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SEVERAL UNCERTAINTY PRINCIPLES 
FOR TWO-STEP NILPOTENT LIE GROUPS

Pengcheng Niu and Sufang Tang

Northwestern Polytechnical University Xi'an, Shaanxi. People's Republic of China 
E-mail :lfish555@163.com

Abstract. Some Hardy's uncertainty principles are proved for two-step nilpotent Lie 
groups. The group Fourier transforms are considered.

§1. INTRODUCTION
There is a classical theorem due to Hardy (see (5j).

Theorem A. Let a measurable function f : R ■—♦ C satisfy

(i) |/(x)| < Ce-"’, ։€R.

and

(и) 1/(101 < у ей,

where C,a,b > 0 and f is the Fourier transform of f. If ab > I, then f = 0 
almost everywhere. If ab = 1, then f(z) = Ce՜""’. If ab < 1, then there exist 
infinitely many linearly independent functions satisfying (i) and (it).

Cowling and Price [3] and Hormander [6] established some general versions 
of Theorem A. Bagchi and Ray [2] extended the result of [3]. [6j to x , see the 
following Theorem B and Theorem C. In the sequel, for z € R , we denote 

G R"՜1 by ։/.
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Theorem B. Let f : R" •—► C be measurable and for some j fl < j < n)

(•) e‘"?u(r/)/(x)

(•»)

where a.b > 0, u. v : R"՜1 •—> C are measurable with u > 6 > 0, v > a > 0, 
where 6,tr are constants, 1/u € z/(Rn-1), p՜1 + p'՜1 = 1, 1/v € L’^R՞՜1), 
<7՜։ + = 1. If ab> 1, then f - 0 almost everywhere.

Theorem C. Let f e L’(R") and for some j (l<j<n), f and f satisfy

|/(։)| <

where p՜1 + p'՜1 = 1, u,v(> 0) e L։(R"՜1). If (ap)1/p(bq)l/’ > 2, then f = 0 
almost everywhere.

Recently considerable attention was devoted to extending forms of the uncertain­
ty principle to some non-commutative groups (sec [9] - [12])- There was a Hardy’s 
uncertainty principle for two-step nilpotent Lie groups in [1] :

Theorem D. Suppose that a and b are constants such that ab > 1/4, and 
that k and I are positive integers. Let f be a locally integrable function on 
N satisfying

[ (/(V. Z) 1(1 + |V|)֊kdV < Z € 0,
Jo

£ ll’A,<.(/)||op (1 + |p|)-ldp < C'r(A)'e֊6’lAl’, A € A,

where || • H«* denotes the operator norm and the meaning of the other 
notations are explained in the next section. Then f = 0 almost everywhere.

The purpose of this paper is to establish several uncertainty principles on two- 
step nilpotent Lie groups different from Theorem D. Now we describe the main results 
and give the necessary facts about the two-step nilpotent Lie groups in Section 2.
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Theorem 1. Let N be the two-step nilpotent Lie group. S(N) be the Schwartz 
space on N and f E S(N). Suppose that a.b > 0, 1 < q < oc and for some 
j(l <j < *)» / satisfies

(•) \f{V,Z)\ < Ce֊"ll<V2>ll\ [V.Z}£N.

e’b’r(lAl,+l''l։)|v(A/)|’||»A.p(/)||’HS5ym2mfl(A)l/2dpdÀ < oc.

where v : R4՜1 »—» C is measurable, v > a > 0 for some constant a and 
1/vE I’(R4-1), q~l + q-l = 1.

(1) If q = 2 and ab > 1, then / = 0 almost everywhere;
(2) If q >2 and ab > 1, then f = 0 almost everywhere;
(3) If 1 < q < 2 and ab > 2, then f = 0 almost everywhere.

Theorem 2. Let f be in S(N). Suppose that a,b>0, 1 < p < oc and for some 
j (1 <j < k), f satisfies

(•) ’ll<v^HI4|u(Z/)n/(K Ztf dVdZ < oo, (KZ)EN.

(»») e’t’(|A|’+l'*|ï)MÀ/)r||wA^(/)||’H5Syrn2raO(A)l/2dprfA< 3c.

where A / 0, u,v : R4՜1 •—> C are measurable with u > 6 > 0, u > <r > 0, 
where 6,<r are constants, 1/u € L* (R4՜1)» p՜1 + p'՜1 = L V® € L1 (R*՜1)»

q՜1 + q' 1 = 1.
(1) If q > 2 and ab > 1, then f = 0 almost everywhere;
(2) If 1 <q <2 and ab > 2. then f = 0 almost everywhere

Theorem 3. Let a.b > 0 and for some j(l < j < fc), / € satisfies

|/(K Z)\ < Ce՜**11’, (V, Z) e N,

(«)

where v € ZJ(R4՜*), p > 2, P՜1 + 9՜1 = L lf (oP)1/p(bq)1^ > 2. then / - 0 

almost everywhere.
The paper i> orgauued as follows : In Section 2 we recall the Lie algebras and Lie 

groups under consideration, including the group Fourier transforms. The importance 
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of the group Fourier transforms to the study of partial operators ou N is well known 
(see [8] and references therein). We will prove Theorem 1, Theorem 2 and Theorem 
3 in Section 3. Section 4 and Section 5, respectively.

In what follows, we often use partial Fourier transforms. If A is a subspace of B 
and f is a function in B, then we denote by FA the Euclidean Fourier transform of / 
with respect to the variables in A. Also we employ the “variable constant convention”, 
i.e. all constants are positive, but not necessarily equal.

J2. TWO-STEP NILPOTENT LIE GROUPS
We collect some facts about two-step nilpotent Lie algebras and Lie groups. Let rj 
be a real two-step nilpotent Lie algebra, that is. [tj, r/] (0} and [rj, (q, q]] = {0}. We
write tj as the sum of subspaces

= a® 0,

where 0 is the center of r; and a is any subspace of r/ complementary to 0, dim/3 = k. 
We take an inner product on rj that renders a and 0 are orthogonal.

Let N be the connected, simply connected Lie group with Lie algebra rj. By the 
exponential map, we parameterize N by a&0 and write (V, Z) for exp(V 4- Z), where 
V € a. Z € 0. The Baker-Campbell-Hausdorff formula gives the product law in N

(V,Z)-(V,Z) = V + V.Z + Z+I [v,v] k V,vea, Z,Z€0. (2.1)

»From (2.1) .QI
(V,Z)~l = (-V,-Z), (V,Z)Ga®0. (2.2)

The norm on N is defined by

IKK Z)|| = (|VI* + |Z|a)x'\ (V, Z) e a © 0, (2.3)

We denote by dV and dZ the Lebesgue measures on <r and 3, respectively. Then 
dVdZ is a Haar measure on N. We write S|W) for the Schwartz space on /V.

We now recall the unitary representations of the group N. Fixing A 6 /3* (/3* is 
the dual of /3), we define the skew-symmetric linear mapping B(A) on a by

<B(A)(AV) = A([t/,y]), U^VEa. (2-4)

Denote the kernel of B(X) by rA and the orthogonal complement of rA in n by m\. 
Since Bl A) is skew-symmetric, mx is B(A)-invariant and its dimension dim is even. 
Let A be the Zariski-opcn subspace subset of /3* of the vector A for which dirnniA 
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is maximum, dimm^ — 2m for all A €.A. Sj/mjm Z?(A) stands for the symmetric 
function of degree 2m in the roots of B(A).

Given A € A, there arc orthogonal vectors E։(A),• • ■, Era(A). E։(A), • • •. Em(A) 
in m> and value« 6։(A),-• • , 6m(A) in R+ such that

£?(A)E.(A) = b,(A)E,(A), B(A)E.(A) = ֊6,(A)E,(A), Syrn3mB(A) = fjb.(A)2

•=i

Denote by 7* and 7* the subspace span{Ei(X), • • •, Em(A)} and *pan{E։(A), - •, 
Em (A)}, respectively, and write VGoa«W, + /lorX+r + fl. where W € m*. 
X G 7A. Y G 7a , R G r*. The elements exp(lV + R + Z} and exp(X + Y + R + Z] of 
N we denote by (IV, R, Z) and (X,K R, Z), respectively.
For A € A and p € r\ (the dual of r*), the irreducible unitary representation is 
defined to be

(rrA,M(X,r,R,ZM(X) = + *), * €

ttiJI u hi« . > (2-5)
Define the Fourier transform of a function f G £l(A0 by

*>,„(/) = / dn, A € A. p£r\. (2.6)

If / E S(N), then irXllt(f) is a Hilbert-Schmidt operator. In fact, (2.5) infers

= f f f [ Jr* f(X,Y.R, Z)e- 2».A(Z+(X + p'.y))֊2r1>.(Jtl

xv(X + X)dZ dRdY dX = / KM.^(X.X)^(X)dX. (2.7)
•'ll

where
K/,x,ll(X.X) =

— J f j f(X - X ,Y, R, շ)e-^՚rlA(z+if•^+•JC•r^։՜^r,*'(R, tiz dR dY =

= SF>,r>w/(X-X.iB(A)(X+X).P.A> (։•’>

is a kernel operator. The Plauchercl formula in Schwarts space gives

IK.(/)lli։ = f / tK,.^x.x^dXdx =
•'"TA •'"»A

= SymImB(A)-x/J / W. p, A)|W.
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when is the Hilbert-Schmidt norm, so that

£ ll^(/)llis = la >)|2</V.

Also. (2.9) implies the Plancherel formula on N

/. /. HirjU«(/)lljrs Sym2mB(X^2dfidX = £ |/(n)|3dn.

Polarising (2.9) yields

!/r(irx.l,(f)nx,tt(gr)Sym2mB(X)l'idli = Faf(V, A)F3p(V, A)dV.

(2.9)

(2.10)

(2-11)

For a function g € S(N) and any positive integer k, there exists a constant C and a 
positive integer L such that (see [1])

+ A € A, /x€rL (2.12)

where m
r(A) = £(4.(A)֊։+MA)։),

1 = 1

and | • । . denotes a sum of Schwartz seininorms. Since r(A) is a symmetric rational 
function in the eigenvalues of B(X). it is a rational function of A and satisfies

— — \ \ rn = m r(A) .

Sym2niB(X) = []MA)2 <m-m

(2.13)

1)3. PROOF OF THEOREM 1
Denote

/v(Z) = /(V,Z), fr(Z) = f(Vt-Z),

K{Z} = L{fv ’ fv)(Z) dV = Lk dV-

By the assumption (i),

mi <lj i/v(^)i • \fvtz - z)\ dz dv <
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-CLL dZ dV <

-C/ ^e-*’l’|V|*+4(’|f|‘,Z|)>+i|Z|‘1 dZdV =

= Ce֊^ [ [ e֊»^v>4+^l֊l^։ldZdV<Ce-i’l^<Ce-^^, (3.1) 
J a J fl

where we used that

|Z|։ + \Z - Z\։ > |Z|։ + (|Z| - |Z|)2 = 1(Î|Z| - |Z|)։ + ;|Z|> 
£ L

and e-'f’l' is integrable on N.
On the other hand, it follows from (2.9) that

2>riA(Z)

= [ [ [ e-3”M^f(V,Z) .e-2,t'MZ-2]f(V.Z - Z) dZdV dZ - 
Jfi Jo J9

= f F,f{V. A) • F,f(V. Ai dV = jjFaflV.»fdV =

= ll’UflllL SymJmB(A)‘'։ dp. (3.2)

We consider the three cases separately.
Case 1 : q = 2, ab > 1. By v(A/) > a > 0, the assumption (ii) and (3.2), we have

f eM'%(A,')|.|h(A)|dA< ֊ f e2t։’<|A|’>l*l’>|v(A/)|ilÂ(A|| e/A =
0֊ a J 6*

= / e»’(lAl։+H։)|v(A/)|ï||irA.M(/)||JrsSymîrofl(A)1/îdpdA<oc. (3.3)

»From (3.1) and (3.3), we see that h satisfies the conditions of Theorem B for p = oc 
and q = 2. We note that the assumption (i) in Theorem B becomes |/(i)| < Ce
if p — oo. Hence h = 0 almost everywhere and then h = 0. From (3.2), we have 
||ta.^(/)||jfs = 0 for almost all A € A, p € rj. and then by the Plancherel formula 

(2.10), / = 0 almost everywhere.
Case 2 : q > 2, ab > 1. Let f > 0 be such that ô' = b - £ >0 and ab՛ > 1. By (3.2).

jT ։*'։l*l’|.(A/)|«|A(A)|’'։dA =
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tf։ v<

\’ZÎll’rA.,.(/)llHs5ymïmB(A)1/’dpl dX <

! \’/։
Ja՛ \^rl /

«/2
dX.

Using Holder’s inequality and the assumption (ii)

I ։*''À’|»(A,')|’'։|Â(A)|’/։dA< jT e*'’|Àl’<r-’/։|.(A/)|»|fc(A)|’'։« <

< <T-’/2 e**'w|A,1|v(A/)|*Sym2mB(A)’/4x

/ \ î/2-i / \
x ( f e֊2e«/(f-2kW։dM) I / e’^l’||^(/)||JfSdM| dX< 

\J^ J \Jn /

< 1^ e’‘r(|X|3+M’Ht’(A/)|’||wx.p(/)||’/sSym2mfl(A)V’dMt/A < oo, (3.4)

where we used that e-î։«/<«՜is integrable on rj and

e-,*’|A|ïSym2n, B(A)l/2(’/J-“

is bounded on A. By (3.1) and (3.4), h satisfies the conditions of Theorem B for p = oo 
and ç/2(ç > 2). So h = 0 almost everywhere and then f = 0 almost everywhere. 
Case 3 : 1 < q < 2, ab > 2. By (3.2), (2.11), (2.12) and

«H*A,i.(/)**,„(/)') < |l’rA,M(/)llH5trl’rA.M(/)l

(see [1]), we obtain

|MA)|= laFaf(V,X)Ffff(V,X)dV = y tr(KX^(/)^.p(/)*)SymJmB(A)։/3dM <

< lrt ll^(/)||H5tr|JrAif.(/)|Symara2J(A)V3dM < 

< Cr(A)£||/||. y ||ka,„(/)||hs( 1 + |p|)-*Sym2mfl(A)։/2dM <
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<Cr(A)t||/||. / ||*U/)||’„s$ym2„,B(A)l/2dp) x 
vr: /

/ \ </«'
X / (1 + |p|)-'>'‘dp (Sym2mB(A)V։a-U«>, 

Vri /
where q and q' satisfy 1/q + \/q' = 1 and q' > 2. By (2.13), there exist a positive 
integer I, such that

(Sym2mB(A)l/a(l'l/” <Cr(A)‘.

Then
< ( -a sû ’ : ( r \։/’|h(A)| < Cr(A)L+'||/||. / |kA,p(/)||lfJSym2mB(A)2/2dp) (3 5)

V'> /
Let q(D) be a differential operator on 0 with constant coefficients. Its Fourier 
transform ç(A) is the denominator of the rational function r(A) (see [1]). We choose 
a function H € C“(/3) with

suppH C [z î I&I < e, C > 0 is arbitrarily small },

and denote Hi = g(D)I+,B. By (3.1) and (3.5)

|H։*A(Z)| = A HAZ)h(Z - Z)dZ <

(3.6|

V*
11(A) = |H1(A)| • |h(A)| < C|P(A)| ll’A.i.(/)ll?rs5ym2mB(A)l/2dpj ,

(3.7)
where P(A) is a polynomial. As before, let f > 0 be such that b — b e > l 
ab' > 2. By (3.7), the assumption (ii) and the boundedness of e՜*’’11 |P(A)|».

[ c^'^MA/)!’ BT?h(A)|’dA <

-C/ / e’‘'|A|’«‘'<r|A,։|v(Aj')|,|/,(A)|«|kAj4(/)||^Sym2n.B(A)1/։<fpdA<

~Ci L e^(|A|>+W>)։,’(A/')l*lkAJ.(/)llk5rn2n.^(A)l/’^«iA<oc. (3.8)

By (3.6) and (3.8), Hi • h satisfies the conditions of Theorem B for p = oc and q 
(1 < q < 2), so Hi ♦ h = 0 almost everywhere, Hi * h = Hi • h = 0. Since H։ = 0 
on a set of ։ero measure, we conclude that Â = 0 almost everywhere and then / — 0 

almost everywhere.
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§4. PROOF OF THEOREM 2
Let (k’,Z),(V.Z)€N. By (2.4).

< ^—ll(V.^)ll-ll(V.z)|| = 2c

where ||Z?( A)|| denotes the norm of the matrix B(A), c = ^.Then

||(v,z)(-v,-z)

>ll(v.z)||- (v.z) -c1'’ (v.z) i/։
ll(V. Z)|l‘". (4.1)

We choose 9 g Co(AT) to satisfy

supp 9 C

and kt ||(V. Z)|| > 1. Then (4.1) implies

i

Denoting

> IKK Z)||( 1 - (1 + cl'։k), (V. Z) C suppg.

*(e) = (1 + c1/2)e, e.(V,Z) = e-'IHv^l\

u(VJ) = u(Zlt-,t-,Zt) = ^A

we obtain

e<nr||(V,Z)(V,Z)֊։|| dZdV >

>6e«t*֊4«)ni(v.z>ir(Wt|/()(v<2)։ (4.2)

where Y = Z—Z — j(V,V]. Noting that e„|u|-|/| isan LS function, by the assumption 
(i) in Theorem 2, g is an function (1/p + l/p' = 1). Then it follows that 
|9| ♦ (eo |u| • |/|) is an function.
From (4.2), we have

1(5 * /)(V. Z)\ < (|0| , |/|)(V, Z) < I oe—’<1 -*<*»*»< 
d
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where C = ||(|9|♦ (e.|u|• |/|))||r—»ll(K Z)\\ > 1. By continuity of 9./ (/ € Ll(N). 9 €

l(p • /)(K Z)\ < Ce-’(V.Z) € N, (4 3)

Since ffA,p(9 • /) — *>,^(9) ' *>.»!(/) An<l *8 » bounded linear operator on
L2M, ** get

II*a.m(9 ♦ /)Hxs < ll*A,<.(9)IMI»i.<.(/)ll«s < ll9lk'(*)ll»A„(/JIIhs. (4 4)

where we used
ll’rA.p(9)llor < / l$(n)l lkA.a(»*)ll <*« < 

Jn

< f lff(™)l 
Jn

e-2«.A(Z+(X+ dn _

f |p(n)|dn = ||p|kMNb n = (V,O)ett X€7a. 
N

By (4.4) and the assumption (ii) in Theorem 2,

/. /. W/)I’II’Ta.p(9 • nilJ/sSym^aiA)1^ dA <

r i ■; (4.5)

For ab > 1 ( or ab > 2), we can taker such that a6(l-^(ej)4 > 1 (or a6(l-^(r))4 >2). 
By (4.3) and (4.5), the proof of Theorem 2 is reduced to the proof of Theorem 1. 
So. 9 ♦ f = 0 almost everywhere. Since 9 is an approximate identity. / = 0 almost 
everywhere.

§5. PROOF OF THEOREM 3
Using the function h in the proof of Theorem 1 and the assumption (i) in Theorem
3, we infer

dZ dV <

c—Mlvr+|2|։^։e-.-(|vr+i?-zi։P/։d^ dV

Two inequalities

a» + bf > 2։-'/’(a։ + bJf/J (see [1]) and (a + 6)F/։ > «*/։ +
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for a, b > 0, p > 2 imply

and

Z - Z

Since e-2ar|։ r‘ is integrable on a and e՜“'2 ' * '(2I-Z’I is integrable on 0. we 
conclude

|A(Z)| -C/al e‘ar(|V|։,+,i|,,,e""<|V|’'+l^2|<,’rfV dZ < 

= CJ L e~U’lV'i^"‘’i'^^~ZndVdZ <

< c j^—w’w-Wdz <_c^e-«ir’4։‘*,”։i?i>+iz-zi’r/> dZ <

< C [ e-<”r2l,_',’><^(2|?H|Z|)։+i|7|։)"’d^ < 
Jfl ~

< Ce՜"’1'՜’'121’ [ e-a'2<։‘',l(J|?i-|Z|)|’>d^ < Ce-Or2<'-»>|zr < 
A ~

< Ce~o,J<l""(Z?+" +z’-»+zM>+’"+2^'/։e-o։,jll‘*’|z>l'.

On the other hand. (|A| 4֊ |p|)’ > |A|* + |p|* (1 < q < 2), so (3.2) and the assumption
(ii) in Theorem 3 yield

*(A)I = /. <
< Cv։(A/)Sim։„ J _ «-»Ml*l+I.ll’ <

< Cv։(*,')S։TO։mD(A)‘'։«-»’W,

where we used that e-։kirb«l։ iutegrable on r\. For (up)l^(bq)1^ > 2, we 
take e > o to have b = b' + e and (ap)։<P(b'q)1 <« > 2. The boundedness of 
•5j/m2mfl(A)1/2e”2r,T|Al’ implies

< C v2(A/)Sym2mD(A)»/’e-’(‘,+*»’lAl’ =
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= C vJ(A/)e՜36'’|A|*SymJm D(A)1/2e֊։<’l*l’ <

Since

(a2“-'”p)1/F(2b'9)1/’ = (ap)l/F(y9)։/*2<>֊P)/P+i/< > 2. ®J G L։(R*_1)

and

we obtain from Theorem C that h = 0 almost everywhere, and then Hr* m(/)||h5 = 0 
almost everywhere. By the Plancherel formula (2.10). / = 0 almost everywhere.
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