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Abstract. The paper considers the action of Radon transforms on Grassmann 
manifolds for some special functions. These functions are positive powers of the 
volume of certain parallelepipeds. As a consequence some integral geometric formulas 
of Cauchy-Kubota-type for the generalized cosine transforms on Grasmannians 
are proved. Some applications of these results in convex and stochastic geometry, 
stereology and geometric tomography are discussed.

§1 . INTRODUCTION
This section contains the notation most of the definitions and the main results. 
Their proofs and corollaries are given in sections 4-6. Various applications of the 
generalized cosine transforms in geometry are touched upon in section 2. The history 
of the problem is discussed in section 3.

1.1. Preliminaries. Let G(k,d) be the Grassmann manifold of all linear k- 
dimensional subspaces of IR'1, d > 3. The Radon transform on Grassmannians 
and its dual we introduce following the paper of Grinberg [10] : for 1 < i < J՛ < d — 1

(««/)«) = / (RJig)M= I 9(t) v(d(),

f?eG(t,d):rjc^ (eG(j,d).(Dn

where f G L1(G(i,d)), g G Lx(G(j,d)), £ G G(j,d), ri G G(i,d), cr( ) is the unique 
rotation invariant measure on the appropriate integration space with total mass 1. 
Such Radon transforms find numerous applications in convex geometry, see [3] - [5], 
18]. [9].
We make use of the following notation :
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L{ai,..., a*} = the /c-flat spanned by the vectors o-i,..., ak, 
, flfc) — the non-oriented volume of the parallelepiped spanned by 

a1։... ,ak (we shall
often omit the dimension of the volume), 

= the non-oriented volume of the parallelepiped spanned by the 
orthonormal basis

vectors of the A:-flat
ei,... ,ed = the Cartesian unit basis vectors in IRd,
cud = 27rd/<2/r(d/2) is the surface area of the (d - l)-dimensional sphere 5d՜1, 
dr] = the rotation invariant measure on a Grassmannian with total mass 1, 

= a set of the orthonormal basis vectors ai,...,^, such that £ = 
L{ai,...,afc} for £ e G(k,d).

1.2. Main results. In Section 4, we study the action of Rij and R}1 on the functions 
of the type /(tj) = [r?, (o]Q (/(*?) = kfSCo]0 in the case of the dual Radon transform) 
for r) from G(i,d) (or G(j,d), respectively) and a > 0, where

[a,6] = VoZ(2d n m)(an+1,..., ad, 6m+1,..., 6d)

and Co = Here an+i,...,ad and 6m+i,...,6d are some orthonormal
bases in the orthogonal complements ax and b1՜ for a 6 G(n,d), b € G(m,d).

Theorem 1.1. Let Ç G G(j,d), Co = £{ei> • • • >e*)> i < j, i + k > d, d > 3, a > 0.
Then

(RiJ[-,Co]“)(0= I [tz,<o|<>a(dr/) = c(a)l«.<<l]“, (1.1)

where

c(a) = (1.2)

Proposition 1.1. Let i < j < k < d, d > 3. Then for a > 0 the following relation 
holds :

(ß>.(-L,Co|<>)('/) = c-(a)(n1,Co)a, (1.3)

where i) € G(i, d),

(1.4)
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In Section 5, we study some interesting connections between the generalized cosine 
transforms and Radon transforms. Let M(G(t,d)) be the Banach space of all signed 
measures on G(i,d) with finite total variation, and C(G(t,d)) be the space of all 
continuous functions on G(i,d). Introduce for i + j > d the generalized cosine 
transform T,j : M(G(։,d)) •—> C(G(j, d)),

CT։J0)(O = I

G(։,d)
(1.5)

where 0 € M(G(i,d)), £ € G(j,d). In particular, if 9(drf) = f(rf)df), meaning that 0 
is absolute continuous with respect to dr], we write

(Ttj/)(£)= I [^f^dT).

G(i,d)

To achieve greater generality, we imbed the generalized cosine transforms into the —
new families of operators {T°}, {T“}, where a is a positive parameter (see Section
2 for details) :

7?, : M(G(i,d)) —» C(G(j,d)),

(T“0)({) = I »(<*?), (t5«)«)= I №), j>i. 

G(i.d) G(i,d)

On integrable functions the above transforms can be introduced as before. Evidently, 
these families comprise generalized cosine (T^) transforms. It is also clear, that 

(fs») (?) = (Tf^) ({), (1.6)

where 61 (du) = 0(di/x) for u € G(d - i,d).
In Section 5, the first Cauchy-Kubota - type formula for operators T? is proved.

Proposition 1.2. [First Cauchy-Kubota - type formula] For any a > 0 and 
dimensions i,j,k with i + k > d, i < j the following integral relation is valid on 
the space M(G(k,d)) :

= c(a)T?jt (1.7)
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where the constant c(o) is defined in (1.2).
Two corollaries of the above proposition and their stcreological meaning are discussed 
at the end of the section. Some interesting consequences of the double fibration 
relation for T-) are considered in Section 6, of which the more important is the 
following.

Proposition 1.3. [Second Cauchy-Kubota - type formula] For all i < j, i + k > d, 
a > 0 and all absolute integrable functions € Ll(G(j, d))>

= ¥>)«), <gG(M), (1.8)

where c(a) is given by (1.2).
Some upper bounds for the weighted images of Radon transforms are given at the 
end of §6.

§2. THE MEANING OF TJ IN STOCHASTIC GEOMETRY
The transforms (1.5) generalize the well-known notion of the spherical cosine 
transform :

T₽(u)= I |(u,t,)|9(dv) = (Td-l.1tf)(u), ug^՜1.

There exists exhaustive literature on the spherical cosine transform and its use in 
geometry (see e.g. [1], [2], [6], [16], [17]).
The generalized cosine transforms find important applications in convex and stochas­
tic geometry as well. Namely, the »-th projection function v<(K; •) of a zonoid K 
is the generalized cosine transform of its projection generating measure pt(K, •) :

vj(K;I/) = (T,,d-,p.(Æ,))(>ï1), i>gG(։,d) (2-1)

(cf. [8]). By definition, v,(K;r/) is the »-dimensional volume of the orthogonal 
projection of K onto q.
Furthermore, in stochastic geometry (Ti}0) (rj) means the rose of intersections 
of a stationary stochastic process of »-dimensional manifolds (or affine flats) 4*/ in 
IRd with unit intensity and directional distribution measure O(-) with an arbitrary 
j-dimensional flat r? through the origin.
Roughly speaking, a stochastic process of affine »-flats can be thought of as 
a random countable collection of affine »-flats in IR'r. Its stationarity means the 
invariance of its probabilistic properties with respect to all translations. The intensity
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of is the mean t-voluine content of its flats in a unit observation window. The 
directional distribution of is the probability distribution of the direction r(£) of 
the typical »-flat £ G i.e., of a flat picked up ”at random” among the others in 
any realization of
The direction r(£) of an affine »-flat £ is the unique »-flat through the origin parallel to 
£ (cf. [20] for exact definitions). Sometimes it is necessary to restore the probabilistic 
characteristics of such spatial stochastic processes, if one observes the process of 
intersections of the original process with all affine j֊flats r?. Due to stationarity, it is 
enough to consider only r) G G(j,d).
One of the characteristics of the latter process is the so-called rose of intersections, 
i.e. the mean »-content of intersection planes 0 rj in a unit test window within rj 
for arbitrary rj G G(j, d). As shown in [18] and [19], the retrieval of the directional 
distribution 0 of from its rose of intersections Tl}6 is possible for some particular 
dimensions i and j.
The transforms of the parametric family {T? } can also get an interpretation in terms 
of stochastic geometry :

Cfi.d)

is the moment of order a of the quantity [£,»?] = generalized “sine of the angle” 
between the direction rj of the affine planes of the process and a fixed test direction 
€ € G(j,d) with respect to the directional distribution Q. All the results of this paper 
are valid for arbitrary real a > 0 As far as it is known to the author, the present 
work is the first attempt to treat those moments.
One can also find another interpretation of T° at least in IR2 and DR.3, which can be 
extended analogously to arbitrary dimensions d. It can be shown (see [20], pp. 286 - 
303), that

fA[C *)] A measurable

i.s the distribution of ’sine of the typical intersection angle between the test 
hyperplane (or line) £ and (d = 2 or d = 3). If we rewrite Tfi in the form

c
(TM0)(O = c - E ([<, rj]Q 11»7 G Vf, r) n < / 0) ,



Cauchy-Kubota-type integral formulae ... 57

where c = (T։j#)(£), we get that (£) is proportional to the moment of order 
a — 1 of the absolute value of the “sine” of the typical intersection angle of 4»^ with 
a fixed test flat (line)
The meaning of (£) also becomes transparent : it is the rose of intersections 
of a stationary (d — i)-flat process with directional distribution 0^1/) and intensity 1 
with a j-flat £ (cf. relation (1.6)).
It would be of some interest to illustrate the use of Proposition 1.3 in stochastic 
geometry. Namely, for the values a = 1, d = 3, ։ = 1, j = 2 and k = 2, by (1.8),

(T22V>) (0 = ^T12(fl21¥>)(C), C e G(k,d). (2 2)

The transform (T22 <p) (0 is the rose of intersections of the stationary process of planes 
*I»2 in three dimensions with a test plane £. The process $2 has the unit intensity and 
the directional distribution with density By (2.2), this rose of intersections is equal 
to the rose of intersections T12 of the process 4^ of lines with the same test plane 
where this new process 4»^ has the unit intensity and directional distribution density 
Rziip obtained from <p by integration.

§3 . SOME HISTORICAL REMARKS
A special case of Proposition 1.1 for the dual Radon transform with a = 1 and 
dimension k = j can be found in lemma 4.1 of [7]. The argument there uses the 
connection between volumes [■, ], mixed volumes and projection functions. Phen the 
following Cauchy-Kubota formula (equation (2.3) of [7]) is applied :

Rii MK; •)) «) = (PrJK}) (3.1)

for a convex body K and all £ 6 (7(j,d), where i < j < d, kj —
2ird^2

dT(d/2)
is the

volume of the d-dimensional unit ball, Pr^{a} denotes the orthogonal projection of 
the vector (plane, convex body) a onto the plane vt(K,r]) is the »-th projection 
function of K, and Vi(L) is the »-th intrinsic volume (cf. [15]) of a convex body L. 
Our approach differs substantially from that of [7]. It allows us to gain more 
generality in dimensions of involved linear subspaces and positive powers of the 
volume. Corollary 5.1 generalizes a well-known relation for the spherical Radon and 
usual cosine transforms (cf. relation (5.12) of [18] and references therein) :

2/cr_. 1
Rlr^d-1,1 = -------- 7d-l,r- (3.2)
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The name “Cauchy Kubota - type” for the formulas stated in Propositions 1.2, 1.3 
and 6.2 is due to the resemblance between the left-hand side of (1.7) and relation 
(3.1). Indeed, suppose a = 1, i < j, and let the convex body K be a zonoid. 
By (2.1) and the duality relation (2.3) of [5], the left-hand side of (3.1) rewrites 

[T^d_tpt(K,^ (Cx), or, equivalently, (Ra (C). In spite

of this similarity, the Cauchy-Kubota formula does not follow from our results ; nor 
can they be deduced as a direct corollary of (3.1).
The classical Cauchy-Kubota formulas and their versions can be found in Ch. 13, §1. 
2 of [14], [15], p. 295, and [12], p. 126.

§4 . RADON TRANSFORMS OF THE POWER OF THE VOLUME

Proof of Theorem 1.1. We fix an orthonormal basis £i,...,Cy of £ G G(j,d), so 
that G, • • •, C *s an orthonormal basis of rj G G(i, d), i < j. Let

(4.1)

be the orthogonal complement of tj in We denote by ,..., £d a certain 
orthonormal basis of £՜*-. Then the vectors Ci+i»---,Cd form an orthonormal basis 
in If [C,Co] = 0, i.e. dim (£x A Co՜) > 0, then [r/, Co] = 0 for all r/ C since 
C1 C 7/x and dim (r?1 Cl Co՜) > 0. Hence, formula (1.1) holds automatically. It means 
that in the following it suffices to prove (1.1) for the case [C, Co] / 0, i.e.

Cx A L{e*:+i,... ted} = {0}. (4.2)

The following relation holds :

[n> Co] — ^^/(Ci-f-l, • • • , Cd, Cfc+l, - • • , Crf) —

e* + l, . . . ,ed) • Vol (^>rLJ֊{^+1,...,Ç-,efc+i ed} {C«+l ? •••։€>}) ։

or, briefly,
kCo] = [C,Co]Q(C,r/), (4.3)

where Q(C,tj) denotes the (j — tj-dimensional volume of the parallelepiped spanned 
by projections of Ci+i. • • • >Cj (cf. (4.1)) onto the plane

L {Cj+1 ։ • • • ։ Cd։ Cfc+1, • . • , Cd } — L (C ։ Co )' (4-4)

Thus, by (4.3) we have

I [’).<ol“a(d-î)=c0«)[e<0]<>, 

vEG(i,d).T)C(,
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Ca(C= I Q^r))aa(dri).

nGG(։,d):9C{

59

(4.5)

We write Q(C, rf) in a different form. First we give another representation to the plane 
(4.4) :

iX(€X.Co) = «n<o. (4.6)
e

Indeed, if t G L1«1, Co՜), then t 1 {£j+1,... ,£d} and t 1 {efc+1,...,ed}. Hence, 
t G = C t G £-L{e*+i,...,e<f} = Co, or r G C n Co- Thus,
£1(^±?Co՜) £ € Fl Co- Since dim (£1(C±,Co՜)) = dim(£ A Co) as we use the obvious 
formula

dim(a A b) > dim(a) 4֊ dim(b) - d. (4.7)

The relation (4.6) is proved. Now show that

(o+i,...,«d,fc(«n<;0){x)) Kn(4.8)

By definition of Q(C,r?), owing to (4.6),

<?«,») = VofO-O (Pr(rK.M() • (4 9)

The following formula holds for any flats a and c in arbitrary ambient space :

(a-Sc) & Vol (b(a),f>(cx)) = Vol(Prc(a)) = Vol (Pral. (cx)) .

Hence, equality (4.9) yields

Qtf.r)} = Vol“՜» (Prin(Mt) = V°‘ (Prv(( H (0)x) = fcn&,»;](

(here the ambient space is £). Thus, relation (4.8) is proved, and one obtains by (4.5)

Ca(O= y [CACo^]?^(d7j). 

pE G( iid): nC(

We prove that ca(C) does not depend on C- According to (4.2), it is sufficient to 
consider only the case

?inc01 = {0}. (4.10)



60 E. Spodarev

For any £ e G(j,d) there exists a rotation 7 6 SO(d), such that £ = 7C0, 
<o = L{ei,...,ey}. Then I

CaU)= I |7^on<o,7<eo^) = J fen? ^o^oW, 

rj€G( i.d) :r)C(o 9EG(t\d):rjC(o

and (4.10) has the form (7C0)1 A Co՜ = 7C0՜ AC(^ = Co՜ A7 ^0՜ = {0}- Without loss 
of generality, one can substitute 7 for 7՜1. Thus, we have to show that

ca (7) ֊Z y [Co A 7C0, r/]“0 ° W) 

r)GG(i,d):j)C<0

is constant on the set

GJi = {7 6SO(d):e0J-n7<0± = {0}}.

(4.11)

(4.12)

First, let us first prove that dim(Co A 7C0) = j + k — d, 7 € Gjk- By (4.7), the 
dimension of Co A 7C0 can not be less than j 4- k - d. Let us prove that it also can not 
be greater than j + k - d. Suppose, ex adverso, that dim(Co A 7C0) = m>j + k-d. 
Let be the basis in Co A 7Co- Amplify it to the bases in Co and 7C0 :
Co = 7C0 = L{ri,...,Tm,rrn+i,...,ffc}. The number of
distinct unit vectors in Co. 7C0 is equal to ji 4- k — m. As m > j 4֊ k — d, that number 
is less than d. So there exists at least one unit vector x G !Rrf, that does not belong 
to the linear hull of the bases in Co and 7Co- Then x G Co՜ A (7Co)՜*՜- We arrived at the 
contradiction with (4.12).
Thus, we proved that any transform 7 G Gjk preserves the dimension of /3 =? Co A 
7C0 C Co- Identifying Co with IR?, we can rewrite the relation (4.11) as follows :

M£) = y [ZM]£v ^(<fy) = y [0, t)]^, dr],

0 C Co, dim((3) = j 4- k — d. Now prove that ca(j3) does not depend on /3 G 
G(j 4- k — d,j). Indeed, by rotation invariance (since dim(0) does not depend on 
7 C G^), cQ(/3) = cQ(M, fa = L{ei,... ,ey+*_d}. Thus, we have proved that
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is a constant, /3q — L{ei,... ,ej+k-d} € G(j + k - d,j). Now our aim is to calculate 
c(a). For n + r > m, = L{ei,. ,.,er} we put

bQ(n,m,r) = j [/3q , r)]^.n drj.
G(n,m)

Then c(a) = ba(i,j,j + k - d). We calculate bo(n,m,r) for all n,m,r, such that
n + r > m > 2. At the first step, we prove that

ba(k,dti) = ba(i,j,i + j - d) ■ ba(k,d,j) (4.13)

for t + k > </, i < j, i > d/2, d > 2. Integrate the equality

y = «(«)({. cr 

rj6G(i,d):»7Cf

(4.14)

with respect to where Q € G(k,d) and £ € G(j,d) ((4.14) follows from (1.1) by 
rotation invariance). By Fubini’s theorem,

rj€G(»,d):rjC£ G(k.d)

By rotation invariance, the integrand in parentheses in the left-hand side does not 
depend on v), and is equal to bQ(k,d, i), so we can write

bQ(k,d,i) J a(drf) = c(a)ba(k,d,j).
neG(i,d):T)Ct 

I a

As the total mass of the measure o is one, the above relation completes the proof of
(4.13).
By lemma 2.2 (a) of [13] (where the operators A and A* are applied to a constant 
function),

i
ba(d-l,d,d-k) =b„(d-k.d,d-l) = [(l-t^-Wtt-'-l+vdt. (4.15)

J 0



62 E. Spodarev

The integral in the right-hand side of (4.15) is equal to

By (4.15),

6Q(d-l,d,d֊^) =
2 u, r(^) r(4f4)r(i±2)՜

Thus, we have proved that

bQ(d — l,d,d — k) = bQ(d - fc,d, d - 1) = (4.16)r(4fi)r(i^)-

Now we show that for all k, bQ(d — k,d,k) = ba(k,d,d — k). By definition, for some 
r/€(7(fc,d),

bQ(d֊k,d,k) = y* [flo,ri]a dr) = / [^,r?1]ad7/ =

G(d-k,d) G(d—k,d)

[/3^, v]Q dv = ba(k,d,d - k).
G(k.d) G(k,d)

The above is true since [/3,7?] = [/3±,t?-l] for all /3 6 G(d - k,d)y rj 6 G(k, d). 
Furthermore, by (4.16) we have for all 1 < r < d - 1,

6Q(d ֊ l,d,r) = bQ(r,d,d - 1) = (4.17)

By (4.15) and (4.17), the following equality is true :

ba(k,d,d-2) = ba(d-2,d֊ l,k- l)bQ(k,d,d- 1) =
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In the same way, by induction on r, for a > 0

or, more generally,

ba (^> d, r) k + r > d. (4.18)

Then as c(a) = j + k - d) and by (4.18) we get (1.2). Theorem 1.1 is proved.

Proof of Proposition 1.1. Let rj C £ G G(j,d). Then C and using the 
duality relation (2.3) of [5] for the Radon transform, one can write (Rpf-՜*՜, Co]û)(*7) = 
(Rd-j,d-»hCo]a) (^±)- Above d - j < d - i, G G(d - i,d), so we can use 
the result of Theorem 1.1 : (Rd-j,d-i[ >Co]Q) (r/'L) = where c'(a) =
bQ(d - j, d - i, d - i 4- k - d) = bQ(d - j, d-i,k — ։) (cf. proof of Theorem 1.1). By 
(4.18), we get 

and the assertion is proved.

§5 . THE PROOF OF THE CAUCHY-KUBOTA - TYPE FORMULAS 
FOR THE GENERALIZED COSINE TRANSFORMS

Proof of Proposition 1.2. We integrate both sides of (4.14) with respect to some 
measure 0 G M(G(fc,d)) and use Fubini’s theorem :

I I [n.cr »(dC)a(dTi) = c(a) I K,C]“W).

9€G(i.d);naG(*.d)

The comparison of both sides of the above equation with the expression tor Ttj 
completes the proof.
The following corollary is an easy consequence of Proposition 1.2 for a = 1.
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Corollary 5.1. For any i, j, k with i + k > d, i < j,

The connection between generalized cosine transforms of different orders can be used 
in tomography or stereology, in estimation of the statistical parameters of the shape of 
a geometric structure (e.g. porous media, microscopic shots of tissues, fiber collections, 
etc.) basing on the experimental data gained from sections or, in our terms, from 
intersections with flats of different dimensions. The structures in question are often 
modeled as /c-dimensional manifold processes in IRy, which can be seen locally as 
/c-flat processes with directional distribution 0.
The characteristics obtained from the intersections with i-flats are often the roses of 
intersections (or the corresponding moments T£t6). Proposition 1.2 states that 
passage from the lower-dimensional sections to higher-dimensional sections 
(7^0, j > i) can be obtained by simple integration (R։J).
The proof of Theorem 1.1 yields the well-known result below (cf. formula (4.18) with 
a = 1), that we would like to emphasize : it is the value of the rose of intersections 
Tkrl of the stationary isotropic (i.e., with the uniform distribution of directions) 
Poisson fc-flat process (cf. [20]) with arbitrary r-flats. It coincides with the rose of 
intersections of the stationary isotropic Poisson r-flat process with A:-planes :

Corollary 5.2. For any k and r, such that k + r > d

§6 . DOUBLE FIBRATION FOR {T՞} AND {fg}
The following double fibration relation (cf. [11], p. 168) for RtJ holds for all absolutely 
integrable f G Ll (G(i,d)), G Ll(G(jtd)) :

(6-1)
G(j.d) G(i,d)

Here Rji is dual to the transform Rtj. Now we investigate this relation for functions 
= [r/,<o]°> r) G G(i,d), i < j.
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Proof of Proposition 1.3. By Theorem 1.1, one gets from (6.1), that

«(«) j If,ColXf)df = I 

G(j,d) G(i,d)

(6.2)

and rotation invariance completes the proof.

Proposition 6.1. The adjoint operator of T° on L1 (G(i,d)) is the operator T° on 
L' (G(i,d)) :

Proof. The desired relation

I fM(T^)Mdn= I (№)(№)<*
G(i,d) G(j,d)

for f € L1(G(t,d)) and </? € L1 follows easily from the more general relation

I (T°e) (r/) n(dri)= I (t;>) (f) 0(df) 

G(i,d) G(j,d)

for any 6 € M(G(j,d)), p € M(G(։,d)), which can be seen directly by Fubini’s 
theorem. Proposition 6.1 is proved.

Now we state the result for the operator family {T“} similar to Proposition 1.3.

Proposition 6.2. [Third Cauchy-Kubota - type formula] For all i < j < k < d. 
a > 0, and all absolute integrable functions g 6 L1 (G(i,d)),

(ï'1°k9)(O = (e֊(a))'1ï'°k(R.J9)(C), CeG(k.d), (6.3)

where c*(a) is given by (1.4).

Proof. First, it is worth mentioning that by rotation invariance, Proposition 1.1 
remains true for any ( € G(it,d) instead of (o- One can write by (1.3) and (6.1), that

c*(a) I [r)X,CrWdr,= y [fx,«]“(«.,9)(f)df, 

G(i,d) G(j,d)

(6.4)
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which together with the definition of T-) completes the proof.
For a > 0 we consider the following functionals on the space of absolute integrable 
functions g on G(i,d) and on G(j,d)':

llsllc«) =
I 9M[ri^o]adT]

G(i,d) GU,d)

Let || • ||p denote the usual norm in Lp-spaces. The rest of the section is devoted 
to inequalities between the weighted images of Radon transforms and their duals as 
above.

Proposition 6.3. Choose the numbers p,q > 1, such that l/p+ 1/q = 1.
1) Let i < j, i + k > d, a > 0, and € L?(G(j,d)). Then

ll^iV’ll(a) < <*(<»,«)MIP, (6.5)

where

d(a,q) = c(a) (6.6)

and c(a) is defined by (1.2).
2) Let i < j < k < d, a > Q, and g € Z>’(G(։,d)). Then

ll«.>9ll(La)<d-(a.9)IMI₽, (6.7)

where

d*(a,q) = c* (or)
1/9

, (6.8)

and c’(o) is defined by (1.4).

Proof. First, let us prove the upper bound for the image of the dual Radon transform. 
By (6.2),

II^.V’lloi < C(a) ■ HH||(O).
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Applying Holder’s inequality one gets

lllvllk«) <

while by (4.18)

The proof of the second statement of Proposition is conducted analogously : by (6.4).

<=*(“) ■ lllsllli)-

By Holder’s inequality, we get

= llsll.

IIMIIt) <

where by (4.18)

Proposition 6.3 is proved.
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Резюме. В статье рассматривается действие преобразований Радона на грас- 
смановских многообразиях для специальных функций равных положительным 
степеням объёма некоторых параллелепипедов. Как следствие доказываются 
интегрально-геометрические формулы типа Коши-Кубота для обобщённых ко­
синус преобразований на грассманианах. Указываются применения этих резуль­
татов в выпуклой и стохастической геометрии, стереологии и геометрической 
томографии. ' 4 1
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