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Abstract. In this paper we characterize the structure of the singular set in the following free boundary problem (Au - f)u = 0 in B = B(0,1), where f is Lipschitz, and u € W2՝P(B), p> n. The free boundary d£l, represented by d{Au = /}, appears in certain problems in geophysics and inverse problems in potential theory.

§1. INTRODUCTIONLet Q be a domain in IR” (n > 2), and f a Lipschitz function in B = B(0,1) with /(0) > 0. Suppose there exists a function u € W2՝P(B) such that
△u = fxQ in B, u = 0 in B \ Q, 0 € dQ. (1.1)

We are interested in the regularity of the free boundary dft. In a recent work [6] the authors and L. Karp proved that there exists a modulus of continuity a(r) (cr(O+) = 0 and it depends on the supremum-norm of u) such that if for some 
r < 1 the set {u = |\7u| = 0} (after suitable rotation) has points outside the strip {-ra(r) < xi < rcr(r)} then, locally near the origin, the free boundary in (1.1) (with f = 1) is the graph of a C'-function. From this the real analyticity of the free boundary, near the origin, follows by classical results ([8], (9]).The free boundary obviously develops singularity at points where this condition fails. For convenience we refer to these points as singular points, and hence the singular set,
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44 LA. Caffarelli, ILShalighuliauhere denoted by Su, is the union of all such points. It is our objective here to study the singular set 5U in (1.1), at least in the half ball #1/2(0); this is tacitly understood throughout the paper. Before presenting our main result we give an example of free boundaries where cusp points are developed.Example. ([8], (12], [10]; cf. also [11]) Without deepening into details we recall from [8], pp 387 390, that in two space dimensions one can give examples of the free boundary in (1.1), where cusps appear. These cusps are represented by the curves0 < xi < 1,where p = 4k 4- 1, (fc = 1,2,--) gives non-npgative solutions and p = 4k 4- 3, 
(k = 0,1, • • •) gives solutions that become negative on the negative ii-axis and near the origin. The solution is defined locally by

u(x) = x? - x E fl, |z| < e,for c small. Here we've used both real and complex notation
X - (xi,Z2), z — pe'*, 0 < 6 < 2n.Also the domain Q is the image of the set {z : |z| < 1, Im z > 0} under the conformal mapping /(z) = z2 4֊ izM. Let us now introduce some definitions.Minimal diameter. The minimum diameter of a bounded set D, denoted M D(D)tis the infimum of dista between pairs of parallel planes such that D is containedin the strip determined by the planes. We also define the density function Mu) = MD(AnZ?(0,r))

where A := {u = |Vu| = 0}.Let now f be a Lipschitz function in B(z,r) with Lipschitz norm |/(z) - /(y)| < Ci|z - j/| in B(z,r). In the sequel we’ll assume Ci = 1.Local Solutions. We say a function u belongs to the class Pr(z,C0) if u satisfies (in the sense of distributions) :△u = /Xn in B(z,r), (||/||LiP1B(z,r) < 1 and /(z) = 1),u = |Vu| = 0 in B(z,r) \ Q, 
l|u|loo,B(x,r) < Cq, z € dfl.Since the class Pr(z,C0) is translation invariant (only r changes), (1.1) may be < onsidered in a neighborhood of any given point of the free boundary, and the results of [6], discussed earlier, can then be applied to every boundary point.The following definition will be useful in declaring our main result.



The structure of the singular set ... 45Definition 1.1. We define the class ofn xn matrices IM asIM = {Mnxn = (a,j); trace(Af) = 1, M = M‘}.In order to study the singular points we need to distinguish between singular points with different blow-ups. In other words if x° is a singular point of cMl(u). then (as it will be clear later) any blow up of u at x° will be a polynomial Q(x) = (x'Afx)/2 with M € IM Now we want to classify the singular points in terms of the matrix M we obtain; more exactly in terms of the kernel of M. We give an exact definition of the singular points Su introduced earlier.Definition 1.2. For u € /’i(O.Co), we say xu € SJa, k) if x° € dfl. and there is a sequence {rj} such that functions {u7}, where
have a convergence subsequence to a polynomial Q(x) = x1 Ax with

A € IM dim(Ker(A)) < k, where we also assume that the eigenvalues are arranged as |Ai| > |A2| > ••• > |An_fc| > a, and |AJ > |A2| > > |An|.As the definition goes x° may belong to different classes of singular sets, depending on different blow-ups. However, we’ll show that this is not the case Indeed, we prove that if € Su (a, , k,) for t = 1,2, then necessarily ki = k2 and we may take ai = a2 Remark. The set D := {u = 0} \ {|Vu| = 0). where u is a solution to (1.1), may be excluded from our analysis. Indeed, this set can be shown to lie (locally) in a C1 -manifold, as follows. First from the non-degeneracy (see [6]) it follows that dll has Lebesgue measure zero. A consequence of this is that Au = f in a neighborhood of D, so that u is C2+a. Therefore in considering the free boundary dtt, we may only look at points where also the gradient is zero, i.e., we need to consider only the set dQ n dQ, since the set \ dQ lies now in a C2-manifold.The reader may consider, as an example, the function u = x? - x;/2 in IR3. which solves (1.1). Here one can consider Q = IR3 and 3Q = 0, or Q = IR3 \ {xi = x2 = 0} and dQ is the X3֊axis. Also the function takes both positive and negative values near the free boundary.Before stating our main result we ll recall two recent results in this filed that are very much pertinent to our analysis in this paper The first result is about the regularity of the free boundary in (1.1).



46 L A. Caffarelli, If. ShahgholianTheorem 1.3 ([6]). Let u solve (1.1) with |u| < Co, and / = 1. Then u G Cl,։ (Z?(0.1/2)) and there exists a modulus of continuity o (<r(0+) = 0 and it depends 
on Co) such that if <5ro > a(r0) for some r0 < 1/2, then 5Q is the graph of a C1 
function in £?(O,corJ), where co is some universal constant.The second result is about singular points of the free boundary in (1.1), with the extra condition that u > 0. This is due to the first author. We also refer to [5] for some results in this direction.Theorem 1.4 ([3]). Let u > 0 be a solution to (1.1) with f = 1. Suppose 
x° G Su n B(0,1/2) and |u| < C0- Then the following hold : oa) There exists a unique quadratic polynomial (and a unique matrix M* G IM)

= ^(x - x°)։M‘°(x - x°)

such that in some neighborhood of x°sup |u ֊ Q„°| < r2o(r). O(x°,r)
Here a is a universal modulus of continuity, depending on n, and Co only.b) Mx° is continuous in x°, and the kernel of Mz° changes continuously in z°. Moreover, the modulus of continuity of Mx° is tr(r), which appears in part a).
c) If dim(Ker(Mx°)) = k. then there exists a k-dimensional Cl -manifold F։o u such 
that

Su n B(z°,r) C Tj-O u,for some r > 0, depending on the singular point, and the smallest eigenvalue of Ml . The dependence of the neighborhood on the smallest eigenvalue can be given by the following simple example in 3-dimensions
u(x) = -xl 4- (z3 ֊ cos(l/z2))2 x 4

2-Here, the singular set with kernel of dimension one, meanders into the singular set with kernel of dimension two, as the smallest eigenvalue degenerates to zero.Most of the proof of Theorem 1.4 works perfectly in our case. There is only one, and a very crucial, point where it breaks, and we could not amend it; see [3], proof of Lemma 14 We will prove a slightly different and weaker version of this theorem.Theorem 1.5. (MAIN) For u G Fi(O,Co) the following hold.
(1) Theorem 1.3 above holds true with Lipschitz f. The quantities, in general, depend 

also on the Lipschitz norm of f.



The structure of the singular set ...

(11) For x° E S„ there exists a (n - V)-dimensional Cl-manifold r,o „ such that

S.nB(z0,r)cr,.M,

for some r > 0, depending on the constants n, Co
(III) For x° € Su(a,k) there exists a k-dimensional C1 -manifold Vto u such that5M(o/2,fc)nB(z0,r)Cl>.u,

for some r > 0, depending on the constants a, k. n, Cq.
(IV) If x° € Su and Qi, Q2 are two different blow-ups of u at xa then necessarily 

Qi = Qz
(V) In B\/2, Dl}u exists for regular points of the free boundary, and it
exists non-tanyi nhally for singular points of the free boundary.It should be remarked that part (V) in Theorem 1.5 is the best result when n > 3 Indeed, it can be easily seen that if the origin is a singular point such that u0 is a polynomial of at least two variables, and if n > 3 then the second derivatives of u are not necessarily continuous up to the origin To see this, heuristically, let us consider a free boundary solutions where for any r > 0. the set Br \ Q has interior. Since the free boundary has zero Lebesgue measure we may assume that for any r > 0. the set 
Br \ Q contains a ball. This implies, in particular, that the part of free boundaries that can be touched by this balls, from Br \ Q, are regular. Now take a sequence of such regular free boundary points x3 E ft. Let us also for simplicity assume that the free boundary lies along the third coordinate axis xj, so that the blow-up is uo(z) = aiXj + 02^2 and {tto = |Vuol — 0} is the i3-axis. Now it is easy to see that the normal vector Vj and the tangent vector r} at x3 to 5ft will converge to v® and to, which are independent of 13.Now the point x3 being regular gives that = 1 and DTjT,u — 0. Next, having the blow-up u0(z) = aizf +02X3 and (supposedly) tangential continuity of the second derivatives we must have0 = lim DroTou(z) = 2oiT(J + 2a?T(2 = 2|t0|2, (tangentially),where r0 = (tox,t^).Next by choosing different points x on the regular part of the free boundary, e.g. by going around the 13-axis we may choose any vector To in the plain which comes from 

Tj (this depends on the point). In particular choosing To = (01,02) we arrive at a contradiction with the above 0 = 2oitJ + 2o2Tq .A basic tool in this paper will be the following monotonicity lemma



48 L. A. Caffarelli, II. ShahgholianLemma 1.6. Let hi, h? be two non-negative continuous sub-solutions of Au = 0 in 
B(x°, R) (R > 0/ Assume further that hih2 = 0 and that hi(x°) = h2(x°) = 0. Then 
the following function is monotone in r (0 < r < R)

<p(r) = <p(r, hi,h2,x°) :
The problem with Lemma 1.3 is that it does not apply when Ah, is bounded from below. We intend to apply this lemma to the directional derivatives Deu of solutions to (1.1). Since S(Deu)± > —C we need a different version of Lemma 1.3.The next lemma is a new type of monotonicity lemma. The advantage of it is that it relaxes the subharmonicity condition and allows the solutions to have bounded Laplacian only.Lemma 1.7. ([4], Theorem 1.3). Recall the assumptions in Lemma 1.3, and replace 
the subharmonicity assumption by the boundedness of the Laplacian of hi, i.e., assume Ah, > -1. Suppose moreover |h,(x)| < for some /3 > 0. Then

< (1 + «2)V’(«z) + Cs,, (1.2)
where 0 < $i < s2 < R.In Lemma 1.7 if we have Ah, > —C, then we can replace h, by h,/C, and change the constant C in (1.2). The reader may easily verify that any function verifying (1.2) must have a limit as r -> 0+, i.e.,

lim <p(r) = exists . (1.3)
We refer to Lemma 1.6 as the monotonicity lemma and to Lemma 1.7 cis the almost monotonicity lemma.In the sequel, while applying the monotonicity formulas, we’ll use the notation 
<p(r,Deu) with u € Ri(M) and hj,h2 replaced by (Bett)*. Here, e is a unit vector and (£>cu)+ = max(Beu,0) = max(-Bfu,0).Observe also that (Deu)+ are subsolutions.Before continuing with our results we need to recall several facts about blow-up techniques. 1 his will especially be helpful for non-specialists. We gather these in the below remark.



497he structure of the singular set ...General Remarks. We will need several concepts as well as several facts that the non-specialist reader may be unfamiliar with. However, all these can be penetrated in literature and research papers; see e.g. [1] ֊ [3] and [6].l)Scaling : For u a solution to (1.1) we set
u(rx 4֊ x°

which is the so called “correct” scaling of u at x° € 5Q ; since one expects u to behave quadratically near the free boundary.2)Global Solution : A solution to (Au֊l)u = 0 in JR'1, u € (p > n)withquadratic growth, is called a global solution.3)Blow-ups : Let now Qr denote the set {x : rx € fl}, and ur be the scaling of u. If u is C1,1 or even if supB(0 rj |u| < Cr2 then we see that ur is bounded and defined in B(0, R) for any R, provided r is small enough. Hence by standard compactness methods in elliptic theory, since Aur = xnr» we maY let r tend to zero and obtain (for a subsequence) a global solution. This process is referred to as blowing up, and the global solution thus obtained is called a blow-up of u.4)Non-degeneracy : The reader may have wondered what happens if the function 
ur under the blow-up process converges (degenerates) identically to zero. Indeed, this can not happen due to the very simple fact thatr2 sup w > —• 

B(O,r)The proof of this is standard and can be found in [1]; observe that the assumption
u > 0 in [1] is superfluous (cf. [6]; (4.1)). Therefore 

sup >
B(0,H)

R22n’and thus the obvious non-degeneracy.5) Hausdorff measure of dQ : It can be proven using techniques of [3]. that “locally" the free boundary dQ, has finite (n - 1)-Hausdorff measure. See [3]; Corollary 4 and [6]; General Remarks.6)Polynomial solution : Next, consider a solution u to (1.1) which is also C1 1 (by [6]). Then any blow-up sequence uTj of u that converges to a global solution has the obvious property that the blow-up limit uo has a quadratic growth near the infinity point. Now suppose the set {u = 0} has empty interior. Then by the above IR' \Q has zero Lebesgue measure. Hence Auo = 1 almost everywhere. In particular. Liouvilles theorem applies to conclude that uq is a homogeneous polynomial of degree two.



50 L. A. Caffarelli, II. Shahgholian7)W2,p-convergcnce of blow-ups : Suppose u is a solution and uo is a blow up of u through some sequence Uj. Then one may show that the convergence of Uj is not only in Cl Q but also in W/^(IRn). This fact follows very easily by using certain properties of the solutions, such as non-degeneracy and that the set #Qq has zero Lebesgue measure. One may even show that the free boundary dftj converges to 5Qo in the usual Hausdorff metric. As a simple exercise from this it follows that the convergence of to uo is in IV2՛2 ; see [6]; General Remarks.This fact is used in the case of blowing up the solution in the monotonicity formula (Lemma 1.2), since here we need the convergence in W2՛2.8) <p(0+,Deu) : The limit value of the function <p(r, Dfu), as r tends to zero, will play a crucial role in the analysis of singular points. In this part we will discuss some facts about y?(0+, Deu). So suppose 0 € S„(u. k). Then there exists a blow-up of u at the origin giving rise to a polynomial solution
«o(®) = 9 ZL = 2X‘Ax> 1=1in a rotated system. Here A is the symmetric diagonal matrix with entries a,,- = A,. For convenience we’ll also assume |Ai| > |A?| > ••• > |An_fc|, with |An_fc| > a, and 52 A, = 1 From here it follows that

n — k
Dcuq = 2 52 e = (ei,-• • ,en).

i=lNow if e € Ker(A), then Deuo = 0. When e £ Ker(A) interesting things happen. Indeed, let eA be an eigenvector for A with eigenvalue A. Define
^(A,eA) := {z : (z-eA| > e|z|}, (1.4)then for e = x/\x\ € Kt(A,ex) we’ll have

In particular for as in the next lemma we obtain <p(0+, Deu0) = CAM. In a similar fashion, we may take a (lower dimensional) plane
flm — {zi = • •= 0}, m<n-k,



The structure of the singular set ... 51to obtain for e £ IIn։ the estimate d Zn՜* \2IVD'“»I2 = 4 j [E lA.edj > ~(X{m_։))2?.

where e is the angle between e and the projection of e on the (lower dimensional) plane nm.A crucial fact that can be deduced, at this moment, is the simple fact that
|Ar I > max A, > -, » n (15)

which in conjunction with the above analysis shows that (in a rotated system)
|VD։,uo|2 >Cc2,

independently of the function u. In particular for all other singular points near the origin (which itself is assumed to be singular) we must have this estimate 9)Semi-continuity of ||Axe|| : From the monotonicity formulas it follows that
lim H^ell < ||X°e||.

For a detailed proof one may apply [3]; Corollary 10 in an obvious manner. This in particular implies, at least heuristically at this moment, that
Ker(A°) G Ker(lim AT).

Observe that at this moment we don’t know whether the Emit limz_»o Ax exists.§2. TECHNICAL LEMMASFrom General Remarks above, it follows that any blow'-up of a solution to (1.1) at some singular point must be a polynomial solution. We show next that the matrices, representing two different polynomial blow-ups of the same function at a given singular point must have the same kernel.Lemma 2.1. Let 0 G Su, with u and Q as in (11), and Qi, Q? be two different 
polynomial blow-ups ofu, with corresponding matrices A and B. Then for any vector 
e |Me|| = ||Be||, and A֊ = B2.
In particular KerA = KerB.



52 L. A. Caffarelli, II. ShahgholianProof. Let r, \ 0 be an arbitrary sequence, and set uri = u(rjx)/r2. Suppose urj converges, for a subsequence and in C/o“(IRn), to a global solution Qi. Since 0 € Su we’ll have Q\ is a polynomial in IRn, i.e.,
1 t 1 v՜^

Qi = -x Ai = - Z^aijXiXj.
4* **Here A € IM is a symmetric matrix with entries Now let tj \ 0 be anotherarbitrary sequence, and define accordingly utj. Then a similar argument gives alimiting polynomial

Here B = (b,j) € IM is a symmetric matrix. We will show that A2 = B2 Let e be any arbitrary directional vector (unit length), and consider the monotonicity function for 
Dtu, by setting

<p(r,Deu) = —
f |V(Dfu)+|2\ / f |V№u)~|2 B(o,r) l®l"՜2 ) WB(o,r) |z|n՜2

Then by Lemma 1.7, <p(r, Dfu) is a almost monotone non-decreasing function of r. By scaling ¥>(r, Deu) = v?(l, Deur). (2.1)Since is almost monotone the limit, as r tends to zero, exists and
lim <p(r, Deu) = Ce,

for some Ce > 0. Also the convergence of the functions ur. and Utj takes place in W^(IR’') (see General Remarks). Therefore we’ll have (by (2.1))
Ce = lim <p(r, Deu) = lim <^>(1, Deur).Replacing r by r} and then by t3 we obtain
Ce ~ = ^(l.DeQl),and = lim y>(l,DeuG) = ^(l.DeQj). ։ j “tuHence ^(l.DeQO =v(l,OeQ2). (2.2)



The structure of the singular set ... 53Now inserting the polynomial representations of Qi and Q2 in (2.2) we obtain for all directional vectors e II^H = ||Be||, (2.3)where || • || denotes the usual vector norm. From here we show that A2 = B2 Indeed, (2.3) and the symmetry of the matrices imply (A2e,e) = (B2e,e) for all e. Using this we:ll end up with
(A2x,y) = ֊ ((X2(i + t/),(2: + t/)) ֊ (A2x,x) - (A2y,y)) 

£

- ((B2(x - y),(x ֊ y)) - (B2x,x) - (B2y,y)) = (B2x,y),for all vectors x and y. Hence A2 = B2. Lemma 2.1 is proved.FYom the above lemma it follows, using a contradictory argument, that if the origin is a singular point then the free boundary lies, locally, in a cusp like region, where the direction of the cusp is parallel to the kernel of the matrix A, in the representation of the blow-up of u. Obviously this implies that the free boundary is rectifiable. This, however, is not enough for proving a Cl regularity; see Lemma 2.3 ֊ 2.4 below.Remark. We want to point out a crucial fact about the matrices that appear in Lemma 2.1. A simple argument in matrix theory will reveal that the number of possible matrices in Lemma 2.1 is less than 2n՜1. This fact will be used in the proof of part (IV) of Theorem 1.5.Now to see this fact let us take all possible matrices B that may appear in the proof of Lemma 2.1, i.e., all matrices B G IM such that B2 = A2 for a fixed matrix A G IM By rotation we may assume that A is diagonal. The problem is that A is allowed to have negative eigenvalues. Since by Lemma 2.1, A and B have the same kernel we may rearrange the coordinate system so that we only consider m x rn-matrices with nonzero eigenvalues. Also m < n Let us also assume that A is diagonal with diagonal elements A?. Now B2 = A2 gives that B2 has eigenvalues Aj. Now let Ub be the orthogonal matrix which diagonalizes B. Then one can see that Ub also diagonalizes 
B2. But B2 = A2 is fixed. Hence Ub is unique (up to 2n-1-permutations of the column vectors) and independent of B. Therefore the maximal number of matrices 
B above must be smaller than or equal to 2n֊1.For the next lemma recall the notation A = {u = |Vu|}.Lemma 2.2. Given 6 > 0 there exists fig such that if u G P<x>(O,Co) and 0,x° G A(u) 
with |x°| = R > Rs, then for eo = ar°/|ar°| we have

ll(^ou)+lliv;-։a <



54 L. A. Caffarelli, II. ShahgholianProof. The lemma follows trivially if u is a polynomial. So suppose u is not a polynomial. Then, by [6] (Theorem II) we may only consider the subclass Poo(0,Co) of Poo(0, Co) that consists of convex solutions. Now suppose the statement of the lemma fails, then there exists a sequence Rj -> oo, Uj G ^»(O.Co), 0, xJ G A(uj), with |a?J| = Rj and such that
ll(^e/b)+lln'a — (2-4)

where e, = x’/\xj\. Then, by convexity, the segment l} = [0, zJ] C A(u?). Now (as usual) let us take a convergent subsequence of t/j, with the limit uq € P0o(0,C’o)- Using the fact that (see [6]; General Remarks)
limA(uj) C A(tz0)>

we’ll have that the limit function uq contains the ray /q = lim/y in A(izq). Now by the proof of Theorem II in [6] ; p. 285 we have DeoUQ < 0, where eo = limj xJ/lxJl is the direction of the ray Iq. This contradicts (2 4). Lemma 2.2 is proved.Let us recall the definition of Kt(A) in (1.4). Now according to Lemma 2.1, all blowups of u at the origin have the same kernel. Using this fact in the definition of A՜« (A) we see that AJA) = Kf(B) if A and B are matrices that come from different blowups of u. This suggests to define the cones, using the function u itself, i.e., we define A" Ju) = AJA), where A is any of the matrices arising in the blow-up of u.Lemma 2.3. Let 0 G 5„ with the corresponding blow-up matrix A. Fix a > 0 and 
suppose e\ is an eigenvector corresponding to the eigenvalue A with |A| > a. Then 
given € > 0, there exists rt = r։(|A|,Co) > 0 (independent of u) such that

Kt(u,ex) n B(0,rJ C Q.
Proof. If the conclusion of the lemma fails, then there exists uj G PJO, Co), with blow-up matrix Aj and its eigenvalue AJ։ x1 G A(uJ n AJu?,eA>), r, = |x'| \ 0, and |Aj | > a. Consider a scaling of Uj at the origin, in the following way. For s > 0 (s is large and will be chosen later) set

ùjz) = uj(srJx)/(srJ)2, srj < 1.By usual compactness argument a subsequence (again labeled ij) will converge to a global solution uo (since r} —> 0), and x} = xJ/(svj) G A(u?)r՝lK((uj) will converge to 
x" G A(d0)n AJuo,eAo). Finally, using that a < |AJ < Co we’ll have that Aj should 



The structure of the singular set ... 55converge (up to a subsequence) to some limit value Ao with |A0| > a. Also |iJ| = 1/s implies |r°| = 1/s.Next fix j. Then 0 € SUj. This in conjunction with fact 8) in General Remarks impliesC(at)4 < CCAje)4 = limwhere ej = a?/|z-*|. Hence by Lemma 1.7C(ac)4 - O(sr,)‘j < <p(srj,De.uj) = ^(l,Deyuj).As j tends to infinity we obtain C(ac)4 < </>(1,DCouo), where eo = z°/|z°|. Since 
x° € dQ(uo) and since |z°| = 1/s, we can apply Lemma 2.2 in the following way. For small 6 we can choose large s so as to arrive at

ll(^o^o) llw*'։ <Hence we end up with C(ae)4 < <p(L D<-ouq) < C62. Choosing d2 = C(ac)4€o with e© small enough we’ll have a contradiction. Lemma 2.3 is proved.Let A։° be the matrix corresponding to the blow-up of u at x°. In the next lemma using similar ideas as that of the proof in Lemma 2.3 we can prove that the kernel of Ax° is continuous in x° for x° € Su(a,k). Unfortunately the continuity depends strongly on the constant a. For this purpose we need a definition of distance of the matrices. For two n x n-matrices Aj and A? we definedist(Ai, A2) := H - dist(Ker(Ai) A Bi,Ker(A2) Awhere H - dist denotes the Hausdorff distance between sets. Here we have considered the linear space Ker(A,) as set of points. Observe that by this definition dist(Ax, A2) = 0 if and only if Kcr(Ai) = Ker(A2). In particular we may have two different matrices having zero distance.Lemma 2.4. Given e > 0, there exists re = r։(a,k,C0) > 0 such that if x°,xl € 
Su(a,k) and |x° -il| < rt, then dist( Ax°, A1') <Proof. The proof follows from Lemma 2.3.§3. PROOF OF THEOREM 1.5Proof of (I). The first statement in Theorem 1.5 follows the same steps as that of [6], with minor changes. Indeed everywhere in Theorems I, and III in [6] when the monotonicity formula is used one needs to add a correction term rwhich corresponds to the almost monotonicity lemma. It is not hard to check that at all other points of the proofs given in [6] for f = 1 works with small modifications for Lipschitz f.The proof of Theorem II in [6] is unchanged since one only classifies global solutions with f = 1. This depends on the fact that when we scale the functions in the proof of Theorem HI in [6], the limit functions, are global solutions with f = 1.



56 L. A. Caffarelli, II. ShahgholianProof of (II) - (III). These parts are easy (but probably not obvious) consequences of Lemmas 2 3 2 4 and Withney-type extension theorem (see [13]; Chapter 6). We only treat case (HI), since by (1.5) Su C 5u(l/n,n - 1) part (II) will follow by part (III). Let x° € Su(a,k). If x° is an isolated point of Su(a/2, k) then we are done. Let us assume x° is non-isolated in Su(a/2\k). Assume also x° = 0 (the origin). Denote by Mz the kernel of the matrix in the representation of the corresponding blow-up solution at the point z G Su(a/2, k). Let also eo be any unit vector orthogonal to the kernel of M° (the matrix representation at the origin), and defineII = {x : x • eo = 0}.By rotation we assume n = {xi = 0} and co is directed in the positive xj-axis. Define the closed truncated coneK(z,r) := {x : 2|xi - zj| > |x ֊ z|} A B(z,r),with vertex at the point z € Su(a/2,k), and for small r. By Lemma 2.3 for r small enough the cone K(0,r) intersects the free boundary only at the origin.Now choose zq G Su(a/2, fc) A 7?(O,r/2). Then, by taking r even smaller if necessary, we can apply Lemma 2.3 - 2.4 to conclude that K(z0,r) A dQ = {z0}. Here the continuity of the kernel of M:o in zo G Su(a/2,k) plays an essential role. It also follows that the projectionP: Su(a/2,fc)AB(0,r/2) -> n,is one-to-one. Let S*(a/2, k) denote the image of 5u(a/2, k) under P. Then the inverse mapping
P* -.s;t(a/2,k) -4 R,is well defined and it is (^-function over the set S’(a/2, k); since the tangent space on Su(a/2,k) exists and varies continuously (Lemma 2.4). Moreover the C^-norm is uniform for the class, as Lemma 2.2 suggests.Now by Withney’s extension theorem we can extend P* as a C1-function (keeping the same uniform C '-norm) into the entire H. Also the graph of the extended function, denoted by TCo, is (uniformly) C1 and it contains the set Su(a/2,k), locally near the origin, i.e. Su(a/2, k) A P(0,r) C reo, for r small enough. Since for every direction e, orthogonal to Ker (AY0), we can repeat this argument to find Tc with the above properties, and since there are (n—k) such independent directions e? (j = 1, • • •, n—k), 

we will have
n—JbS„(a/2,t)nB(0,r)cr:= Qre,j=land that dim(f) = k.



The structure of the singular set ... 57Proof of (IV). Let us suppose that there are two different blow-ups u1 and u2 of the same solution u with singularity at the origin. Let also {r7} and {t?} be the corresponding blow-up sequences, so thatur> ֊> u1, ut. -> u2 in W2 ₽(IRn). (3.1)Assume moreover rj+i < tj+i < < tj, and thatCi := ??(z°) < u2(x°) =: c2 (3.2)for some x° € dBi. We will prove that for all values c 6 (ci,C2) there are blow-ups 
uc such that uc(z°) = c. In particular we will have an infinite number qf different blow-ups with the corresponding matrix Ac. Hence we will have an infinite number of matrices Ac satisfying the conditions of the remark preceding Lemma 2.2. But then according to the same remark, we must have a finite number of such matrices. Hence we should reach a contradiction. Now to complete the proof we will show that we have a blow-up uc for each c € (ci,C2). So let us take € > 0 small such that c € (ci 4- 2e,c2 - 2c). Then we may choose tj and r} small enough such that ur. (x°) < ci 4֊ € and ut?(z°) > c2 - c. Next we observe that the function

u(tx°)

is continuous for t > 0. Hence intermediate values between ci 4-e there exists Tj G (r;,tj) such that
for each interval (r;,tj) this function takes all and c2 —c, provided j is large enough. In particular

c = 2Therefore the limit function uc(z) (after subtracting a convergence subsequence) will satisfy c = uc(z°). This completes the proof of part (IV).Proof of (V). The last assertion can be proven easily by scaling. The continuity of 
Di}u up to the regular boundary points are classical; see e.g. [7]; p. 175.Next, let x} ֊֊> 0 G Su non-tangentially, i.e., dist(zJ.dQ(u)) > C|zJ| for some C > 0.Define

uj(x) =
u(|i>|j) xj

Pi € dBt.Obviously dist(i>,dQ(u,)) > C. Consequently B(iJ,C) C H(uj). Hence for some limit function in C2(B(z-z, C/2)), Uj -> uq. In particularD2uj(^՜) = D2u(rji) D2u0(x°), (3-3)



58 L. A. Cutfarclli, H. Shahgholia/iwhere x° € dB\ is the limit of F. Now by part (IV) of this theorem, any blow-up« at the origin converge to the same limit function. Hence uo = (x*Ax)/2 for some symmetric matrix A. Moreover A is independent of the blow-up, i.e., independent of the choice of xJ This together with (3 3) gives that D2u(r7) -» DJ((x<Ax)/2) =fixed *The theorem is proved.
Резюме. В настоящей работе исследуется структура вырожденного множества в задаче со свободной границей (Ди - /)и = 0 в О = В(0,1), где / липшицева, а и € Иг2р(В), р > п. Свободная граница сМ, представленная через д{Ди = /), возникает в некоторых задачах в геофизике и обратных задачах теории потенциала.
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