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Abstract. A well-known ”zero-2 law” states that if (T(t))tejR is a strongly 
continuous one-parameter group of bounded operators on a Banach space X, and 
if lim supt_>0+1|I — T(t)|| < 2, then limt_>0+111 — T(i)|| = 0. We discuss here analogous 
problems for unitary representations 0 of a general topological group U on a unitary 
Banach algebra A. Let 1 be the unit element of U, and let I be the unit element 
of A. Elementary geometric considerations show that the situation with the spectral 
radius p(I — 0(u)) as u —> 1 is quite simple, since there are only four possibilities : 
limu_>ip(Z — 0(u)) = 0, lim supu_>1 p(I — 0(u)) = si^j—y) > \/3 for some n > 1, 
lim sup^ p(J — 0(u)) = 2 and lim supu_+1 p(I — 0(u)) = +oo. If the group U admits 
’’continuous division by 2,” the second case is impossible and a ”zero-2 law” holds 
for lim supu->1 p(I - 0(u)). Another phenomenon holds for unitary representations of 
an Abelian locally compact group (H, -I֊) on a Banach algebra A. Using a classical 
result of Gelfand, which is equivalent to the fact that points are sets of synthesis 
for the algebra of absolutely convergent Fourier series, it is possible to show that if 
lim/i.+o p(I — 0(h)) = 0, then either lim^o ||/ ~ 0(h)|| = 0, i.e. the representation is 
continuous with respect to the norm of A, or lim suph_>0 ||Z - 0(h)|| = +oo. So if we 
consider any unitary representation of (//,+), then either lim^o ll-f — 0(h)|| = 0, or 
lim suph_>0 ||I — 0(h)|| > \/3. If a locally compact Abelian group admits continuous 
division by 2, then either lim^o ||/ - 0(h)|| = 0, or lim sup^Q ||Z - 0(h)|| > 2. If we 
restrict attention to representations which are bounded on some neighborhood of 0, 
we obtain a more precise result : either the representation is continuous with respect 
to the norm of A, or

lim sup ||p(#(u))|| > limsupp(p(0(u)) = max|p(z)|
h->0 h->o l*l=1

for every polynomial p.

This work is part of the research program of the network “Analysis and operators" , 
contract HPRN-CT 2000 00116, funded by the European Commission.



12 J. Esterle

§1. INTRODUCTION

A well-known ”zero-2 law”, see [14], p. 60, shows that if (T(t))teiR is a strongly %
continuous one-parameter group of bounded operators on a Banach space X, and r
if lim supt_,0+||/ - T(t)|| < 2, then lim*_+0+ ||Z - T(/)|| = 0, which means that the 
infinitesimal generator A of the semigroup is bounded, so that the map z >—> ezA 
defines a holomorphic extension of the semigroup on the complex plane. This is a 
consequence of a theorem of Kato [9] which shows that if a Co-semigroup (T(t))t>0 
of bounded operators satisfies lim sup/_>0+ ||Z - T(t)|| < 2, then the semigroup admits 
a holomorphic semigroup extension to some angular sector

^ = {z€C\{0}||arp(z)|<^}.

Analogous results for exponentially bounded weakly measurable semigroups have 
been obtained by Beurling [1].

Another approach, due to Neuberger [12] and Pazy [13], consists in showing that if 
a Co- semigroup (T(i))t>o of bounded operators satisfies lim sup^o+IZ ~ ^(01 < 
or the weaker condition \I — T(t)| < 2 — t log(|)u(t) for t sufficiently small, where 
limt_>0+u(t) = -l-oo, then AT(t) is bounded for every t > 0, which implies that A is 
bounded if T(t) is invertible for some, or equivalently all, t > 0.
In a recent paper [4], the author observed that if (T(t))t>o is any one-parameter 
group in a unitary Banach algebra A, and if p(x) denotes the spectral radius of 
x € A, then there are only three possibilities : either limt_>0+p(Z - T(t)) = 0, 
or lim supf_,0+p(Z ~ T(t)) = 2, or lim sup(_>0+p(7 - T(t)) = +oo, which leads to 
an elementary proof of the ” zero-2 law” for strongly continuous groups of bounded 
operators. For general one-parameter groups bounded near 0 a standard renorming 
argument which goes back do Feller [7] gives a smaller equivalent norm on the closed 
subalgebra generated by the semigroup for which lime_>0||T(^)|| = 1 (in which case 
lim sup =lim sup ||Z — T*(t) ||), and a very elementary computation,
based on the identity

(/ 4֊ T(h))2 - (I - T(h))2 = 4T(h)

shows that either lim t_>Q+1|7 ֊ T(f)|| = 0, or lim sup^o^-1|/- T(i)|| > y/3. (A similar 
’zero-\/3 law holds for lim inft_>o+A(£), where A(t) =lim sup/l_>0+ ||Z(t 4֊ h) -T(t)||, 
and the elementary tricks used in [4] were suggested to the author by Baxter’s proof 
[2] of the inequality A(s + t) < A(s)A(t), stated in [2] for C0-semigroups but in 
fact valid for arbitrary semigroups in a Banach algebra). So it is a natural question
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to ask whether a stronger ” zero-2 law” holds for arbitrary one-parameter groups. 
For groups of the form (7,(s)),es, where S is a dense additive subgroup of IR, the 
”zero-v/3” law holds, and a nice observation of Borichev [3], see Example 2.4 below, 
shows that \/3 turns out to be optimal. However we will see, that the ”zero-2 law” 
holds for all semigroups In fact, we completely clarify here the situation for
representations of locally compact Abelian groups. There are two distinct phenomena. 
The first phenomenon concerns unitary representations 0 = U •—> A of a topological 
group U on a Banach algebra A, i.e. maps 0 = U »—> A such that 0(1) = /, 
where 1 denotes the unit element of U and I the unit element of A, and such 
that 0(uv) = 0(u)0(v) for € U. We assume that they are locally spectrally 
bounded, in the sense that there exists a neighborhood U of 1 and M > 0 satisfying 
p(0(u)) < M for every u € U. We introduce in Section 2 the set T(0) is equal to 
{A E C | lim infu_>i dist(A,spec(0(u)) = 0}. Elementary observations show that either 
r(0) = the unit circle T, or there exists a finite family of positive integers
such that T(0) = Ui<j<JkFp>, where FPj. := {z 6 C | zp> = 1}. The case pi = l,fc = 1 
gives T(0) = 1. In the case T(0) T we obtain a finite union of vertices of regular 
polygons containing 1 and contained in the unit circle T. This shows that we have 
the following possibilities :
1) lim u_>ip(/ - 0(u)) = 0,
2) lim sup ֊ 0(u)) = 2sin(2^—) > \/3 for some n > 1,
3) lim sup u_>ip(l — 0(u)) = 2,
4) lim sup u_>ip(7 — 0(u)) = +oo.
For representations of some compact Abelian groups and of some dense additive 
subgroups of IR the case 2 can occur for any n > 1. But if U admits ’continuous 
division by 2” (which means the possibility to define square roots in a reasonable 
way near the unit element), then case 2 cannot occur and the ”zero-2 law holds for 
limsupu_>1 p(I — 0(u)).

The second phenomenon, completely described below in the case of locally compact 
Abelian groups, concerns the behavior of lim sup u-^olK-f — 0(u))ll f°r representations 
0 of Abelian groups satisfying condition 1), i.e, in additive notation, lim u_>$p{I — 
0(u)) = 0. In this case we show in Section 3 that we have a ’zero֊oo law : either 
lim u_>0||/ ֊ 0(u)ll = 0, or lim sup u^olKJ - ^(«))ll = +°°- This result is based on 
a general structure theorem for locally compact Abelian groups and on a classical 
theorem of Gelfand [8], improved later by Hille [10] : if an invertible eleihent a in a 
Banach algebra A satisfies spec(a) = {1} and supneZ ||an|| < +oo, (or, more generally, 
||an|| = o(n) as |n| -> oo), then a is the unit element of A. This well-known result 



14 J. Es ter le

is not elementary : Gelfand’s original version of this statement is equivalent to the 
fact that functions of zero exponential type which are bounded on the real line are 
constant, and to the fact that points are sets of synthesis for the algebra of absolutely 
convergent Fourier series.
Other results concerning the behavior of a one-parameter semigroup (T(t))f>0 in 
a Banach algebra A which imply the existence of an element P E A satisfying 
lim#_>0+ ||P ~ T(t)|| = 0 appeared recently. It was shown in [6] that such an element 
P exists if

lim sup ||T(t) ֊ T((n + l)t)|| < ------T
t—>o+ [n 4- 1) *1՜n

for some n > 1, and more general results of this type involving the behavior of 
||T(s) — T(t)|| near the origin are obtained in [4] in the case of strongly continuous 
semigroups.

§2. BEHAVIOR OF THE SPECTRAL RADIUS OF A GROUP 
REPRESENTATION

Definition 2.1. Let (ZÏ, •) be a topological group. We will say that IA admits 
continuous division by 2 if there exists an open subset U of IA containing the unit 
element 1 and a map 0 : U which is continuous at 1 and satisfies 0(1) = 1 and 
02(u) = u for every u E U.
Of course if IA is an additive Abelian group the conditions 0(1) = l,02(u) = u are to 
be replaced by the conditions 0(0) = 0, 20(u) = u.

Proposition 2.2. Let IA be a topological group, and let 0 : IA —> A be a locally 
spectrally bounded unitary representation oflA on a Banach algebra. Set

F(0) = {A EC | lim inf dist(A,spec(0(u)) = 0}.

Then either T(0) = T, or there exists a finite family pi,...,Pk of positive integers 
such that r(0) = ^i<j<kTPj, where FP; := {z E 1}. If, further, IA admits continuous 
division by 2, then either T# = {1} or T# = T.
Also lim supu_up(p(0(u)) = maxz6r(^ |p(z)| for every polynomial p, and for every 
open subset Q ofC containing T(0) there exists a neighborhood V of 1 such that 
spec(0(u)) c Q for every u E V.

Proof : It follows from the definition of F(0) that T(0) is closed, and An E F(0) for 
A E T(0), n E Z. If |A| / 1 for some A E F(0), then taking if necessary A՜1 instead of 
A we can assume that |A| > 1. We obtain

lim sup p(I — 0(u)) > |A|n for n > 1,
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which contradicts the fact that 0 is locally spectrally bounded. Hence T(0) C T. If 
there exists A G T(0) such that Xn / 1 for n > 1, then the set {An}neZ is dense in T 
and f(0) = T. Otherwise there exists F G IN* such that f(0) = Uner{z EC | zn =
1}, and F is clearly finite if f(0) T.

Assuming that U admits a continuous division by 2, let A € IV and let p\ and 
M2 = ~Mi be the square roots of A G C. There exists a net mW such that
limrur = 1 and limraT = A for some net (ar)r€T- of complex numbers satisfying 
aT E spec(0(uT)) for r G T. We can assume that uT G U for r G T, where U is 
an open subset of U on which there exists a function 0 : u »—> satisfying the 
conditions of Definition 2.1. There exists (3T G spec(0(u}/2)) such that /3? = ar. We 
have limr u^2 = 1 and

limsupmin(|/?r ֊mi|,|/?t - M2I) < lim |a ֊ A|V2 = 0.

This shows that there exists i G {1,2} such that is the limit of a subnet of the net 
Hence pt G T# and the equation z1 = A admits at least a solution in T# for 

every A G IV This leaves only the possibilities T# = {1} or T# = T.
Now let p GC[i], and let A G T(0) such that |p(A)| = max2er(0) |p(^)l- Let c > 0 and 
let 6 > 0 be such that |p(z)| > |p(A)| - c for \z — A| < 77. It follows from the definition 
of r(0) that for every neighborhood U of 1 there exists u G U such that Spec(0(u)) 
contains some z G C such that |z — A| < 77, and so p(p(0) > |p(A)| — c, and

lim sup p(p(0(u))) > max |p(z)|.

Let Q be an open subset of C containing F(0). There exists a neighborhood [To of 
1 such that p(0(u)) < M for every u G Uq, and we can assume that M > 1 and 
Q C £>(0,M) := {z G C | |z| < M}. Set K := D(0, M) \ Q. A routine compactness 
argument shows that there exists a finite open covering Wi,..., Wk of K and a family 
U\,...,Uk of neighborhoods of 1 contained in Uq such that spec(0(u)) n Wj =0 for *
every uG Uj. Set U = Then spec(0(u)) C for every u G U. This shows
in particular that

limsupp(p(0(u)) < max \p(z

and so lim supu_>1p(p(6l(u)) = maxzer(#) |p(z)| for every polynomial p € C[x],

Corollary 2.3. Let U be a topological’ group, and let 0 : U —> A be a locally 
spectrally bounded unitary representation of U on a Banach algebra. Then either 
limu_>i p(0(u) -1) = 0, or limsupy^i p(0(u) — I) = 2sin(2^֊j-) > x/3 for some n > 1, 
or limsupu-^j p(0(u) — I) = 2. If further, U admits continuous division by 2, then 
either limu_>1p(^(u) — I) = 0, or limsup^j p(0(u) - I) = 2.
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Proof : Set p = x — 1. Then

lim sup p(0(u) - I) = hm sup p(p(0(u))) = max |A - 1|. u֊+i Aer(fl)

If T(0) = {!}, we get limu_>ip(0(u) — I) =0. If T(0) = T, or if F(#) contains 
r2n for some n > 1, we get lim sup^j p(0(u) - I) = 2. Otherwise there exists a 
strictly increasing finite sequence (ni,...,np) of positive integers such that F(0) =
Ui<j<pr2rb+i. By a standard calculation

717T
max

Aer2n+i

for n > 1, and so in this situation we have■MM

lim sup p(0(u) - I) = 2 sin 
u—>1

Now if U admits a continuous division by 2 let A 6 IV Then either F# = {1}, in which 
case limu_np(0(u) - I) = 0, or T# = T, in which case lim supu_>ip(0(u) - I) = 2.
It is easy to see that all the situations described above can occur with representations 
of dense subgroups of IR in finite dimensional algebras. The morphisms 0 : 1R —> T 
for which T(0) = T are the well-known non-measurable characters of IR, i.e. the 
non-measurable morphisms from (IR, +) onto (T, •) (see [11]). *
We also have the following example, which is a minor modification of an example of 
Borichev [3].

Example 2.4. Let (aT)rGiR be a Hamel basis of IR viewed as a vector space over 
the field Q of rational numbers such that ar > 0 for r 6 IR and infreiR,ar = 0. Set *
G = ®TejRZar.
Then for every strictly increasing family (pi,...,p*:) of integers > 2 there exists a 
bounded representation 6 : G —such that T(0) = Ui<j<jtFp>-
To see this consider a strictly increasing family (pi, p*) of positive integers. For
1 < i < k, we define 0j : G —>C by the formula

Let 0 : G —> C* be the map u •—> (#i(u),..., ^(u)). Then 0j(aT) = e for t 6 IR,
and it follows immediately that T(0) = Ui<j<*Fp?. In particular the additive group
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G constructed above admits for n > 1 a one- dimensional representation #(FJj such 
that

lim sup ||Z - 0(n)(u)|| = lim sup p(I - 0(n)(u)) = sin(—^—). 
u—>o u->o 2n 4֊ 1

We conclude this section by an example which shows that the set T(0) can take all the 
forms described in Proposition 2.2 for bounded representations of compact Abelian 
groups.

Example 2.5. For a strictly increasing sequence of positive integers pi,...,pk with 
Pi > 2, equip Gj = with the product topology, and set G = Gi x ... x Gk- Then 
the compact group G admits a representation 0 onC* for which T(0) = Ui<j<jtrPj. 
To see this pick a free ultrafilter U on IN and set Aj(uj ) = limw n for Uj = (uJ։T։)n>o 
in Gj, and 0(u) = (xi(uiXfc(ut)) for u = (u!,...,ufc) G G. Looking at sequences

= (wj™))n>o € Gj which are constant for n > m and satisfy = 1 
for n < m, we see immediately that the bounded representation 0 of G satisfies 
T(0) = Ui<j<jfcrPi. Also for 1 < j < k the group G admits a one-dimensional 
representation 0j for which

lim sup ||Z — 0j(u)|| = lim sup p(I — 0j(u)) = sin( Pj* 
2Pj + 1

§3. THE ZERO-\/3 AND ZERO-2 LAWS FOR REPRESENTATIONS OF 
LOCALLY COMPACT ABELIAN GROUPS
Let (f> : IR -> IR be a discontinues additive map, and let x — Equip A := C2 
with the norm (u,v) •—> |u| 4֊ |v| and product (ui, vi)(u2, v2) = (tiiu2,uiv2 4- viu2). 
We obtain a two dimensional Banach algebra and I = (1,0) is the unit element of A. 
Now set 0(x) = (l,x(z)) for x G IR. This gives a representation of (IR, 4֊) on A such 
that p((I — 0(x)) = 0 for x G IR, while lim supz_,o+||0(z)|| — +00- We will see that 
this phenomenon disappears for representations 0 of locally compact Abelian groups 
(G, 4-) which are locally bounded in the sense that there exists a neighborhood U of 
0 in G and M > 0 such that ||0(<j)|| < Af for every g G U. For such representations 
the condition lim^_,o p(J - 0(g)) = 0 implies lim5_>o ||Z — 0(<?)|| = 0.
We begin with a preliminary observation. A well-known theorem of Gelfand [8] shows 
that if an invertible element of a unitary Banach algebra A satisfies supnez||an|| < 
4-oo, and if spec(a) = {1}, then a is the unit element of A. As indicated in the 
Introduction, this result is equivalent to the fact that points are sets of synthesis for 
the algebra of absolutely convergent Fourier series, and also is equivalent to the fact 
that an entire function 
constant.

of zero exponential type which is bounded on the real line is
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Let A be a Banach algebra with unit element I, and let a € A be such that
p(I - A) < 1. We can define log(a) by the usual holomorphic functional calculus :

n=l

It follows from the standard properties of the holomorphic functional calculus that 
elog(a) = a and that *(log(a)) = log(y(a)) and *(a) = for every character
X on A. Also if two commuting elements a,b (E A satisfy p(a — 1) < 1, p(b — 1) < 1, 
p(ab - 1) < 1, then we have log(ab) = log(a) 4- log(6). For a proof of this standard 
fact set x = log(ab),v = log(a) 4- log(6). We have 0 = ex - ey = (z - y)F(x,y), 
where F is the entire function defined on C2 by the formula F(zi,Z2) = eif 
^1 # 22, F(z,z) = ez for z 6 C. Hence F(zi,Z2) 0 unless there exists k € Z such 
that zi — Z2 = 2ikir. Now if x is a character on A, we have 

_ . . . . . 7T 7T.
$(*(*)) € (-77,77) $(x(y)) € (-w,w),

and so F(x,y} is invertible and x — y.

Lemma 3.1. Let t = 1—> T(t) be a unitary representation of IRK on a
Banach algebra A. If lim^o p(T(t) — I) = 0, then either limsup^Q ||(T'(t) — I)|| = 
4-oo, or the representation is continuous, so that h'm^_>o||(F(t) — -Oil — 0-

Proof : Set |t| = mazi <_?•<* |£j I for t € UV. There exists ô > 0 such that 
p(I — T(t)) < 1 for |t| < ô. In this situation we can set as above U(t) = log(7(t)) 
for |t| < Ô, and we have U(s 4-t) = U(s) 4- U(t) if |s| < |t| < |. Also if n € IN,
we have (t/(2nt)) = 2n(7(t) for |t| < 2~n6. Let t € nV and let n,m e IN satisfying 
2n0 > |t|, 2m6 > |t|. Then 2nU(2~nt} = 2rn+nt/(2-m-nt) = 2-mU(2~rnt). So we can 
set U(t) = 2nU(2~nt) for t € HV, where n > 0 is any integer such that 2n0 > |t|, and 
the map t ।—> T(t) is well defined on IlV. Let s,t 6 nV, and let n G IN satisfying
2"-M >max(|s|,|t|). Then U(s 4֊ t) = 2nU(2~n(s + t)) = 2~nU{s) 4- 2"nt/(t) = 
f/(s) + (/(t).
We can assume that A is commutative. Let x be a character on A. The map 
t ।—> x(t/(i)) = log(x(T(t)) is continuous for |t| <6; being additive on nV, it is 
continuous on EV. Set e; = (<5j,n)i<n<fc for 1 < j < k, where denotes the usual 
Kronecker symbol. Then x(l/(ti,^n)) = Sj=i Gx(t/(e>)) for f = Qfc-
By continuity, this equality holds for every t = 6 ffV.
Now set V(t) = f°r = € nV and R(t) = T(t)e~v^ =

where W(t) = U(t) — V(t). We have x(^(0) = 0 f°r every character x on
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A, and so spec(7?(t)) = {1} for t G IRfc. Assume that sup,el/ ||T(t)|| < +00 for some 
neighborhood U of the origin. Then M := sup^^ ||T(t)|| < +00. By construction, 
R(ej) = I for 1 < j < k, and so R(m) = I for every m = G Zk. This
shows that ||Z?(t)|| < M for t G IR A. Now let t G 1R*. We have

sup ||/?(t)n|| = sup ||/?(nt)|| < M. 
n€Z n£Z

Since spec(/i(t)) = {1}, it follows from Gelfand’s theorem that R(t) = I. Hence 
T(t) = ev<‘> for t e JR*, which completes the proof of the lemma.
A similar phenomenon holds for representations of compact Abelian groups.

Lemma 3.2. Let 0 be a unitary representation of a compact Abelian group (G, +) 
on a Banach algebra A. If limg_>Qp(0(g) - I) = 0, then either

lim sup ||(0(0) - Z)|| = +oo, 
g—>0

or the representation is continuous, so that limg->oll(0(g) - -Oil = 0.

Proof : We can assume that A is commutative and that span{0(0)}gGc is dense in A. 
Let x be a character on A. The map g •—> x(0(<?)) is continuous on G, and so x(#(G)) 
is a compact multiplicative subgroup ofC\ {0}. Hence x(0(<7)) C T. This shows that 
X 0 0 is a continuous character of the group G. It follows from the definition of the A A
topologies of the character space A and of the dual group G that 0 : x 1—> X ° 0. is a 
continuous map from A into G.
Hence 0(A) is a compact subset of the discrete group (7, which shows that 0(A) 

* 4*
is finite. Also 0 is one-to-one since span{0(0))^€G is dense in A, and A is finite. Let 
Xi, •••> Xk be the elements of A. A standard application of Shilov’s idempotent theorem 
shows that there exists idempotents e\,...,ek in A such that I = ei -I-... + e*, CjCj = 0 
for i 0 j and x<(e>) = for 1 < i < k, 1 < j < k. Set = £*=l x,(9)e,. Then 
V» : G —> A is a continuous representation of G on A, and x(V*(0)) = x(#(<7)) f°r every 
X € A and every g G G.
Assume that 0 is locally bounded. Clearly, 0o^-1 is a locally bounded representation 
of G on A. Since G is compact, 0 o is in fact bounded, and there exists Af > 0 
such that 0 o V,-1(<7) < Af for every u G G. Since spec((0 o V'՜1 )(^)) = {1}» follows 
again from Gelfand’s theorem that (0 o V,-1)(<7) = I for every g G G. Hence 0 = 
and 0 is continuous.

Theorem 3.3. Let H be a locally compact Abelian group, and let 0 be a unitary 
representation of H on a Banach algebra. If limh->op(I — 0(h)) = 0, then either

lim ||/ — 0(h)|| = 0 or lim sup ||T — 0(h)|| = +oo. 
h-»0
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Proof : It follows from a standard result of the theory of locally compact Abelian 
groups (see, for example, [15]) that // possesses an open (hence also closed) subgroup 
Hi which is isomorphic to a direct product ՝IRA x (7, where G is a compact Abelian 
group. So we can assume that H = /?*x G. Set 6\(t) — 0(^,0) for t E ULA, and set 
62(g) = 0(0,g) for g E G. If lim sup/i->oll^ “ $WII < +00, then

lim sup Ц/ — 0i (t)|| < +00, 
t —>0

lim sup ||Z ֊ 02(g)|| < +00, 
g->0

and it follows from Lemma 2.1 and Lemma 2.2 that

lim ||7 - 0(h)|| = lim ||Z - 0i(t)(Mg)|| = 0. 
h->0 (t,9)->(0,0)

Corollary 3.4. Let H be a locally compact Abelian group, and let 0 be a unitary 
representation of H on a Banach algebra. Then either

lim ||/— 0(/i)|| = 0 or limsup ||/- 0(/i)|| > \/3.
h->0 h->0

If further, H admits continuous division by 2, then either lim/։_>o||7 - 6(h) || = 0, or 
lim suph-юЦ/ - 0(^)1! > 2-

The proof follows immediately from Corollary 1.3 and Theorem 2.3.

In fact we have obtained a more precise result for locally bounded representations 
of a locally compact Abelian group (//, +) which admits continuous division by 2 : 
if 0 is a locally bounded unitary representation of H into a Banach algebra, then 
either lim/i-+om - ^(^)ll = 0, which means that the representation is continuous with 
respect to the norm of A, or

lim sup ||p(T(/i))|| > lim sup p(p(T(h)) = max |p(z)|

for every polynomial p.

Резюме. Хорошо известный ’’закон 2-нуля’ утверждает, что если (T(t))teiR.
строго непрерывная однопараметрическая группа ограниченных операторов в
банаховом пространстве X, и если limsup ||/ — T(t)|| < 2, то 

t-+o+
lim. ||/ ֊ T(t)\\ =

0. Мы обсуждаем здесь аналогичные задачи для унитарных представлений 
0 общей топологической группы Н унитарной банаховой алгебры А.. Пусть
1 - единичный элемент группы /7, и пусть / - единичный элемент группы
А. Элементарные геометрические рассуждения показывают, что ситуация с 
спектральным радиусом р(1 — 6(и)) при и —> 1 является достаточно простой, 
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поскольку существуют только четыре возможности : Пт р(1 - 0 (и)) = О, 
и—>1

Нт р(1 - ОМ) = зт(2^֊у) > >/3 для некоторого п > 1, Пт зир^! р(1 -
0(и)) = 2 и Пт зир,^! р(1 — 0(и)) = +оо. Если группа Ы допускает ’’непрерывное 2 Я Я А, второй случаи не возможен и закон 2-нуля” выполняется для 
Пт зири_р(1 — 0 (и)). Другой феномен имеет место для унитарных представ­
лений абелевых локально компактных групп (Н,+) на банаховой алгебре А. 
Используя классический результат Гельфанда, эквивалентный факту, что точки 
являются множествами синтеза для алгебры абсолютно сходящихся рядов Фурье, 
в работе показано, что если Пт р(1 - е(Н)) = 0, то 1ппЛ_>о ||/ - 6>(Л)|| = О, Л—>0
т.е. представление непрерывно относительно нормы А, или Пт эирЛ_>0 ||/ — 
6»(/г)|| = +°°- Итак, если рассмотреть любое унитарное представление (Я, +), 
то Птл-и) ||/ - 0(М = 0, или Пт зир^0 ||/ - 6>(Л)|| > >/3. Если локально 
компактная абелева группа допускает непрерывное деление на 2, то Пт II/ —

Л—>0
^(Л)|| = 0, или Пт зир^^о ||/ — 6?(Л) || > 2. Если рассмотреть представления, 
ограниченные в некоторой окрестности точки 0, то получаем более точный 
результат : либо представление непрерывно относительно нормы алгебры А, 
либо Пт зир/^о ||р(0(и))|| > Пт зир^о р(р(0(и)) = тах|2|=1 |р(г)| для любого 
многочлена р.
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