and the second s

Известия НАН Армении. Математика, 38, № 5, 2003, 39-46

ON THE HOMOGENEITY OF PRINCIPAL BUNDLES

R. Ch. Khatamy and M. Toomanian

Faculty of Mathematics, Tabriz University, Tabriz, IRAN E-mail: toomanian@tabrizu.ac.ir, chavosh@tabrizu.ac.ir

Abstract. The paper considers the principal bundles and gives some results about the structure of geodesics in the base space of the principal bundles.

§1. INTRODUCTION

Let G be a Lie group. A (smooth) principal bundle with structure group G is a pair (\wp, T) satisfying

(i) $\wp = (P, \pi, B, G)$ is a smooth fiber bundle.

(ii) $T: P \times G \longmapsto P$ is a right action of G on P.

(iii) \wp admits a coordinate representation $(U_{\alpha}, \psi_{\alpha})$ such that

$$\psi_{\alpha}(x,ab) = \psi_{\alpha}(x,a)b, \quad x \in U_{\alpha}, \quad a,b \in G.$$

The action T is called principal action and the coordinate representation $(U_{\alpha}, \psi_{\alpha})$ is called principal coordinate (see [5], vol. I, p. 50).

Let G be a connected Lie group and K be a closed subgroup of G. The set G/K of left cosets of K in G possesses a unique differentiable structure, and is called

homogeneous manifold.

Let $T : G \times M \longrightarrow M$ be a transitive action of G on a differentiable manifold M, and let K be the invariant subgroup of the point $x_0 \in M$. Then by the map $\phi : G/K \longrightarrow M$ with $\phi(gK) = gx_0$, taking M = G/K reduces M to a homogeneous differentiable manifold. Given an affine connection ∇ on M, we are concerned with geodesics on (M, ∇) with respect to one parameter subgroups of G, called homogeneous geodesics (see [7], and also Definition 2.5).

By $\Im = (G, T, G/K, K)$ we denote the fiber bundle with group structure K (see Definition 2.4). In this paper we prove some results about the structure of homogeneous geodesics on the base space G/K of the fiber bundle \Im . First we consider the case where G is a semisimple Lie group, and then we remove this assumption.

§2. PRELIMINARIES

Let $\wp = (P, \pi, B, G)$ be a principal bundle with principal action T. A left action of G on a manifold F we write as

$$S: G \times F \to F.$$

Definition 2.1. A left action Q of G on the product manifold $P \times G$, given by

$$Q_a(z,y) = (z,y).a = (z.a, a^{-1}.y), z \in P, y \in F, a \in G$$

is called joint action of G.

is cance joint action of O.

The set of orbits for a joint action we denote by $P \times_G F$ and define a map q by

$$q: P \times F \to P \times_G F.$$

Notice that q determines a map $\rho: P \times_G F \to B$ such that

$$\rho \circ q = \pi \circ \pi_p,$$

where $\pi_p: P \times F \to P$ is the projection and $\pi: P \to B$ is the bundle map.

Definition 2.2. A smooth fiber bundle $\Im = (P \times_G F, \rho, B, F)$ with a unique smooth structure on $P \times_G F$ is called fiber bundle associated with \wp . Let P be a representation of a Lie group in a real vector space W. An Euclidean inner product $\langle \cdot \rangle$ in W is said to be invariant with respect to P, if

$$\langle p(x)u, p(x)v \rangle = \langle u, v \rangle, \quad x \in G, \quad u, v \in W.$$

Notice that for each $h \in T_eG$ the map $p'(h) : W \longrightarrow W$ is skew. Let M = G/K be a homogeneous manifold. G/K is reductive, if the Lie algebra \mathcal{G}

of G can be represented as a direct sum of the Lie algebra \mathcal{K} of the subgroup K and a vector space \mathcal{M} which is $ad_{\mathcal{K}}$ -invariant, i.e. 1. $\mathcal{G} = \mathcal{M} + \mathcal{K}; \qquad \mathcal{M} \cap \mathcal{K} = \{0\},$ 2. $ad_{\mathcal{K}} \mathcal{M} \subset \mathcal{M}.$ (1) It follows from (1) that $[\mathcal{K}, \mathcal{M}] \subset \mathcal{M}.$ (2) Observe that if K is connected then (2) implies (1) (see [5], vol. I).

On the homogeneity of principal bundles

Definition 2.3. Let G be a connected Lie group and K be a closed connected subgroup of G with Lie algebras G and K, respectively. Then $G \subseteq K$ and hence we can write

$$\mathcal{G} = \mathcal{K}^{\perp} \oplus \mathcal{K}.$$

The algebra \mathcal{K}^{\perp} is called the orthogonal complement of \mathcal{K} in \mathcal{G} with respect to Euclidean inner product $\langle \cdot, \cdot \rangle$ in \mathcal{G} . We have

$$Ady = Ad^{\perp}y \oplus id_{\mathcal{K}}, \quad y \in \mathcal{G},$$

where $Ad^{\perp}y$ stands for the restriction of Ady to \mathcal{K}^{\perp} .

Definition 2.4. Let K be a closed subgroup G. The fiber bundle $\Im = (G, \pi, G/K, K)$ with right multiplication action of K on G is a principal bundle with structure group K, and is called **principal homogeneous bundle** (see [2], p. 45).

Definition 2.5. Let \bigtriangledown be an affine connection on M = G/K, which is invariant under the action $T: G \times M \longrightarrow M$. Then a geodesic $\gamma: I \longrightarrow M$ is called homogeneous, if for some $X \in \mathcal{G} = \mathcal{T}_{||}\mathcal{G}$ there exists an one-parameter subgroup $t \longrightarrow \exp tX$, $t \in R$, such that

$$\gamma(t) = T(\exp tX, x), \quad \gamma(0) = x, \quad t \in I.$$

A connected Riemannian manifold M is homogeneous, if either the isometry group I(M) or a connected subgroup G of I(M) acts transitively on M. In this case, if $x_0 \in M$ and K is the stabilizer of x_0 , then G/K = M. Moreover, G will act effectively on G/K from the left. The point $x_0 = \{K\}$ is called the origin of the homogeneous Riemannian manifold M.

Now let M = G/K be a reductive homogeneous Riemannian manifold and let $\mathcal{G} = \mathcal{M} + \mathcal{K}$ be its Lie algebra decomposition. The natural map $\phi : G \longrightarrow G/K = M$ will induce a linear epimorphism $(d\phi)_e : T_eG \longrightarrow T_{x_0}M$ and the vector space \mathcal{M} will be identified with $T_{x_0}M$.

For a Riemannian M, the inner product on $T_{x_0}M$ induces an inner product C on M, which is $ad_{\mathcal{K}}$ -invariant. According to Definition 2.1, the geodesic γ on M passing through x_0 is homogeneous if and only if for all $t \in R$

 $\gamma(t) = (\exp tX)(x_0)$, for some $X \in g$, $X \neq 0$. Definition 2.6. Let G be a Lie group and G be its Lie algebra. A vector $X \in G$ $(X \neq 0)$ is called a geodesic vector, if the curve $\gamma(t) = (\exp tX)(x_0)$ is a geodesic on M (see [7]). In view of Definition 2.6 there is a correspondence between the geodesic vectors and the homogeneous geodesics passing through $x_0 \in M$. Let C be an inner product on \mathcal{M} , induced by the inner product on $T_{x_0}M$. The following lemma holds. Lemma 2.7 ([7]). Let $X \in \mathcal{G}$ and let $[X, Y]_{\mathcal{M}}$ be the component of [X, Y] in \mathcal{M} with respect to reductive decomposition. Then X is geodesic if and only if

 $C(X, [X, Y]_{\mathcal{M}}) = 0$ for all $Y \in \underline{\mathcal{G}}$.

Definition 2.8. Let C be a bilinear symmetric form on a finite dimensional vector space V. The radical of C is a vector subspace of V, such that

 $rad C = \{v \in V; C(v, u) = 0 \text{ for all } u \in V\}.$

Definition 2.9. The Killing form B on \mathcal{G} is defined to be a bilinear symmetric form given by $B(X,Y) = Tr(ad_Xad_Y)$.

The Cartan's criterion for solvability of \mathcal{G} asserts that \mathcal{G} is solvable if and only if B(X,Y) = 0 for every $Y \in [\mathcal{G},\mathcal{G}]$ and $X \in \mathcal{G}$ (see [4], p. 669).

The next result was proved in ([8], p. 55).

Theorem 2.10. Every Lie algebra \mathcal{G} has largest solvable ideal, which is denoted by rad \mathcal{G} . Every Lie group \mathcal{G} has largest connected normal solvable Lie subgroup such that its Lie algebra is rad \mathcal{G} .

The subgroup of the Lie group G in Theorem 2.10 is called radical of G and is denoted by RadG.

Definition 2.11. A Lie group G is called semisimple, if $RadG = \{e\}$. A Lie algebra G is called semisimple, if $radG = \{0\}$.

If a Lie algebra \mathcal{G} is semisimple, then $[\mathcal{G}, \mathcal{G}] = \mathcal{G}$. It is well known, that \mathcal{G} is semisimple iff B(X, Y) is non degenerate for all X and Y from \mathcal{G} . In other words \mathcal{G} is semisimple if and only if the radical of the corresponding Killing form is identical zero (see [4], [5]).

§3. MAIN RESULTS

Let G be a connected Lie group, $T: G \times M \longrightarrow M$ be a transitive action of G on a differentiable manifold M and K be the invariant subgroup of the point $x_0 \in M$. The Lie algebras of K and G are denoted by K and G respectively. The adjoint

representation of G leads to a representation Ad_K of K in G. Since the Lie algebra \mathcal{K} is stable under the map $Ad_K(a)$, $a \in K$, we get a representation Ad^{\perp} of K in \mathcal{G}/\mathcal{K} . The sequence

$$0 \to \mathcal{K} \to \mathcal{G} \to \mathcal{G}/\mathcal{K}$$

is a short exact and K-equivariant with respect to the representations Ad, Ad_K and Ad^{\perp} of K. The next result is known (see, e.g. [2], vol. I, pp. 45, 94).

On the homogeneity of principal bundles

Proposition 3.1. Under the above hypotheses the vector bundle

 $\boldsymbol{\xi} = (\boldsymbol{G} \times_{\boldsymbol{K}} \mathcal{G} / \mathcal{K}, \rho_{\boldsymbol{\xi}}, \boldsymbol{G} / \boldsymbol{K}, \mathcal{G} / \mathcal{K})$

is a fiber bundle associated with

 $\Im = (G, \pi, G/K, K),$

and is strongly isomorphic to the tangent bundle $\tau_{G/K} = (T_{G/K}, \pi_{G/K}, G/K, \mathbb{R}^m)$, where $m = \dim(G/K)$.

By Proposition 3.1, instead of the tangent bundle $\tau_{G/K} = (T_{G/K}, \pi_{G/K}, G/K, \mathbb{R}^m)$ we can consider the base space G/K of $\Im = (G, \pi, G/K, K)$ and fiber space \mathcal{G}/\mathcal{K} of $\xi = (G \times_K \mathcal{K}, \rho_{\xi}, G/K, \mathcal{G}/\mathcal{K}).$

Every Lie algebra \mathcal{G} possesses largest nilpotent ideal (see 1], p. 58). Moreover, every Lie group G has largest connected normal and nilpotent subgroup, such that its Lie algebra is the largest nilpotent ideal in \mathcal{G} (see [1], p. 59).

Definition 3.2. The largest nilpotent ideal in the Lie algebra \mathcal{G} is called weak radical of \mathcal{G} and is denoted by $W_{rad}\mathcal{G}$. The largest Lie subgroup which is normal nilpotent and its Lie algebra is $W_{rad}\mathcal{G}$, is called weak radical of \mathcal{G} and is denoted by $W_{Rad}\mathcal{G}$. According to Definitions 2.8 and 2.9 :

 $W_{rad}\mathcal{G}\subseteq rad\mathcal{G}, \qquad \mathcal{W}_{\mathcal{R}} \in \mathrm{Rad}\mathcal{G}.$

Definition 3.3. A Lie group G (Lie algebra G, respectively) is called weakly semisimple if $W_{Rad}G = \{e\}$ ($W_{rad}G = \{0\}$, respectively).

Observe that every semisimple Lie group is weakly semisimple. The converse is not always true.

Definition 3.4. Let B be a Killing form on G. The weak radical of B is defined

to be

$$W_{rad}B = \{X \in [\mathcal{G},\mathcal{G}], B(X,Y) = 0 \text{ for all } Y \in \mathcal{G}\}.$$

Theorem 3.5. Let G be a connected transitive Lie subgroup of the isometry group I(M) of a Riemannian manifold M = G/K. Let $\Im = (G, \pi, G/K, K)$ be a principal homogeneous bundle and $\xi = (G \times_K G/K, \rho_{\xi}, G/K, G/K)$ be a bundle associated with \Im . If G is semisimple and $m = \dim G/K$, then there are m orthogonal homogeneous geodesics passing through $x_0 = \{K\}$.

Proof: Let $\Im = (G, \pi, G/K; K)$ be a principal homogeneous bundle and G be a connected Lie subgroup of I(M) acting transitively on M. Let $\xi = (G \times_K G/K, \rho_{\xi}, G/K, G/K)$ be a bundle associated with \Im and B be the Killing form on G.

It is known (see [6]) that if M = G/K is a homogeneous Riemannian manifold such that $\subseteq I(M)$ is solvable, then there exists a homogeneous geodesic passing through any point $x_0 \in M$.

Since $\Im = (G, \pi, G/K, K)$ is principal homogeneous bundle, there exists a homogeneous geodesic passing through every point in the base space.

Let \mathcal{G}/\mathcal{K} be the fiber space of ξ and B be the Killing form on \mathcal{G} . Since radB is solvable we have $radB \subseteq rad\mathcal{G}$ (see [3], p. 22). On the other hand, since B is non degenerate on \mathcal{K} , taking \mathcal{M} the orthogonal complement of \mathcal{K} with respect to B, we conclude that $\mathcal{G} = \mathcal{M} + \mathcal{K}$ is a reductive decomposition. (Here \mathcal{K} is the Lie algebra of K, while \mathcal{M} is a vector subspace of $T_e G$ (see Proposition 3.1)). By Proposition 2 from [7] the Killing form B is non degenerate on \mathcal{M} . Hence taking into account that \mathcal{M} is the orthogonal complement of \mathcal{K} with respect to B we get $radB \subseteq \mathcal{M}$. First we consider the case where $radB \subset \mathcal{M}$. By means of the inner product C on \mathcal{M} we define an endomorphisms $\phi : \mathcal{M} \longrightarrow \mathcal{M}$ by (see [4], p. 669) :

$$B(X,Y) = C(\phi(X),Y), \quad X,Y \in \mathcal{M}.$$

Since the matrices of ϕ and B in the basis orthogonal with respect to C coincide, the matrix of ϕ is symmetric. Hence the eigenvalues $\lambda_1, \dots, \lambda_m$ are real, the corresponding eigenvectors v_1, \dots, v_m form an orthogonal basis with respect to C and

$$B(v_i, v_j) = C(\lambda_i v_i, v_j) = \lambda_i C(v_i, v_j) = 0$$
 for $i \neq j$.

If for some index l we have $B(v_l, v_l) = 0$, then $v_l \in radB$. Let $\lambda_l \in (\mathcal{M} - radB)$, implying $\lambda_l \neq 0$, so for any $Z \in \mathcal{G}$ we have

$$C(v_l, [v_l, Z]) = \frac{1}{\lambda_l} C(\phi(v_l), [v_l, Z]_{\mathcal{M}}) = \frac{1}{\lambda_l} B(v_l, [v_l, Z]_{\mathcal{M}}) = \frac{1}{\lambda_l} D(v_l, [v_l, Z]_{\mathcal{M}}) = \frac{1}{\lambda_l} D(v_l, [v_l, Z]_{\mathcal{M}})$$

$$=\frac{1}{\lambda_l}B(v_l,[v_l,Z])=\frac{1}{\lambda_l}B([v_l,v_l],Z)=0,$$

i.e. v_l is a geodesic vector.

Next, since \mathcal{G} is semisimple we have $[\mathcal{G}, \mathcal{G}] = \mathcal{G}$ and rad B = 0 (see Definition 2.10). But $B(X,Y) = C(\phi(X),Y)$, hence $\operatorname{Ker}\phi = rad B$ and ϕ is isomorphism. Thus, all the eigenvalues $\lambda_i \neq 0$ $1 \leq i \leq m$ and the eigenvectors v_1, \dots, v_m are geodesic vectors, i.e. there are m orthogonal homogeneous geodesics passing through $x_0 = \{K\}$. Let now $rad B = \mathcal{M}$. There is a solvable Lie group of isometries acting transitively on \mathcal{M} . Since $\mathfrak{F} = (G, \pi, G/K, K)$ is a principal homogeneous bundle, there exists a homogeneous geodesic passing through every point of the base space. Taking into account that \mathcal{G} is semisimple, we get m = dim G/K orthogonal homogeneous geodesics passing through $x_0 = \{K\}$. Theorem 3.5 is proved.

Theorem 3.6. With the hypotheses of Theorem 3.5 let

 $\Im = (G, \pi, G/K, K)$

be a principal homogeneous bundle and

$$\boldsymbol{\xi} = (\boldsymbol{G} \times_{\boldsymbol{K}} \boldsymbol{\mathcal{G}} / \boldsymbol{\mathcal{K}}, \rho_{\boldsymbol{\xi}}, \boldsymbol{G} / \boldsymbol{K}, \boldsymbol{\mathcal{G}} / \boldsymbol{\mathcal{K}})$$

be a bundle associated with \Im . Let $\mathcal{G}' = [\mathcal{G}, \mathcal{G}]$ and let $x_0 = \{K\}$ be the origin of M, where $\mathcal{G}' = S + \mathcal{P}$ is a reductive decomposition of \mathcal{G}' . If G is weakly semisimple, then there are $r = \dim S$ orthogonal homogeneous geodesics passing through x_0 .

Proof: Consider the base space G/K of $\mathfrak{F} = (G, \pi, G/K, K)$ and fiber space \mathcal{G}/\mathcal{K} of $\xi = (G \times_K \mathcal{K}, \rho_{\xi}, \mathcal{G}/\mathcal{K}, \mathcal{G}/\mathcal{K})$. Since $[\mathcal{G}, \mathcal{G}] \subseteq \mathcal{G}$ and \mathcal{G} is weak by semisimple, then $W_{rad}\mathcal{G} = 0$. By Definition 3.4

 $W_{rad}B = \{X \in [\mathcal{G}, \mathcal{G}], B(X, Y) = 0, \text{ for all } Y \in \mathcal{G}\}.$

This implies $W_{rad}B \subseteq radB$, and the equality holds when \mathcal{G} is semisimple (radB = 0). If \mathcal{G} is not semisimple, there are elements from radB that belong to neither $W_{rad}B$ nor $[\mathcal{G}, \mathcal{G}]$.

Since G is connected, G' is a normal Lie subgroup of G and its Lie algebra is $\mathcal{G}' = [\mathcal{G}, \mathcal{G}]$. In the reductive decomposition of \mathcal{G}' with respect to the restriction of Killing form on \mathcal{G}' we set $\mathcal{G}' = \mathcal{S} + \mathcal{P}$, where S is a subspace of \mathcal{M} with dimension r, while \mathcal{P} is the Lie algebra of the closed subgroup P of G' such that $P = G' \cap K$. Now if $v_l \in S - (W_{rad}B)$ then $B(v_l, v_l) \neq 0$ and by Theorem 3.5 v_l is a geodesic vector. Since \mathcal{G} is weak semisimple $W_{rad}\mathcal{G} = 0$ and so $W_{rad}B = 0$. Therefore v_1, v_2, \dots, v_r are independent geodesic vectors passing through the origin x_0 .

Using Gram-Schmidt method we can get r orthogonal geodesics passing through x_0 . This completes the proof of Theorem 3.6. Acknowledgement. The authors would like to express their appreciation to

professor O. Kowalski for his invaluable suggestions.

Резюме. В статье рассматриваются главные пучки и приводятся некоторые результаты о структуре геодезических в основном пространстве главных пучков.

R. Ch. Khatamy, M. Toomanian

REFERENCES

- 1. V. V. Gorbatsevich, A. L. Onishchik and E. B. Vinberg, Foundation of Lie Theory and Lie Transformation Groups, Springer-Verlag, 1997.
- 2. W. Greub, S. Halperin, and R. Vanstone, Connections, Curvature and Cohomology, Academic Press, vol. I, 1973.
- 3. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972.
- 4. A. Knapp, Representation Theory of Semisimple Groups, Princeton Univ. Press, 1986.
- 5. S. Koboyashi and K.Nomizu, Foundation of Differential Geometry I, II, New York, 1963, 1969.
- 6. O. Kowalski and J. Szenthe, "On the existence of homogeneous geodesics in homogeneous Riemannian manifolds", Geometriae Dedicata, vol. 84, pp. 331 – 332, 2001.
- 7. O. Kowalski and L. Vanhecke, "Riemannian manifolds with homogeneous geodesics", Bull. Un. Math. Ital., vol. 5, pp. 184 - 246, 1991.

A. L. Onishchik and E. B. Vinberger, Lie Groups and Algebraic Groups, Springer-8. Verlag, 1990.

Поступила 22 октября 2003

and a start of the second second share and the second start of the second second