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Abstract. The paper uses some ideas due to Joseph Mecke to demonstrate that a 
recent result of Mecke/Stoyan showing, that the theorem of Gauss-Bonnet is true 
for stationary 1-dimensional networks in IR^, remains true for simplicial surfaces 
with or without boundaries. Here the theorem of Gauss-Bonnet /C = 2tt • X is to 
be understood in the sense that AS is the mean total Gaussian curvature per unit 
volume, and X — the mean Euler characteristic per unit volume. Higher dimensional 
stationary random simplicial pseudomanifolds are discussed.

INTRODUCTION
The point of departure is a recent result of Mecke/Stoyan [4], where the Gauss-Bonnet 
theorem is shown for random networks in IRJ in the following sense :

1C = 27T • X, (1.1)

where IC = the mean total Gaussian curvature per unit volume and X = the mean 
Euler characteristic per unit volume. The mean is taken with respect to a stationary, 
and thus infinitely extended random network in IRd.
In this paper we extend the above result to stationary random simplicial surfaces 
in IRd with or without boundaries. To get this result we use the Palm theory of 
stationary random measures (see [2]), in particular some ideas of Mecke [3] developed 
for stationary random tesselations of the plane. Our result thus shows that the 
Gauss-Bonnet theorem remains true for random simplicial surfaces with nontrivial 
curvatures. In a forthcoming paper [5] we show that this is even true for higher 
dimensional simplicial complexes and not only in the mean but even individually.
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We stress here the intrinsic character of formula (1.1). %
§2. RANDOM COMPLEXES IN IRd <
In the following we are always working in E = IRd, the d-dimensional Euclidean 
space. We denote by Bq(E) the collection of bounded Borel sets in E.

Simplicial complexes and surfaces in E. Let X be the set of finite subsets x of 
E which are affinely independent. This means that the affine hull of x

aff x = ^(1 lit,

is different from the affine hull of every proper subset of x. A fc-siinplex is given by 
the convex hull (x) of an affinely independent x with card x = & + 1. The dimension 
of x respectively (x) is defined by dim x = dim (x) = card x — 1. A configuration 
p of affinely independent elements x € X is a locally finite point measure in X, i.e. 
p € M (X) if and only if p is of the form

(2.1)

where D C X is countable and locally finite in the sense that

= card{z e D\z D B (f)} < +oo, B G Bq{E). (2-2)

(In the following we identify p and D, thus considering p as a measure in X or as 
subset of X.)
A configuration p in X is called Euclidean simplicial complex or simplicial complex 
in E, if

(x G p,y C x => y € /i);

(t, y G P, (x) n (y) # (/> => 3 z G X, z C X A y : (z) = (x) A (y)).

(2.3)

(2-4)

Let S = S (E) denote the set of simplicial complexes in E. The dimension of p is 
defined by dim p = max{dimz|z G p}. A general method to construct new complexes 
from a given one is the following : Given p G Slet v C p be some subset. Then the 
closure of y is given by

= (2>5)
j/Cx

Note that in general cl y is not an element of A4 (X), but from Af'(X), where 
7? G A4 (X) if and only if

(2.6)
x£D
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where D C X is locally finite as above and n : D 
values being integers.
For instance if v = {z}, x E /x, then

IN\{0} is a function with

d{x} = J2<5v. (2.7)
j/Cx

The faces of x € /x are defined by C x. Call an element x E /x maximal if
(y € /x, x C y => x = y). It is evident that each /x € 5 contains maximal elements x. 
Consider the subset v — {z E /x: x maximal}. Then we can consider

cl v = c/{x}.
• €#* 

maximal

It is also evident, that in this case /i = supp cl u, where the support of 17 E M (X) 
is defined by supp y = {y E X> 1}. Another example is the A-skeleton pk of 
/x, given by

P* = 52 d{x}- (2-8)
«€/* 

dim x = Ac

The star and link of z E p are

/r = E <5x1 (2 9)

«2*

lk(z,p) = supp clpz \pz. (2.10)

In this paper we consider for simplicity the following class F C 5 (E) of simplicial 
surfaces p in E. Here p E T if and only if p E 5 (E) and p satisfies the following 
conditions :

for each x E p maximal dim x = 2 ;
each edge is contained in one or in two maximal x E p;
for each a E /x0 {lk(a. p)) is homomorphic to S1 or to an interval in IRl. 

Note that p can have a boundary or not.

Random simplicial complexes. We consider in T the tr-field Bp which is generated

by the mapping
£ : T —> ]Nqo(E\ p ֊> (B -4 <B(/x)). (211)

A probability P on (P,#r) is called a random simplicial surface in E. In the 
following we consider only stationary random simplicial surfaces P in E. This means 
that P is invariant under the group of transformations in T which is induced by the 
Euclidean translations. We denote these transformations by . p 1 > p — a, a E E. In 
such a situation Mecke’s theory of Palm measures can and will be used (see [2]).
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§3. PALM MEASURES
%

Without going into the details we recall briefly some notations and results for later r
use (see [2], [3]) : We are given a stationary random simplicial surface in E described 
by the probability space (F,5r,P). Denote by b : X ।—> E the barycenter defined 
by

&(z) = —77— 57 a, (3.1)
card x aGx

b is measurable with respect to Matheron’s cr-algebra for systems of closed subsets 
of E (see [1]) and induces a measurable transformation b : T •—> Af (E), where b/j,, 
/i € T is the image of p under b. We use also

M°k = {g€ r|0ebpw}, fc = 0,1,2. (3.2)

Here dimx=fc Given /i € M.® we can consider the typical fc-cell
Zq(/x), i.e. the unique x 6 with 0 € (x). The Palm measure of P is defined by 

g(a) • ç>(jx — a) b/d(da)P(dfi), (3.3)

where : T —> IR+ U {-Foo} is any measurable numerical function and g : E i—> JR+ 
is a measurable function such that fE g(a) da = 1. By definition P° is a cr-finite 
measure on T which is concentrated on A4q U At? U =: Al0, the set of simplicial 
surfaces having 0 as a barycenter of some of its elements x.
We are mainly interested in intrinsic properties of the random simplicial surface. 
These are properties which depend only on the inner metric of the random surface /i 
which is induced by the Euclidean metric of E.
Such properties are deduced from the basic invariance property of the measure 
b^(da)P°(d/i) under the transformation (a,/z) »—> (—a,/x - a). More formally thus is 
expressed in the

Lemma 1. For each f > 0 measurable

[ [ f (a>M) bp,(da)PQ(dfi) = f [ f (֊a, fi-a)bii(da)P°(dp,). (3.4) 
r J E J r J E

An application of this invariance property to the function

/(a,p) = 1a4;(/z) • („))(“) •V’G1 - o)

(</> > 0 measurable) yields the following corollary.
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Corollary 1. For all p > 0 measurable

— a)b p^(da) PQ(dp) =

= . ,12 P°^ + 2 • f P°W- (3.5)
J,V(?n{nJ'2 = l} Jjvt?n{n;'2=2}

Here for p, E Ad?, n0’ (/x) = Czi(M)(/X2) denotes the cardinality of 2-cells of /i, which 
meet the typical edge zj(/x).
The proof is the same in Mecke’s proof of theorem 5.1 in [3]. Since the number of 
edges of a typical 2-cell (xg(/x)),/x E f, is 3, we obtain directly

3 ■ P°(A<5) = 2 • P°(M° n {nJ'2 = 2}) + />>’ n {nJ'2 = 1}). (3.6)

In particular, if P is a stationary random simplicial surface without boundary, i.e. 
P°(A4? Cl {nJ’2 = 1}) = 0, then

3-P°(A4?) = 2-P°(jV(J). (3-7)

The following corollary will be of fundamental importance in the sequel. We need the 
following notation : If p € A4q denote by /x° the set of all 2֊cells of /x, which have 0 
as a vertex ; i.e. /xj = 6X.

An application of Lemma 1 to the function

/(a,/x) = IjmoC/j- lpon(l։(z։)>(a) -/i(a,p),

(h > 0 measurable) yields by Mecke’s reasoning in [3] the following result.

Corollary 2. For each h > 0 measurable

a) b^ida) P°(dfT). (3.8)
2 aGx§{M) o

This immediately implies (take h = 1)

3.pO(M°2)= n°2(E)
Jm«

(3.9)

i.e. the mean number of 2-cells in the random surface with respect to P0, which have 
0 as a vertex, is 3 times the mean number of 2-cells per unit volume, taken with 
respect to P°.
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§4. THE GAUSS-BONNET FORMULA FOR STATIONARY RANDOM 
INFINITELY EXTENDED SURFACES e
The main theorem of the present paper proves that a recent theorem of Mecke/Stoyan 
in [4] given for stationary random 1-dimensional simplicial complexes can be extended 
to stationary random surfaces with or without boundaries, thus indicating, that this 
theorem is true more generally for stat ionary random pseudomanifolds. (This will be 
done in a forthcoming paper [4]). Its proof is based on the Palm methods presented 
above.
Let P be a stationary random simplicial surface in E. Consider for G f and a given
vertex a E /io the curvature of p in a, defined by

where 0 is the deficit angle

M2) =
2tt 

card ^2
7T 

card p“

— a(a, x),

— a(a, z),

if {lk(a,p)) is a circle

if is an interval.
(4.2)

Here a(a, x),a E x, denotes the (intrinsic positive) angles of x at a. Roughly speaking 
JC(a,/i) measures the deviation of p from the Euclidean surface (tesselation). 
An important observation is the following lemma.

Lemma 2. For p E A4q one has

K(0,M) =
2tt — fE 7(—a, p — a) bp^da), if p € T Cl Cl {(ZXc(O,.)) = circle}, 
7r — [E 7(—a, p — a) bp^da), if p € T Cl jMq A {(ZA:(O,.)) = interval}.

(4.3)
Here y(a,p) denotes the angle of Xq(p) at a, if p E with a € po A Zq(m)-

Proof : follows from the fact that the angle a is translation invariant (in the sense • 
that a(a + b, x 4- b) = a(a, x) for each b € E), so that one can write

a(0,x) = / 7(—a,p — a) bp^da).
Je

Moreover, from Corollary 2 we have the following lemma.

Lemma 3.
a) bß(da)P°(dii) = ?rP0(A4?).

0

(4-4)

(4.5)

Proof : We have to show that '>'(“, m) = 2T, if M € M°, which is evident.
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Now assume in addition that 0 < P°(A4?) < -Foo. This combined with (3.9) implies 
first 0 < P°(A4{j) < +oo. Then lemma 2 and lemma 3 imply that the integral 
K.(P) := fMo /C(0,/i)P°(d/i) is finite and satisfies the equation

K(P) = 27T ■ P°(A4<J n {</fc(0,.)) = circle})+

+7T • P°(,M° n .)) = interval}) - nP°(MQ2). (4-6)

We call /C(P) the mean specific total curvature of P. We now assume in addition 
that

P°(.M° n {nJ’2 = 1}) = P°(A4g n {(Z*(0,.)) = interval}). (4-7)

This means that the mean number of exterior edges per unit volume equals the mean 
number of exterior vertices per unit volume. This is the case for random siniplicial 
surfaces without boundary and, more generally, for random simplicial surfaces /x, 
which are Delone configurations, i.e. /io consists of hard balls, and each x E /1(2) is 
contained in a ball of fixed radius. Under the additional assumption (4.7) we obtain 
from (4.6) combined with (3.6) that

K(P) = rr[2 • P°(M°0 n {(/fc(0,.)) = circle)) + P°(A(? n {(/fc(0,.)) = interval})-

-(2 • P°(At? A {nJ'2 = 2}) + P°(At? D {nJ 2 = 1}) - 2 • P°(At?))] =

= 2tt • [P°(Afg n {(/fc(0,.)) = circle}) - P°(A1? n {nJ'2 = 2}) + P°(At?)].

We now call the alternating sum

X(P) = P°(At? n {(/lt(0,.)) = circle}) ֊ P°(At? n {nJ'2 = 2}) + P°(A(?), (4.8) 

which is well defined for P under the above conditions, the mean specific Euler 
characteristic of P. X(P) associates to P the mean number of the following 
alternating cardinalities per unit volume : number of inner vertices - number of innc r 

edges 4- number of 2-cells.
To summarize we have proven the following version of the theorem of Gauss -Bonnet.

Theorem. Let P be a stationary random simplicial surface in IRd, d > 2, satisfying 

0 < P°(A42) < -Foo as well as condition (4.7). Then

K(P) = 27T • *(P).
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Резюме. В статье используются некоторые идеи Иозефа Мекке чтобы показать, 
что недавний результат' Мекке/Штояна показывающий, что теорема Гаусса- 
Бонне верна для стационарных одномерных сетей в ПТ*, остаётся верной для 
симплициальных поверхностей с границами или без границ. Здесь теорема 
Гаусса-Бонне /С = 2лг - X понимается в смысле, что /С является средней тотальной 
гауссовской кривизной в единичном объёме, а X - средняя характеристика 
Эйлера в единичном объёме. В настоящей статье рассматриваются многомерные 
стационарные случайные симплициальные псевдомногообразия.
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