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Abstract. For a finitely connected domain Q the paper constructively proves the 
existence of a function f holomorphic on Q, whose Laurent series partial sums possess 
universal approximation properties in Qc. Existence of functions holomorphic on a 
Jordan domain G, whose Faber series partial sums possess universal approximation 
properties in Gc is demonstrated. The class of functions with these properties is a 
Gj-set and is dense in the space of all functions holomorphic on G.

§1. INTRODUCTION
The existence of a Taylor series on the unit disc with universal approximation 
properties of the partial sums has been shown independently by Luh [5] in 1970 
and Chui and Parnes [2] in 1971. This result has been generalized by Luh [7] in 
1986 for open sets with simply connected components. Let O be an open set with 
simply connected components. We denote by 8n\f)(z) the nth partial sum of the 
Taylor expansion of a function f with center at £. In [7] Luh proved that there exist 
a function $ holomorphic on O and a sequence of natural numbers {pn}n such that 
(1) The sequence {$p9($)}n converges locally uniformly on O to $ for each (eO. 
(2) For each compact set B C Cf with connected complement and each function 

f continuous on B and holomorphic on its interior there exists a subsequence 
{Pn)n of {Pn}n, such that {s£P($)}n converges uniformly on B to f for each 
CEO.

In 1996 Nestoridis [12] obtained a similar result using Baire’s theorem. He proved 
that the set of all holomorphic on the unit disc functions /, that satisfy the condition 
(A) below, is G<$ and is dense in the space of all functions holomorphic on the unit 
disc, oo
Condition (A) : Let £ anzn be the Taylor series of a function /. For every compact 

n=0
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set K C {z : |z| > 1} with connected complement and every function h continuous K
on K and holomorphic on its interior there exists a subsequence

T m
Srm(z) = ^anzn, 

n=0

m € Af,

that converges to h uniformly on K.
In 2002 Vlachou [16] proved that for B C Oc the above classes of universal functions, 
defined by Luh and by Nestoridis, coincide. Nestoridis [12] pose the question, whether 
a construction of a universal Taylor series would be possible for multiply connected 
domains. Gehlen, Luh and Müller [4] gave a negative answer to this question in the 
case of a bounded multiply connected domain.
Although universal Taylor series have been constructed for more general domains (not 
necessarily simply connected, see, e.g., [10] and [15]), for multiply connected domains 
Laurent series appear to be more suitable. In this paper we give a constructive proof 
for the existence of universal Laurent series.
For universal Faber series Katsoprinakis, Nestoridis and Papadoperakis [6] reduced 
this problem via Faber mapping to the problem for universal Taylor series. However 
this method yields only the existence of universal Faber series for domains of bounded 
rotation. Our proof is constructive and can be applied to more general domains.

§2. UNIVERSAL LAURENT SERIES 
/k A

2.1. Notation. Let Q be a domain in the extended complex plane C such thatC \ Q 
consists of finitely many components to be denoted Ao, Ai,..., Ak and assume that 
oo € Ao, and the points a.j € A;, j = 1,..., k are fixed. Then every function f € 7Z(Q) 
(the space of all functions being holomorphic on Q) possesses a unique decomposition 
f = /o + /i +•.•’+ A, with fj € //(Ay) (j = 0,1,..., k) and lim fAz) = 0 J z—>oo
(j = 1,..., k). Every fj has a representation as a Laurent series

oo CTl(f]1 Qj)

where cn(fj,a.j) are the Laurent coefficients of fj with respect to aJy if z is supposed 
to lie outside a large enough disc with center at a.j. Using this for f € //(Q) and 
C € Ag we define the formal sums

MN(/,C)(z)
Cfi (/1, Ql ) 

(z — ai)n
( f k, &k ) 

(z - ak)n ’
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For later use we define an explicit metric on the space H(Q) that describes locally 
uniform convergence. We choose an exhausting sequence {Kn}n of Q consisting of 
compact sets, and for f,g G 7/(Q) we set

pn(/) = max |/(z)|, n G Af,

oo
p(/) = ^2 

n=l

Pn(/) 
2”(1 + Pn(/))’ d(/.S) =P(f - 9)-

It is easy to check that (ff(Q),d) is a complete metric space with the desired 
convergence properties, that is, a sequence of functions {fn}n in H(Q) converges 
to some function f G #(Q) with respect to the metric d if and only if it does so in 
the sense of uniform convergence on compact subsets of Q.

Finally, for a compact set K the space of functions that are continuous on K 
and holomorphic in the interior of K we denote by A(K).

2.2. Construction of a Universal Laurent Series and its Properties. Now we 
will prove a result which already appears in [8] (we use the technics of [8], but not 
the results).

Theorem 2.1. Let Q C C be a domain such thatC\ Q = AqU.. .U At, oo G Ao, and 
let some points dj G Aj (j = 1,..., k) be fixed. Then there exist a function f G H(Q) 
and a sequence of natural numbers {tn}n with the following properties : 

9

(1) For each compact K C fl and each point ( G AJ the sequence 0}n
converges locally uniformly on fl to f.

(2) For any compact K C flc \ {ai,•.., a*} with connected complement and any 
function g G A(K) there exists a subsequence {tn։ }$ of {tn}n such that {Mtn, (/,£)}« 
converges to g uniformly on K for any choice of £ G Aq.
Proof. 1) Preparatory. For every j = 0,...,A: we choose an exhausting sequence 
{Ln}}n of the set Ac. such that Ln ’ is closed for j = 1,..., A:, n G Af and L$l0) is

* * J /

compact for n G Af. Without loss of generality we can assume that each Ln has 
connected complement, since every Ac- (j = 0,..., k) is simply connected in C.
Furthermore, we choose a sequence of compact sets {K,*}n with each K* C flc \ 
{fli,... ,ak} possessing connected*complement, in such a way that for every compact 
set K with the same properties there exists N G M such that K C K*N. The existence 
of such a sequence can be proved by application of the technics of [12], Lemma 2.1. 
We consider an enumeration {(A’n,Pn)}n of the set

{(K,p) : K G {K* : n G Af}, p is a polynomial with coefficients in Q + iQ}, 
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in which every combination of K* and pn appears infinitely many times. Finally, we 
will use the notation = KnC\ Aj (j = 0,..., n € X).

2) Construction of the Universal Function. First we set

0oO)(z) = z ֊ 0</‘(z) = —֊—, j = Ao = 1.
z — aj

We assume that for a number n G V the functions 0Qm\ ..., 0j.,n) and the numbers
Am have been already determined for m = 0,... ,n — 1 in such a way that
(i) 05JP is a polynomial,

(ii) 0m is a rational function with one pole at a} for j = 1,..., k. Hence we have

To perform the induction we set ^n-i = max jdeg (0^21) 5 Qn-i» J = 1» - - -, A: J, 
and choose a natural number An such that An > (n- l)(An_i + <?n-i). By Runge’s 
theorem on polynomial approximation, we find a polynomial 0„O) satisfying

max |€>J10)(z)|
2" max z 

x€L<°>
(1)

max
n max \z (2)— di pn

For j = 1,..., k we find a rational function 0n 1 with a single pole at aj, satisfying

sup |0j>-')(z)l < 
er?1

(3)

max
PnW- E eLJ)(z)

0O)(2)------------------- -----------------------------------

(z—ai )*»'
(4)
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The existence of such a function follows from Runge’s theorem on rational 
approximation (see, for instance, [13], Theorem 13.9). Note that the set 
has connected complement, which enables to shift the pole. Finally we consider

= (z-01)A-e£>(2), (j = i,
(z — cij)m

and define

Mz) = ^Q^(z), 

»/=0
(5)

(6)AW = £<??)W, 
p=0

; = l,...,fc.

Then the desired function is f = f0 + /i 4-... 4֊ fk- Since {Ln ’ }n are exhausting 
sequences for each Ajt the inequalities (1) and (2) assure the holomorphy of f

k
on Q = |~| Aj. 

j=o

Fix j e {1,..., k}. We consider the powers of y֊ in and observe :

o The highest power of in Qm՛ is less than or equal to Xm 4֊ gm.

o The lowest power of r՜՜ in is greater than Am+i-

By the definition of An the powers of do not overlap within the and the 
functional series on the right hand side of (6) is indeed a Laurent series. For similar 
reasons the functional series on the right hand side of (5) turn to be a Taylor series. 
Hence, setting tn = An 4- gn and qn — An+i» we obtain the equations

Stn(/o,ai)(*)
»/=0

n

i/=0
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Thus the first statement of the theorem holds for £ = ai. Moreover, the Taylor 
series of /0 with respect to the center Qi possesses-pure Ostrowski gaps {£n,<?n} with

֊֊>00 (i.e. an(f,ai) = 0 for n €
oc
U {tn 4-1,..., gn}). Theorem 1 in [7] states that 

n=l

the difference Q - aj converges locally uniformly to zero on Q. This 
proves the first statement.

3) Proof of the Universal Properties. Let K be an arbitrary compact set with 
the properties of the second statement and an arbitrary function g € A(K). First 
we find an n0 6 V with K € Kno. By Mergelyan’s theorem and the definition of 
the sequence {(7<n,pn)}n we can choose a sequence {ns}s of natural numbers with 
ns > s satisfying

and Kn, = Knoi (s € Af). The estimations (2) and (4) are equivalent to

max |St (/o;<»i)(z) -p„,(z)| < — < serf, (7)

max, ?;)(z)-Pn.(z)| < — < - j = s € fif. (8)

For sE^ the following inequalities hold :

max (/,ai)(z)-^(z)| < max |Su//0,ai)(^)-Pn,(-2)1-1֊

max 
zeKKAo

k

z C ** 
M=1

The second line of this estimation tends to zero as s -> oo by (7) and (8). The last term 
tends to zero, since O40 is a compact subset of for each /1 = 1,..., k. Similarly
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one can estimate the difference max - s(^)| for j

obtain

1,..., k to

max|A/(n>(/,ai)(z) -<7(z)| -» 0, c t <x S ֊> 00.

Applying again Theorem 1 from [7], we get the second statement of the theorem. This 
completes the proof of Theorem 2.1.
A function satisfying both statements of the Theorem 2.1 will be called a universal 
Laurent series.
_ — —
Theorem 2.2. Let Q C C be a domain such that C \ Q = Ao U ... U At, oo € Ao. 
and let a, 6 Aj (j = 1,.... A:) be fixed points. Then the set of all universal Laurent 
series is dense in the space (/f(Q),d).
Proof. For an arbitrary y € H(Q) and c > 0 we choose a function /o possessing both 
properties of Theorem 2.1. Now we find a number <5 > 0 such that p(<5/o) < f- By 
Runge’s theorem on rational approximation we find a rational function R with poles 
at {ai,... ,ajb} satisfying d(R,g) < ֊. For f = 6fo 4- R we have

d(/, 9) = d(ôf0 + R,g)< ptffo) + d(R, g)

Hence f ’’lies near” to g. Next, for all N € AT greater than any power of z - ai or
(j = 1, • • •, k) appearing in R (possibly after shifting the pole within R) we get

Af/v(/, ûi) = + R.

By the first statement of Theorem 2.1, there is a sequence {£n}n such that 
{Mtn(/0,ai)}n converges to /0 with respect to the metric d. Hence {Mtn (f, ai)}n 
converges to f.
Let K C Qc\{ai,..., a*} be a compact set and h e A(K). By the second statement of 
Theorem 2.1 we can choose a subsequence {tnt }s of {tn}n such that {Aftnj (/o> ^i)}« 
converges uniformly on K to |(h — R) (note that R also belongs to the class A(/0). 
Hence {Mtnt (f, aj}, converges uniformly on K to h. Thus f satisfies both properties 
of universal Laurent series. Theorem 2.2 is proved.

§3. UNIVERSAL FABER SERIES
For an introduction into Faber series the reader is referred to [3] and [14]. Following 
[14] we consider a bounded closed set B the complement B of which is a simply 
connected domain (inC). By the Riemann mapping theorem there exists a conformal 
mapping : P* •—> fF. The Faber polynomials with respect to ip we denote by 
{Pn}n«
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For R > 1 by Br we denote the'bounded domain with the boundary :
|z| = 7?}. Then every function f € H(Br) can be represented as a Faber series

oo
/(z) = 52 C»(/)Pn(z)> 

n=0

where
cn(/) = À / ֊« € Vo,

2wt J|,|_r sn+1
1 < r < R

are the Faber coefficients of f. The corresponding partial sums Fm(f,z) are given by

m

n=0

First we will show that the set of universal Faber series is a <7<$-set and is dense in 
the space H(Br) for any R > 1. To this end we fix a number R > 1, a set G = Br 
and define an abstract class of universal functions.

Definition 1. The set Uf(G) of universal Faber series is the class of all functions 
f 6 H(G) having the property that for any compact set K C Gc with connected 
complement, any function g € A(K) and any e > 0 there exists an index n G A/q with

Theorem 3.1. The set Uf(G) of universal Faber series is a G&-set and is dense in 
the space H(G).
Proof : First we fix the following three sequences :
(1) Let {Hn}ne^ be an exhausting sequence of G consisting of closed simply 

connected domains.
(2) Let {r7; j e fif] be an enumeration of all polynomials with coefficients in Q + iQ.
(3) Let {Kn}n€v be an enumeration of all compact sets K C Gc with connected 

complement such that for all sets K G Gc having the same property there exists 
an no € Af satisfying K C Kno.

The proof consists of three lemmas. The first two lemmas give a representation of 
Uf(G) as a G^-set and the third one shows that this set is dense in H(G). For
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mJ, s € V, and n E Vo we set

O(G,mJ,s,n) =
xKm (9)s

Lemma 3.1. The following equality holds :

oo oo oo oo

«f(G) = Pl Pl Q U O(G,m,j,s,n). 
m=lj=l4=1n=0

(10)

Proof. Let f € Uf(G) and mJ, s 6 A/՞ be given. Since Km is a compact subset of G 
with connected complement by the definition of Uf(G) with e = | we obtain that f 
belongs to the right hand side of (10).
Now suppose that f belongs to the right hand side of (10). For a given compact set 
K C G with connected complement, a function g E A(K) and a number e > 0 there 
exist numbers m,s E Af such that K E Km and | < ֊. By Mergelyan’s theorem we 
conclude the existence of an j E N such that maxzeKm |rj(z) ~ <?(z)l < f- By (9), 
for the numbers m, j, s there is an n E A'o satisfying maxz€Km \Fn(f,z)-Tj(z)\ < ֊. 
Therefore max2eKm |Fn(/, z) - #(z)| < ֊ 4֊ f < e. This shows that f belongs to the 
left hand side of (10). Lemma 3.1 is proved.

Lemma 3.2. For all mJ, serf and nE Af0 the set O(G, mJ, s, n) defined by (9) is 
an open set in H(G) (in the topology of locally uniform convergence).
Proof. Fixing m,j,s E A/՞,n E A/o and f E O(G,m,j,s,n), for r E (1,7?) we put
Cr = {<p(s); |s| = r}. For 6 > 0 we define the set

%(/) = {9 £ ■ max \9M ~ /(*)l < <*}>

and show that for an appropriate choice of 6 this set is contained in O(G,m,j,s,n). 
For a fixed r € (1,7?) and any function g E %(/) we have

\cjf) “Cp(^)| = 27TI
r(V'(s)) - s(V>(s)) . v € A/q.

Now we set M = max{|pv(z)| : z € Km, 0 < v < n}, and choose

M s
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It is clear that 6 > 0, and hence for all g € U&(f)

n
max |Fn(p,z) - Fn(/,z)| < V |c„(p) - c„(/)| max |p„(z)| < 

:£Km
i/=0

1
s max |Fn(/,z) -rj(z)|.

*' €E m

Therefore for all g € Us(f)

max |Fn(g,z) - 
m r,(z)| < max |Fn(g,z) - Fn(/,z)| + max |F„(/,z) -r/z)| 

;6Km zEKm

- - mg* |F„(/,z) ֊ r,(z)| + max |F„(/,z) - r,(z)| = ֊, x € A. m A m S

yielding Us(f) C 0(G,m, j, s,n). Lemma 3.2 is proved.

oo
Lemma 3.3. For every choice of m,j,s € .V the set |J O(G, m,j, s,n) is dense in 

n=0

H(G). - .......... U
Proof. Given a compact set K C G, an e > 0 and numbers mJ, s € Af, let f € H(G) 
be arbitrary. Since G is at least simply connected, without loss of generality we can 
assume that K has connected complement in G. Hence K Cl Krn = 0 and K U Km 
has connected complement. So due to Runge’s theorem on polynomial approximation 
there exists a polynomial P satisfying

max |P(z) - f(z)\ < €,
tn

Let n be the degree of P. Since every Faber polynomial pn is of full degree, i.e. 
deg(Pn) = n, we have P = Fn(P, •). Therefore

max |Fn(P, z) - r, (z)| < z € A m 5

yielding P € O(G, m, j, s, n). Lemma 3.3 is proved.
Now Theorem 3.1 follows immediately from Lemmas 3.1 ֊ 3.3 and Baire’s category 
theorem.

A universal Faber series is constructed by the method already used in the 
preceding section. So we outline a sketch proof, containing only the construction 
of the universal Faber series.
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Theorem 3.2. There exists a function f holomorphic on the domain G (as defined 
above) and a sequence of natural numbers {tn }n satisfying the following properties : 
(1) The sequence{Ftn(f, -)}n converges locally uniformly on G to f.
(2) For each K C Gc with connected complement and each g € A(K) there exists a 
subsequence {in, }s of {tn}n, such that {Ftn (f,-)}s converges uniformly on K to g. 
Proof. We use the same sequences as in the proof of Theorem 3.1. First we choose 
a sequence where every combination of Kn and rn appears infinitely
many times. Set Pq = 0 and Ao = 1. Supposing that for an n G M the polynomials 
Po> • • • > Pn-i and the natural numbers Ao,..., An_! have already been defined, we set

An = An_i 4֊ max{deg(Pp); 0 < u < n ֊ 1} + 1,

and choose a polynomial Pn with the following properties

max IPn (z)| (11)

max n max |z|An (12)

Finally we define

m
lim Tm(z). m—>oo

Similar considerations as in Theorem 2.1 allow to conclude that there is no overlapping 
of the powers of z in the sum of the right hand side of the first equation. This yields 
Ftn(f, •) = Tn. The universality of f can also be shown analogously as in Theorem 
2.1.

Remark. Actually we have lised two different definitions of universality (Definition 1 
and Theorem 3.2). The general proof outlined in [16], Theorem 2.6 shows that these 
two classes of universal Faber series coincide.

Acknowledgement : I would like to thank J. Müller and W. Luh for interesting 
suggestions and helpful discussions.
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Резюме. For a finitely connected domain Q the paper constructively proves the 
existence of a function f holomorphic on Q, whose Laurent series partial sums possess 
universal approximation properties in Qc. Existence of functions holomorphic on a 
Jordan domain G, whose Faber series partial sums possess universal approximation 
properties in'Gc is demonstrated. The class of functions with these properties is a 
Gtf-set and is dense in the space of all functions holomorphic on G.
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