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Abstract. The paper considers the principal bundles and gives some results about 
the structure of geodesics in the base space of the principal bundles.

§1. INTRODUCTION
Let G be a Lie group. A (smooth) principal bundle with structure group G is 
a pair (p, T) satisfying
(i) p = (P, tt,B,G) is a smooth fiber bundle.
(ii) T : P x G ।—> P is a right action of G on P.
(iii) p admits a coordinate representation (£/q,^q) such that

^a(u,a6) = ÿa(x,a)b, a, b E G.X E UQ ,

The action T is called principal action and the coordinate representation (Uq^q) 
is called principal coordinate (see [5], vol. I, p. 50).
Let G be a connected Lie group and K be a closed subgroup of G. The set G/K 
of left cosets of K in G possesses a unique differentiable structure, and is called 
homogeneous manifold.
Let T : G x M —> M be a transitive action of G on a differentiable manifold 
M, and let K be the invariant subgroup of the point xq € M. Then by the 
map (f> : G/K —> M with </>(gK) = gxo, taking M = G/K reduces M to a 
homogeneous differentiable manifold. Given an affine connection v on M, we are 
concerned with geodesics on (M, v) with respect to one parameter subgroups of G, 
called homogeneous geodesics (see [7], and also Definition 2.5).
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By 3 = (G,T,G/K, K) we denote the fiber bundle with group structure F 
(see Definition 2.4). In this paper we prove some results about the structure of 
homogeneous geodesics on the base space G/K of the fiber bundle First we consider 
the case where G is a semisimple Lie group, and then we remove this assumption.

§2. PRELIMINARIES
Let p = (P, 7r, B,G) be a principal bundle with principal action T. A left action of G 
on a manifold F we write as

S : G x F -+ F.

Definition 2.1. A left action Q of G on the product manifold P x G, given by

Qa(z,y) = (z,y).a = (z.a,a՜1.1/), z E P, • y € F, aCG

is called joint action of G.
The set of orbits for a joint action we denote by P x g F and define a map q by

q:P x F P xg F.

Notice that q determines a map p : P xq F —> B such that

po q = 7T o 7TP,

where 7rp : P x F —> P is the projection and 7r: P —> B is the bundle map.

Definition 2.2. A smooth fiber bundle 5 = (P xc F,p,B,F) with a unique smooth 
structure on P xg F is called fiber bundle associated with p.
Let P be a representation of a Lie group in a real vector space W. An Euclidean 
inner product < • > in W is said to be invariant with respect to P, if

< p(z)u,p(z)v >=< u,v >, x E G, UyVEW.

Notice that for each h E TeG the map p'(h) : W —> W is skew.
Let M = G/K be a homogeneous manifold. G/K is reductive, if the Lie algebra Q 
of G can be represented as a direct sum of the Lie algebra IC of the subgroup K and 
a vector space A4 which is adjc-invariant, i.e.

1. $ = //( + £; A4p/C = {0},
2. adKM C M. (1)

It follows from (1) that
[/C,A4]cA4. (2)

Observe that if K is connected then (2) implies (1) (see [5], vol. I).
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Definition 2.3. Let G be a connected Lie group and K be a closed connected 
subgroup of G with Lie algebras Q and JC, respectively. Then Q C K, and hence 
we can write

Q = e X.

The algebra JC1 is called the orthogonal complement of IC in Q with respect to 
Euclidean inner product < •, • > in Q, We have

Ady = AdLy © idic, y 6 5,

where Adry stands for the restriction of Ady to JC1.

Definition 2.4. Let K be a closed subgroup G. The fiber bundle 5 = (G, 7r, G/K, K) 
with right multiplication action of K on G is a principal bundle with structure group 
K, and is called principal homogeneous bundle (see [2], p. 45 ).

Definition 2.5. Let V be an affine connection on M = G/K, which is invariant under 
the action T : G x M —> M. Then a geodesic 7 : I —> M is called homogeneous, 
if for some X e Q = T\Q there exists an one-parameter subgroup t —> exptX, t E R, 
such that

7(t) = T(exptX, x), 7(0) = x, tEl.

A connected Riemannian manifold M is homogeneous, if either the isometry group 
7(Af) or a connected subgroup G of /(Af) acts transitively on Af. In this case, if 
x0 E M and K is the stabilizer of z0, then G/K = M. Moreover, G will act effectively 
on G/K from the left. The point z0 = {#} is called the origin of the homogeneous 
Riemannian manifold Af.
Now let M = G/K be a reductive homogeneous Riemannian manifold and let 
£ = A4 + £ be its Lie algebra decomposition. The natural map <f>: G —> G/K — M 
will induce a linear epimorphism (d(f>)e : TeG —> TXQM and the vector space M. will 
be identified with TXQM.
For a Riemannian M, the inner product on TXQM induces an inner product C on*
Af, which is adje-invariant. According to Definition 2.1, the geodesic 7 on M passing 
through zq is homogeneous if and only if for all t E R

y(t) = (exptX)(z0), for some X E X / 0.

Definition 2.6. Let G be a Lie group and Q be its Lie algebra. A vector X E Q 
(X 0) is called a geodesic vector, if the curve 7(t) = (exptX)(z0) is a geodesic 
on M (see [7]).
In view of Definition 2.6 there is a correspondence between the geodesic vectors and 
the homogeneous geodesics passing through xq E M. Let C be an inner product on 
A4, induced by the inner product on TXQM. The following lemma holds.
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Lemma 2.7 ([7]). Let X € G. and let [X, be the component of [X, K] in M 
with respect to reductive decomposition. Then X is geodesic if and only if 

♦

C(X,[X,r]jM) = o for all K G £.

Definition 2.8. Let C be a bilinear symmetric form on a finite dimensional vector 
space V. The radical of C is a vector subspace of V, such that

radC = {v € V; C(v,u) = 0 for all uEV}.

Definition 2.9. The Killing form B on G is defined to be a bilinear symmetric 
form given by B(X, Y) — Tr(adxady)•
The Cartan’s criterion for solvability of G asserts that G is solvable if and only 
if B(X, Y) = 0 for every Y G [G,G] and X G G (see [4], p. 669).
The next result was proved in ([8], p. 55).

Theorem 2.10. Every Lie algebra G has largest solvable ideal, which is denoted by 
rad G- Every Lie group G has largest connected normal solvable Lie subgroup such 
that its Lie algebra is radG-
The subgroup of the Lie group G in Theorem 2.10 is called radical of G and is 
denoted by RadG.

Definition 2.11. A Lie group G is called semisimple, if RadG = {e}. A Lie algebra 
G is called semisimple, if rad G = {0}.
If a Lie algebra G is semisimple, then [G, G] — G- It is well known, that G is semisimple 
iff B(X, Y) is non degenerate for all X and Y from G- In other words G is semisimple 
if and only if the radical of the corresponding Killing form is identical zero (see [4], 
[5])-

§3. MAIN RESULTS -
Let G be a connected Lie group, T : G x M —> M be a transitive action of G on 
a differentiable manifold Af and K be the invariant subgroup of the point xq G M. 
The Lie algebras of K and G are denoted by X and G respectively. The adjoint 
representation of G leads to a representation Adx of K in G- Since the Lie algebra X 
is stable under the map Adx(a), a G K, we get a representation AdL of K in G/X. 
The sequence

0 -> X ֊> G -> G/X

is a short exact and X-equivariant with respect to the representations Ad, Adx and 
AdL of K.
The next result is known (see, e.g. [2], vol. I, pp. 45, 94).
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Proposition 3.1. Under the above hypotheses the vector bundle

£ = (GxKÇ//C,p^G/K^/fC)

is a fiber bundle associated with

^ = (G^G/KyK).

and is strongly isomorphic to the tangent bundle tG/K = (TG/Kl7rG/K,G/K, IR՞1), 
where m =dim(G/K՜).
By Proposition 3.1, instead of the tangent bundle rGjK — (TG/K,7rG/K,G/K,IR,m) 
we can consider the base space G/K of $ = (G, tt, G/K, K) and fiber space Q/K, of 
< = (Gxkk,^,g/k,s//c).
Every Lie algebra G possesses largest nilpotent ideal (see 1], p. 58). Moreover, every 
Lie group G has largest connected normal and nilpotent subgroup, such that its Lie 
algebra is the largest nilpotent ideal in G (see [1], p. 59).

Definition 3.2. The largest nilpotent ideal in the Lie algebra G is called weak 
radical of Q and is denoted by WradG- The largest Lie subgroup which is normal 
nilpotent and its Lie algebra is WradS, is called weak radical of G and is denoted 
by W/iadG. According to Definitions 2.8 and 2.9 :

IVradC Ç radÇ, W*-irö Ç Rade.

Definition 3.3. A Lie group G (Lie algebra respectively) is called weakly 
semisimple if WxadG = {e} (WradG = {0}, respectively).
Observe that every semisimple Lie group is weakly semisimple. The converse is not 
always true.

Definition 3.4. Let B be a Killing form on Q. The weak radical of B is defined 
to be

iyradB = {Xe[^ff],B(X,y) = 0 for all YeG}.

Theorem 3.5. Let G be a connected transitive Lie subgroup of the isometry group 
I(M) of a Riemannian manifold M = G/K. Let $ = (G,7r,G/JC,/0 be a principal 
homogeneous bundle and £ = (G x kQ / /C, p^G /f£,G IX) be a bundle associated with 
$. If G is semisimple and m = dim G/K, then there are m orthogonal homogeneous 
geodesics passing through xo = {K}-
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Proof : Let 9 = (G, 7r, G/K, K) be a principal homogeneous bundle and G be 
a connected Lie subgroup of I(M) 'acting transitively on M. Let £ = (G x# 

• f
G/K,£/£) be a bundle associated with $ and B be the Killing form on

It is known (see [6]) that if M = G/K is a homogeneous Riemannian manifold such 
that C /(Af) is solvable, then there exists a homogeneous geodesic passing through 
any point iq G M.
Since $ = (G, 7t,G/K, K) is principal homogeneous bundle, there exists a homoge­
neous geodesic passing through every point in the base space.
Let G/IC be the fiber space of £ and B be the Killing form on G- Since radB is solvable 
we have radB C radG (see [3], p. 22). On the other hand, since B is non degenerate 
on JC, taking M the orthogonal complement of /C with respect to B, we conclude 
that G = At + A is a reductive decomposition. (Here 7C is the Lie algebra of K, while 
Al is a vector subspace of TeG (see Proposition 3.1)). By Proposition 2 from [7] the 
Killing form B is non degenerate on At. Hence taking into account that At is the 
orthogonal complement of IC with respect to B we get radB C At.
First we consider the case where radB C At. By means of the inner product C on 
At we define an endomorphisms 0 : At —> At by (see [4], p. 669) :

B(X, Y) = C(0(X), K), X, Y G At.

Since the matrices of 0 and B in the basis orthogonal with respect to C coincide, the 
matrix of 0 is symmetric. Hence the eigenvalues Ai, • • •, Am are real, the corresponding 
eigenvectors vi, • • •, vm form an orthogonal basis with respect to C and

B(vi, Vj) = C(XiVi, Vj) = XiCfyi'Vj) = 0 for i j.

If for some index I we have B(v/,v/) = 0, then v/ G radB. Let A/ G (At — radB), 
implying A/ 0, so for any Z G G we have

C(vi, [v/, Z]) = — G(0(t»/), [v/, Z],m) = — B(vi, [v/, Z]m) = A/ Ai

= -i-B(vz,[v/,Z]) = -^-B([v/,uz],Z) = 0, 
Al Al

i.e. vi is a geodesic vector.
Next, since G is semisimple we have [G,G] = G and radB = 0 (see Definition 2.10). 
But B(X, Y) = C(4>(X), Y), hence Ker</> = rad B and </> is isomorphism. Thus, all the 
eigenvalues A< / 0 1 < i < m and the eigenvectors v\, • • •, vm are geodesic vectors, 
i.e. there are m orthogonal homogeneous geodesics passing through xq = {K}.
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Let now radB = M.. There is a solvable Lie group of isometries acting transitively 
on M. Since $ = (G,tc,G / K,K) is a principal homogeneous bundle, there exists 
a homogeneous geodesic passing through every point of the base space. Taking into 
account that G is semisimple, we get m = dimG/K orthogonal homogeneous geodesics 
passing through z0 = Theorem 3.5 is proved.

Theorem 3.6. With the hypotheses of Theorem 3.5 let

3 = (G,tt,G/K,K)

be a principal homogeneous bundle and

( = (GxKG/X,pc,G/K,G/X)

be a bundle associated with $. Let G' = [G, G] and let xq = {K} be the origin of M, 
where G' = S + P is a reductive decomposition of G' • If G is weakly semisimple, then 
there are r = dim S orthogonal homogeneous geodesics passing through xq.

Proof : Consider the base space G/K of $ = (G, 7r, G/K, K) and fiber space G/X 
of f = (G Xk K'Pt'G//C,£/X). Since [G,G] Q G and G is weak by semisimple, then 
WradG = 0. By Definition 3.4

WradB = {X e [G,G],B(X,Y) = 0, for all Y 6 G}.

This implies WradB C radB, and the equality holds when G is semisimple (radB = 
0). If G is not semisimple, there are elements from radB that belong to neither WradB 
nor [£,£].
Since G is connected, G' is a normal Lie subgroup of G and its Lie algebra is 
G' = [G,G]‘ In the reductive decomposition of G՝ with respect to the restriction 
of Killing form on G՝ we set G՝ = S + P, where S is a subspace of M with dimension 
r, while V is the Lie algebra of the closed subgroup P of G' such that P = G' Cl K. 
Now if vi G S- (WradB) then B(v/, v/) £ 0 and by Theorem 3.5 vi is a geodesic vector. 
Since G is weak semisimple WradG = 0 and so WradB = 0. Therefore vi,V2,---,vr 
are independent geodesic vectors passing through the origin xq.
Using Gram-Schmidt method we can get r orthogonal geodesics passing through xq. 
This completes the proof of Theorem 3.6.
Acknowledgement. The authors »would like to express their appreciation to 
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Резюме. В статье рассматриваются главные пучки и приводятся некоторые 
результаты о структуре геодезических в основном пространстве главных пучков.
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