотонной функции, которая аппроксимирует заданный 
временной ряд в смысле наименьших квадратов.
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