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Abstract. The paper considers (k, /z)-manifolds that satisfy Z(£,X) • S = 0, where 
Z stands for the concircular curvature tensor and S for Ricci tensor. A clasification 
of 7V(/c)-contact metric manifolds satisfying Z(£,X) • Z = 0, Z(f,A՜) • R = 0, 
R(£,X) Z = 0 is proposed, where R is the curvature tensor. There are some 
applications to concircularly symmetric 7V(«)-contact metric manifolds or manifolds 
possessing non-vanishing recurrent concircular curvature tensor.

§1 . INTRODUCTION
Semisymmetric spaces have been investigated by E. Cartan, they generalize the 
symmetric spaces (VR = 0). A Riemannian manifold M is said to be semisymmetric, 
if its curvature tensor R. satisfies 

R(X,Y)-R = 0, X,Y € TM,

where R(X, Y) acts on R as a derivative. A Riemannian manifold M is Ricci- 
semisymmetric (sometimes Ricci-semiparallel), if its Ricci tensor S is semisymmetric, 
that is, its curvature tensor R satisfies R(X, Y) • S = 0, X,Y e TM, where R(X, T) 
acts on S as a derivative. Ricci-semisymmetric Riemannian manifolds are natural 
generalizations of symmetric spaces (VR = 0), Einstein spaces, semisymmetric 
spaces (R(X,Y) • R = 0) and Ricci-symmetric Riemannian manifolds (VS = 0) 
(see [13] for more details). In [14], V. Mirzoyan proved a general structure theorem 
for Ricci-semisymmetric manifolds asserting that a Riemannian manifold is Ricci- 
semisymmetric if and only if it is 2-dimensional or an Einstein space or a semi­
Einstein space or a local product of such spaces. In contact geometry, S. Tanno [20] 
showed that a semisymmetric K-contact manifold M2n+1 is locally isometric to the
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unit sphere S2ri+1(l). He also proved that for a -contact manifold M the following 
four conditions are equivalent :
(a) M is an Einstein manifold,
(b) M possesses parallel Ricci tensor (that is, M is Ricci-symmetric), 
(c) M satisfies R(X,Y) • S = 0 (that is, M is Ricci-semisymmetric) and 
(d) M satisfies /?(£, X) • S = 0, where £ is the structure vector field*.

Since a Sasakian manifold is always a K-contact manifold, this result is valid for 
_ *

Sasakian manifolds. Thus, a Ricci-semisymmetric Sasakian manifold is an Einstein 
manifold. This generalizes a result of M. Okumura [17], which states that any Ricci- 
symmetric Sasakian manifold is an Einstein manifold.

We remark that a contact metric manifold of constant curvature is necessarily 
a Sasakian manifold of constant curvature 4-1 or is 3-dimensional and flat (see [16] 
or [5], pp. 98-99). A contact metric manifold M2n+1 satisfying 7?(X, Y)£ = 0, where 
£ is the characteristic vector field of the contact structure, is locally isometric to 
En+1 x Sn(4) for n > 1 and flat in dimension 3 (see [5], p. 101).

D. Perrone studied contact metric manifolds satisfying 2?(£,X) • R = 0 in [19], 
where he showed that under additional assumptions the manifold is either Sasakian 
(and of constant curvature +1) or R(X,£)£ = 0. B. J. Papantoniou [18] showed, 
that a semisymmetric contact metric manifold M2n+1 with £ belonging to the («, ^)- 
nullity distribution is locally isometric to S2n+1(l) or to En+1 x Sn(4). Both Perrone 
and Papantoniou also studied manifolds satisfying R(£,X) • S = 0, where S denotes 
the Ricci tensor. Perrone shows that if £ belongs to the «-nullity distribution and if 
/?(£, X) - 5 = 0, then the contact metric manifold is locally isometric to En+1 x Sn(4) 
or is Sasakian-Einstein. The author [22] improved the results of B. J. Papantoniou 
[18] for («, p)-manifolds satisfying /?(£, X) • S = 0.

In [2], C. Baikoussis and T. Koufogiorgos showed that if £ belongs to the «-nullity 
distribution and if 7?(f, X) C = 0, C being the Weyl conformal curvature tensor, the 
contact metric manifold Af2n+1 is locally isometric to S2n+1(l) or to En+1 x 5n(4). 
This generalizes a result of Chaki and Tarafdar [10] that a Sasakian manifold Af2n+1 
such that R(£,X)՝C = 0 is locally isometric to S2n+1(l). Moreover, in [15] Murathan 
and Yildiz studied («, ;x)-manifolds satisfying <7(£, X) • S = 0.

The present paper is mainly based on the joint work of the author with Professor 
D. E. Blair and Dr. Jeong-Sik Kim (see [8], [23]). Section 2 contains necessary details 
about contact metric manifolds. In section 3, we give a brief account of («,/i)- 
manifolds and also present two results. In section 4, we explain the notion of T>- 
homothetic deformation and construct a key example for later use. We give a brief 
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introduction to concircular curvature tensor in section 5. In section 6, we give an 
example of a non-Sasakian 77-Einstein manifold, present a structure theorem for non- 
Sasakian 77-Einstein manifolds, and give classifications of (k, p)-manifolds satisfying 
Z(£,X) • S = 0. In section 7, we classify TV(Ac)-contact metric manifolds satisfying 
Z(£,X) • Z = 0, Z(£.X) • R = 0, R(£,X) • Z = 0 and point at some applications 
to 7V(«;)-contact metric manifolds, which are concircularly symmetric or are with 
non-vanishing recurrent concircular curvature tensor. In the end an open problem is 
proposed.

Acknowledgements. The author is thankful to the Department of Science and 
Technology, Ministry of Human Resource Development, India; and Vice-Chancellor, 
Lucknow University ; for partial travel support.

§2 . CONTACT METRIC MANIFOLDS
An odd-dimensional manifold M2n+1 is said to admit an almost contact structure, 
sometimes called a (<p,^,7/)-structure, if it admits a tensor field of type (1,1), a 
vector field £, and a 1-form 77 satisfying

= + t?(£) = 1, = 0, 77 o (p = 0. (1)

The first and one of the remaining three relations in (1) imply the other two relations 
in (1). Let g be a compatible Riemannian metric with (9^, C, 77), that is,

g(X,Y) = g{<pX,<pY) + g(X)r)(Y)

for all X, Y 6 TAf. Then, A/ becomes an almost contact metric manifold 
9

equipped with an almost* contact metric structure (<p, f, *7, .<?)• An almost contact 
metric structure becomes a contact metric structure, if

g(X,V>Y)=dr1(X,Y), X,Y eTM.

The 1-form 77 is then a contact form and £ is its characteristic vector field. An almost 
contact metric manifold is Sasakian if and only if

=^(X,y)f-77(y)X, X,T€TM,

where V is Levi-Civita connection. A contact metric manifold M is Sasakian if and 
only if the curvature tensor R satisfies

R(x,yR = Ko(x,r)e, x,rem (2)
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where Bo(X, Y)U = g(Y, U)X - g(X, U)Y, X,Y,U e TM.
A contact metric manifold is called a K-contact manifold, if the characteristic 
vector field £ is a Killing vector field. An almost contact metric manifold is /^-contact 
if and only if = — ip. A IC-contact manifold is a contact metric manifold, w’hile 
the converse is true if h = 0, where 2h is the Lie derivative of in the characteristic 
direction £. A Sasakian manifold is always a /C-contact manifold. A 3-dimensional 
K-contact manifold is a Sasakian manifold. Thus a 3-dimensional contact metric 
manifold is a Sasakian manifold if and only if h = 0. For more details see [5].

§3 . («,/i)-MANIFOLDS
It is well known that the tangent sphere bundle of a flat Riemannian manifold admits 
a contact metric structure satisfying R(X, Y)£ = 0 [3]. On the other hand, as we 
have noted (see (2)), on a Sasakian manifold R(X, Y)£ = g(Y)X — g(X)Y. As a 
generalization of both R(X, F)f = 0 and the Sasakian case ; D. Blair, T. Koufogiorgos 
and B. J. Papantoniou [6] considered the («,/i)-nullity condition on a contact metric 
manifold. The («,/i)-nullity distribution jV(«,/i) ([6], [18]) of a contact metric 
manifold M is defined by

Af(«, m) : P —> n) = {UE TpM | R(X, Y)U = («/ + M)/?o(X; Y)U}

for all X,Y e TM, where (k,/i) 6 IR2. A contact metric manifold Af՜2՞՜1՜1 with 
£ G is called a («,/i)-manifold. In particular on a («,/i)֊manifold, we have

R(X, K)C = ^(Y)X - tj(X)Y) + vMY)hX - g(X)hY).

On a («,/i)-manifold k < 1. If « = 1, the structure is Sasakian (h = 0 and /i is 
not determined) and if k < 1, the («,/i)-nullity condition determines the curvature 
of M2n+1 completely [6]. In fact, among («,/i)-manifolds, the subclasses of Sasakian 
manifolds, K-contact manifolds coincide, and are described by k = 1 and h = 0. 
Moreover, we have Q£ = Innf,, h2 = (k - l)y>2, where Q is Ricci operator. If p = 0, I
the («, /i)-nullity distribution 7V(«,/i) is reduced to the «-nullity distribution W(«) 
[21], where the «-nullity distribution 7V(«) of a Riemannian manifold M is defined 

by
AT(«) : p Np(«) = {U G TPM | R(X, Y)U = «Ro(X, K)L/},

where « is a constant. If f G NM, then a contact metric manifold Af we call 7V(«)֊ 
contact metric manifold. If « = 1, an 7V(«)֊contact metric manifold is Sasakian 
and if « = 0, an JV(«)-contact metric manifold is locally isometric to En+1 x Sn(4). 
In [1], where N(«)-contact metric manifolds were studied, it was shown that « < 1
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implies that the scalar curvature-r = 2n(2n - 2 + $). For more detail we refer to [ij 
and [6]. r t*՛

The standard contact metric structure on the tangent sphere bundle TYM 
satisfies the (k,/x)-nullity condition if and only if the base manifold M is of constant 
curvature. In particular if M has constant curvature c, then k, = c(2-c) and p = -2c. 
To end the section, we reproduce the following results :

Theorem 3.1 [23]. A Ricci fiat (k, p)-manifold is necessarily flat and 3-dimensional.

Theorem 3.2 [23]. A non-Sasakian Einstein (k, p)-manifold is necessarily 3- 
dimensional and Hat.
Theorem 3.2 is a generalization of the following

Theorem 3.3 [21] If an N(k)-contact metric manifold of dimension > 5 is Einstein, 
then it is necessarily Sasakian.

§4 . D-HOMOTHETIC DEFORMATION
For a given contact metric structure a P-homothetic deformation is
the structure defined by

’1 = ™1, g = ag + a{a - 1)?/ ® rp

where a is a positive constant. It preserves the contact metric, R-contact, Sasakian or 
strongly pseudo-convex CR properties, but destroys the relations like R(X, Y)Ç = 0 
or R(X, Y)£ = k{t](Y)X - r](X)Y). However, the form of the (k,/i)-nullity condition 
is preserved under a P-homothetic deformation with

Given a non-Sasakian (/c, /z)-manifold AZ, Boeckx [9] introduced an invariant 

Im —
x/1 — k

and showed that for two non-Sasakian (k,/z)֊manifolds {Mi, ipi, gt, gf), i = 1,2 we 
have Imx = Im2 if and only if up to a P-homothetic deformation, the two manifolds 
are locally isometric as contact metric manifolds. Thus we know all non-Sasakian 
(k, /i)-manifolds locally as soon as we have for every odd dimension 2n + 1 and for 
every possible value of the invariant Z, one («, /i)-manifold (M, <p, 77, g) with IM = I. 
For I > — 1 such examples can be built using the standard contact metric structure 
on the tangent sphere bundle of a manifold of constant curvature c, where we have

Boeckx also gives a Lie algebra construction for any odd dimension and values of 
J < -1- Using that invariant, we now construct an example of a (2n 4֊ l)-dimensional 
A (1 - ^-contact metric manifold, n > 1.
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Example 4.1. Since the Boeckx invariant for a (1 - 1,0)-manifold is y/n > 
— 1, we consider the tangent sphere bundle of an (n 4- l)-dimensional manifold 
of constant curvature c so chosen that the resulting 72-homothetic deformation 
will be a (1 ֊ ֊, 0)-manifold. That is, for « = c(2 - c) and /i = ֊2c we solve 

1 ֊ ֊ = > 0 = £L+2Qq՜2 for a and c. For the values c = , a = 1 4- c, we
obtain a N (1 — 1)-contact metric manifold. Example 4.1 will be used in Theorems 
6.3, 7.1 and 7.2.

§5 . CONCIRCULAR CURVATURE TENSOR
A transformation of an n-dimensional Riemannian manifold M, which transforms 
every geodesic circle of M into a geodesic circle, is called a concircular transfor­
mation ([12], [24]). (A geodesic circle is a curve in M whose first curvature is constant 
and whose second curvature is identical zero.) A concircular transformation is always 
a conformal transformation ([12]). Thus, the geometry of concircular transformations, 
that is, the concircular geometry, is a generalization of inversive geometry in the sense 
that the change of metric is more general than that induced by a circle preserving 
diffeomorphism (see also [4]). An interesting invariant of a concircular transformation 
is the concircular curvature tensor Z ([24], [25]) :

where R is the curvature tensor and r is the scalar curvature. From the form of the 
concircular curvature tensor we conclude that Riemannian manifolds with vanishing 
concircular curvature tensor are of constant curvature. A necessary and sufficient 
condition that a Riemannian manifold can be reduced to a Euclidean space by a 
concircular transformation is that its concircular curvature tensor vanishes.

§6 . («,^-MANIFOLDS WITH Z(£,X)-S = 0
A contact metric manifold M is said to be //-Einstein (see [17] or [5], p. 105), if the 
Ricci tensor 5 satisfies

S = ag + brj ® //, (3)

where a and b are some smooth ’functions on the manifold. In particular if b = 0, 
then M becomes an Einstein manifold. In dimensions > 5 it is known, that for any 
//-Einstein K-contact manifold, a and b are constants [20].

We note that a non-Sasakian («;, /i)-manifold M2n+1 is //-Einstein if and only if 
M = —2(n — 1). In particular, a 3-dimensional contact metric manifold is //-Einstein if 
and only if it is an A(«)-contact metric manifold [7]. More precisely, in a 3-dimensional
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7V(«)-contact metric manifold

Example 6.1. A contact metric manifold, obtained by a P-homothetic deformation 
of the contact metric structure on the tangent sphere bundle of a Riemannian manifold 2

of constant curvature n 1, is a non-Sasakian 77-Einstein («, p)-manifold.
In a non-Sasakian rpEinstein (/t, p)֊manifold Af2n+1, we have

S = 2(n2 — l)g — 2(n2 — nn — l)p ® 77. (5)

Theorem 6.1 [23]. Let M2"*1 be a non-Sasakian g-Einstein («,p)-manifold. Then 
the concircular curvature tensor Z satisfies Z(£, X) • S = 0 if and only if M2n+l is **
fiat and 3-dimensional.
We close this section with the following theorem.

Theorem 6.2 [23]. Let M2n+1 be a (k, p)-manifold. The concircular curvature tensor
Z satisfies Z(£, X) • S = 0 if and only if one of the following conditions is satisfied :
(a) M2n+1 is flat and 3-dimensional.
(b) M2n+1 is locally isometric to the Example 4.1.
(c) M2n+1 is an Einstein-Sasakian manifold.

§7. N(^)-CONTACT METRIC MANIFOLDS SATISFYING z(£,x)-z = o
We now present a theorem in which Example 4.1 arises naturally in contrast to 
En+1 x Sn(4), cf. Theorem 7.3 below. 1

Theorem 7.1 [8]. A (2n+ l)-dimensional N(K)-contact metric manifold M satisfies
Z(£,X) • Z = 0, if and only if M is locally isometric to the sphere S2n+1(l), M is 
locally isometric to the Example 4.1 or M is 3-dimensional and flat.
The following theorem is a corollary.

Theorem 7.2 [8]. A (2n + 1)-dimensional N(^-contact metric manifold M satisfies 
Z(£,X) • R = 0, if and only if M is locally isometric to the sphere S2n+1(l), M is 
locally isometric to Example 4.1 or M is 3-dimensional and flat.
On the other hand, reversing the order of Z and R gives the following result.

Theorem 7.3 [8]. A (2n+ l)-dimensional N(k)-contact metric manifold M satisfies 
Rl^X) • Z = 0, if and only if M is locally isometric to the sphere S2n+1(l) or to 
En+1 x Sn(4).
A Riemannian manifold is said to be concircularly symmetric, if the concircular 
curvature tensor Z is parallel, that is

VZ = 0. (6)
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Theorem 7.4 [8]. Let be a concircularly symmetric N (k,)-contact metric
manifold. Then M is locally isometric to either En+1(0) x S,l(4) or the sphere 
s2n+1(i).

Remark. We note that while Z is a concircular invariant, the connection V is not 
and hence VZ = 0 is not a concircular invariant. It can be interesting to study spaces, 
which are concircularly equivalent to a locally symmetric space.
If we assume that the concircular curvature tensor Z in an AT(K)-contact metric 
manifold A/2n+1 is recurrent, that is

VZ = a 0 Z, (П

where a is an everywhere non-vanishing 1-form, then we have the following theorem.

Theorem 7.5 [8]. Let be an N(n)-contact metric manifold with non­
vanishing recurrent concircular curvature tensor. Then M2n+1 is locally isometric 
to En+1(0) x S"(4).
To conclude, we propose the following problem.

Problem. To classify (k, /xj-manifolds under conditions Z(£,X)Z = 0, Z(£, X)R = 
0, R(£, X) • Z = 0, VZ = 0, and VZ = a ® Z.

_ •

Резюме. В статье рассматриваются (к, /^-многообразия, удовлетворяющие
Z(f, X) • S = 0, где Z означает конциркулярный тензор кривизны, aS- тензор
Риччи. В работе предлагается классификация 7У(лс)-касательных метрических 
многообразий, удовлетворяющих Z(f,X) • Z = 0, Z(f, А՜) • R = 0, R(f, X) • Z = 0,
где R - тензор кривизны. Имеются несколько применений конциркулярных 
симметрических ТУ (к)-касательных метрических многообразий или многообра­
зий, обладающих ненулевым периодическим конциркулярным тензором кривиз­
ны.

REFERENCES
1. C. Baikoussis, D. E. Blair, T. Koufogiorgos, “A decomposition of the curvature 

tensor of a contact manifold satisfying R(X,Y)£ = k(r](Y)X - T)(X)Y)”, 
Mathematics Technical Report, University of loannina, 1992.

2. C. Baikoussis, T. Koufogiorgos, “On a type of contact manifolds”, J. Geom., vol. 
46, pp. 1 - 9, 1993.

3. D. E. Blair, “Two remarks on contact metric structures”, Tohoku Math. J., vol, 
29, pp. 319 ֊ 324, 1977.

4. D. E. Blair, Inversion Theory and Conformal Mapping, Student Mathematical 
Library, vol. 9, American Mathematical Society, 2000.

5. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, 
Progress in Mathematics, 203, Birkhauser, Boston, MA, 2002.



66 M. M. Tripathi

6. D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, “Contact metric manifolds 
satisfying a nullity condition”, Israel J. Math., vol. 91, pp. 189 - 214. 1995.

7. D. E. Blair, T. Koufogiorgos, R. Sharma, “A classification of 3-diinensional 
contact metric manifolds with Q</> = (pQ”, Kodai Math. J., vol. 13, no. 3, pp. 391 
- 401, 1990.

8. D. E. Blair, J.-S. Kim, M. M. Tripathi, “On the concircular curvature tensor of 
a contact metric manifold”, in press.

9. E. Boeckx, “A full classification of contact metric (Ar, /i)-spaces”, Illinois J. Math., 
vol. 44, pp. 212 ֊ 219, 2000.

10. M. C. Chaki, M. Tarafdar, “On a type of Sasakian manifolds”, Soochow J. Math., 
vol. 16, pp. 23 ֊ 28, 1990.

11. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. I, Inter­
science Publishers, NY, 1963.

12. W. Kuhnel, “Conformal transformations between Einstein spaces”, Conformal 
geometry (Bonn 1985/1986), pp. 105 - 146, Aspects Math., E12, Vieweg, 
Braunschweig, 1988.

13. V. A. Mirzoyan, “Ricci-semisymmetric submanifolds” (in Russian), Itogi Nauki 
i Tekhniki : Problemy Geometrii, vol. 23, pp. 29 ֊ 66, VINITI, Moscow 1991, 
[English transl. : J. Math. Sci. vol. 70, no. 2, 1994].

14. V. A. Mirzoyan, “Structure theorems for Riemannian Ric-semisymmetric spaces” 
(in Russian), Izv. Vuzov, Mat. [English transl. : Russian Math. (Izv. VUZ)], vol 
36, no. 6, pp. 80 - 89, 1992.

15. C. Murathan, A. Yildiz, “Contact Riemannian manifolds satisfying C(£,X)՝S = 
0 and £ € (k,/i)-nullity distribution”, Commun. Fac. Sci. Univ. Ank. Series AI, 
vol. 49, pp. 33 ֊ 37, 2000.

16. Z. Olszak, “On contact metric manifolds”, Tohoku Math. J., vol. 31, pp. 247 - 
253, 1979.

17. M. Okumura, “Some remarks on space with a certain contact structure”, Tohoku 
Math. J. vol. 14”(1962), 135 - 145.

18. B. J. Papantoniou, “Contact Riemannian manifolds satisfying R(£,X) ■ R = 0 
and £ G (A:,/2)-nullfty distribution”, Yokohama Math. J., vol. 40, pp. 149 - 161, 
1993.

19. D. Perrone, “Contact Riemannian manifolds satisfying R(X,() • R = 0”, Yoko­
hama Math. J., vol. 39, no. 2, pp. 141 - 149, 1992.

20. S. Tanno, “Isometric immersions of Sasakian manifolds in spheres”, Kodai Math. 
Sem. Rep., vol. 21, pp. 448 - 458, 1969.

21. S. Tanno, “Ricci curvatures of contact Riemannian manifolds”, Tohoku Math. 
J., vol. 40, pp. 441 - 448, 1988.

22. M. M. Tripathi, “Ricci-semisymmetric (K,/x)-manifolds”, in press.
23. M. M. Tripathi, J.-S. Kim, “On the concircular curvature tensor of a (k,/i)- 

manifold”, in press.
24. K. Yano, “Concircular geometry, I. Concircular transformations”, Proc. Imp. 

Acad. Tokyo, vol. 16, pp. 195 - 200, 1940.
25. K. Yano, S. Bochner, Curvature and Betti Numbers, Annals of Mathematics 

Studies vol. 32, Princeton University Press, 1953.

IIocTynKJia 12 oktsGph 2003


