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Abstract. We prove integral geometric formulae of Crofton type for Holmes- 
Thompson areas of rectifiable Borel sets in smooth projective Finsler spaces.

§1 . INTRODUCTION
A classical result of integral geometry in Euclidean spaces, usually associated with 
the name of Crofton (although he obtained only the first very special cases), expresses 
the area of a submanifold as an integral of the number of intersection points with 
the affine subspaces of complementary dimension. More precisely, let M be a k- 
dimensional C1 submanifold of Euclidean space IRn (n > 2, k G ,n - 1}). Let 9
Xk denote the fc-dimensional differential-geometric surface area, and let pj be a rigid 
motion invariant measure on the affine Grassmannian A(n, j) of j-flats (j-dimensional 
affine subspaces) of IRn. Then

card (M n E) d/in_fc(E) = aukXk(M), 
A(n,n — k} (1)

with a constant ank depending on the normalization of the measure More 
generally, if j G {n - k,... ,n - 1), then

k+j-n(M n E)dpj(E) = ankjXk(M), (2)

with a constant ankj. For proofs and further references, we refer to the books of 
Santald [30] (p. 245, (14.69)) and of Sulanke and Wintgen [36] (p. 252, (5)).
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In the present paper, we extend formula (2) to Holmes-Thompson areas and rectifiable 
Borel sets in smooth projective Finsler spaces. The role of the Haar measures pj on 
the affine Grassmannians A(n,j) is then played by suitable signed measures. (For 
j = 1, these are positive measures, and they exist also in general, not necessarily 
smooth, projective Finsler spaces, see Schneider [34]). Before stating the main result, 
we want to put these investigations in a wider context and explain some background.

The beauty of formula (1) is an invitation for various generalizations in different 
directions. Starting from the left side of (1) as a definition, for more general sets Af, 
one is led to the notion of integral geometric (or Favard) measures ; see, e g., Mattila 
[26], Section 5.14, and the references given there. In the following, we look at (1) 
from an opposite point of view : suppose some notion of A:-dimensional area is given 
instead of A& ; does there exist a measure or signed measure on 4(n, n — fc), replacing 
pn-k, so that (1) holds for a reasonably large class of sets Af ? One may also think 
of replacing the affine Grassmannians by more general systems of sets with similar 
properties. We list some work that can be subsumed under this general program. 
There is a clear distinction between the possibilities and results in dimension two and 
in higher dimensions.

In dimension two, the program concerns notions of length and measures on the system 
4(2,1) of lines or on similar curve systems. A very satisfactory result has been 
obtained in the course of the solution of Hilbert’s fourth problem in the plane by 
Pogorelov [28], Ambartzumian [7], Alexander [1]. Let p be a Borel measure on 4(2,1). 
For p,g 6 IR2, let d(p,g) be the p measure of the set of lines weakly separating p 
and q, and suppose that d(p,p) = 0 and 0 < d(p,q) < oo for p q. Then d is a 
continuous metric on IR2 which is additive along lines, and the induced curve length 
has the property that the lines are geodesics. The quoted papers establish, through 
different approaches, the converse : every metric with these properties, and hence 
every notion of curve length for which the lines are geodesics, is obtained in the 
described way from a measure. A related investigation of Ambartzumian [8] replaces 
the lines by certain axiomatically defined systems of curves. For sufficiently smooth 
two-dimensional Finsler or Riemannian manifolds, densities on sets ol geodesics 
leading to Crofton formulae were considered by Blaschke [12], Santalo [29], Owens 
[27] (who was apparently unaware of Blaschke’s work). An elementary treatment of 
a Crofton formula in Minkowski planes was given by Chakerian [15]. For the classical 
Crofton formula in the Euclidean plane, an elementary proof for rectifiable curves 
can be found in a paper by Ayari and Dubuc [9].

About dimensions greater than two, we mention first that (1) holds also in spaces ol 
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constant curvature, with flats replaced by totally geodesic submanifolds, see Santalô 
[30]. The investigation of general versions of Crofton formulae began with Busemann 
[13], [14]. Generalizing Hilbert’s fourth problem, he suggested to study axiomatically 
defined h-dimensional areas in affine spaces for which flats minimize area. Closely 
related is the question about the validity of Crofton formulae with positive measures, 
and then the consideration of Crofton formulae involving signed measures is a natural 
generalization. Concrete Crofton formulae were obtained for Minkowski spaces (finite­
dimensional real normed spaces), in special cases by El-Ekhtiar [18] and more 
systematically by Schneider and Wieacker [35]. The latter paper contains a version 
of (2) for Holmes-Thompson areas of rectifiable Borel sets in hypermetric Minkowski 
spaces, with suitable positive measures on A(n,j). In Minkowski geometry, there are 
different notions of area, see Thompson [37], but only the Holmes-Thompson area 
seems generally suitable for this type of integral geometric formulae. This was made 
clear in [32] (Theorem 1) and [33]. The mentioned results of [35] do not require 
any smoothness assumptions. On the other hand, under smoothness assumptions, 
there are quite general investigations about Crofton type results for densities, due 
to Gelfand and Smirnov [22] and to Alvarez, Gelfand and Smirnov [6]. The work of 
Alvarez and Fernandes [3], [4], [5] and of Fernandes [21] combines a tool from this 
theory, double fibrations and the Gelfand transform, with other methods, in part 
from symplectic geometry, to obtain Crofton formulae for Holmes-Thompson areas of 
smooth submanifolds of smooth projective Finsler spaces. In particular, [3] and [21] 
extend (1) to this situation, as well as (2) for the special case k = n - 1. In Section 
4 below, we generalize this to all k € {l,...,n — 1} and to (?/*, fc)-rectifiable Borel 
sets. It turns out that the methods used in [35] for the special case of hypermetric 
Minkowski spaces are sufficiently general to be adaptable to smooth projective Finsler 
spaces, thus yielding the following theorem (explanations and precise definitions are 
given in Section 2).

Theorem 1. Let (IRn,F) be a smooth projective Finsler space, and let volk denote 
the corresponding k-dimensional Holmes-Thompson area. For j € {l,...,n-l}, 
there exists a signed measure r/j on the affine Grassmannian A(n,j) such that, for 
k G {n - j,... ,n} and for every ('Hk, k)-rectifiable Borel set M C IRn,

[ volk+j-n(M n E) dr)j(E) = ankjvolk(M) (3)

with a constant ankj.
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Theorem 1 can be considered as giving, for projective Finsler spaces, a positive answer 
to the first of the three open problems formulated by Chakerian [16] (p. 50). The 
second of his problems was solved in [34], and the third one in [33] (Theorem 1).
The standard classical examples of projective Finsler spaces are the Minkowski spaces 
and the Hilbert geometries. In the latter case, the Finsler metric is not defined on all 
of JR", but on the interior of a convex body in IR". In both cases, a single convex 
body determines the whole geometry, and the smoothness properties of the induced 
Finsler metric depend on the smoothness of that convex body. In order that arbitrary 
convex bodies can be admitted, one has to consider general Finsler metrics, which 
satisfy the usual convexity and continuity, but no smoothness assumptions. In [34], a 
version of (1), with Holmes-Thompson areas, was obtained for general Finsler metrics 
F on IR'1 such that (IR'։, F) is a hypermetric projective Finsler space. For k = n - 1, 
the assumption ‘hypermetric’ can be deleted ([34], Theorem 2). The corresponding 
(positive) measure on the space A(n, 1) of lines was obtained by approximation and 
was, therefore, not described in any explicit way. The existence of this line measure 
can also be proved for Hilbert geometries. For Hilbert geometries in planar polygons, 
the line measure is known explicitly, see Alexander [1] and Alexander. Berg and 
Foote [2]. We mention here that for the special case of the Hilbert geometry in an 
n-dimensional simplex, an explicit description of the line measure can be obtained, 
using the fact, established by de la Harpe [17], that this metric space is isometric to 
a certain Minkowski space. We hope to treat the line measure in a polytopal Hilbert 
geometry somewhere else.

§2 . FINSLER SPACES AND AREAS
We restrict ourselves here to Finsler metrics on IR"; the case of an open convex 
subset instead of IR" requires only obvious modifications. For convenience, we always 
assume that IR" is equipped with its standard scalar product (•,•), for n > 2. One 
reason for this is that it allows us to talk of Lipschitz mappings f . IR —> IR , 
of the fc-dimensional Hausdorff measure ft* on IR" (for k > 0), and of (ft ,k)- 
rectifiable sets. A set M C IR'1 is called (ft*՜, fc)-rectifiable (for k 6 if
ft*‘(Af) < oo and there exist Lipschitz maps /, : JR* —> !Rn, * € IN, such that

\ Ui in T,ie notion Lipschitz map, the classes of sets of zero
or finite Hausdorff measure, and the notion of (ft*, A;)-rectifiable sets do not depend 
on the choice of the Euclidean metric.
We canonically identify the tangent space TXIR" of IR" at x with IR . By a Finsler 
metric on IR" we understand here a continuous function F: IR x IR —> [0, oo) such 
that F(x, ■) is a norm on IR", for each fixed x € IR". The Finsler metric F is said 
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to be smooth if F is of class Cx on IRn x (IR'։ \ {0}). (The additional assumption 
made in the differential geometry of Finsler spaces, that F2(x, •) has positive definite 
Hessian on IRn \ {0}, is not needed in the following.) If F is a (smooth) Finsler metric 
on IR", we say that (IRn, F) is a (smooth) Finsler space. In such a space, the length 
of a parameterized CJ curve 7 : [a, 6] -> IR” is defined by jj' F(y(t), dt. The 
Finsler space (IR’‘,F) is called projective if line segments are shortest curves (not 
necessarily the only ones) connecting their endpoints. The metric dp induced by F 
is defined by letting dp(p,q) be the infimum of the lengths of the piecewise C1 curves 
connecting the points p, q E IRn. If (IRn,F) is projective, the segment [p, q] with 
endpoints p, q has length dp(p,q).
We assume that a Finsler metric F on IRn is given. For x € IRn, we write

FM =: || • ||x and Bx := {< € IR”: ||fl|x < !}•

This convex body, the unit ball of the Minkowski space (TxIRn, || • ||x), is called the 
indicatrix of the Finsler metric F at x. Since we have identified TxIRn with IRn, 
each || • ||x is a norm on IRn, and Bx is a convex body in IRn which is centrally 
symmetric with respect to the origin.
Let B° be the polar body of Bx with respect to the chosen scalar product, thus

3° = {n6 1Rn:^,»?)<l for all (eBx).

This body is called the figuratrix of the Finsler metric F at x (for its role in the 
calculus of variations, see Blaschke [11]).
The metric dp induces, in the usual way, an s-dimensional Hausdorff measure V,p, 
for each s > 0. We recall its definition. Let diam f denote the diameter in terms of 
dp. For a subset A C IRn and for 6 > 0, let

:= {(C,)itiN : Ci C IR”, diam f C, < 6 for all t, A C [J C,} 
i€lN

and

^f(^) := , /Ox sup inf ( diam F G)’.2T(l + s/2) d>0 (c,)en.(4) fx
1E1N

This yields a metric outer measure Hp on IRn, and its restriction to the Borel sets 
is a measure. .
Similarly, for each x E DR՛*, an s-dimensional Hausdorff measure on IR‘ is defined 
with respect to the metric induced by the norm || • ||x. This Hausdorff measure
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is denoted by 'Hpx- In particular, is the translation invariant Haar measure 
satisfying 'Hpx(Bx) = Kn, where Kn denotes the volume of the n-dimensional 
Euclidean unit ball ([35], p. 235).
Recall that the s-dimensional Hausdorff measure on IRn that is induced by the 
auxiliary Euclidean metric, coming from the scalar product (•,•), is denoted by H*. 
In particular, Hn coincides with the Lebesgue (outer) measure. It is easy to see, using 
the continuity of the Finsler metric, that the outer measures Tip, 'Hpx,'Hs all have 
the same classes of null sets and of measurable sets.
For a (?/fc, fc)-rectifiable Borel set M in IR" (where k € n}), the Busemann
/c-area of M is defined as the Hausdorff measure 'Hp(M). The Holmes-Thompson 
fc-area of M can be defined by

vok(Af) = ֊4 [ vp(Bx nTxM) dHp(x). 
Kk Jm

(4)

Here TXM is the approximate tangent space of M at x (a linear subspace of IRn, since 
TrIRn was identified with IRn) ; it exists and is unique for H^--almost all x G M and 
is measurable in dependence on x. The functional vp is the volume product, that is, 
vp(/0 is the product of the (Euclidean) volumes of K and K° ; this definition does 
not depend on the choice of the scalar product.
The definitions of Busemann and Holmes-Thompson area as given here for rectifiable 
Borel sets in Finsler spaces are the natural extensions of these notions for smooth 
submanifolds of Minkowski spaces. In a sense which can be made precise, these 
two area notions are dual to each other. Areas in Minkowski spaces are thoroughly 
discussed in the book of Thompson [37]. The Holmes-Thompson area appears also in 
a natural way as a symplectic volume ; see Alvarez and Fernandes [3].
The auxiliary Euclidean structure on IR' has been introduced for two additional 
reasons. First, the introduction below of signed measures on the affine Grassmannians 
A(n, j), which replace the motion invariant measures in Euclidean spaces and yield 
Crofton formulae for the Holmes-Thompson areas, rely on results of Pogorelov, which 
are conveniently formulated in Euclidean terms. Second, we will have to use results 
from the Euclidean geometry of convex bodies. For notions from this theory which 
are used below without explanation, we refer to the book [31].
We introduce some Euclidean terminology referring to the scalar product (•>•)• The 
unit sphere is given by

S"՜1 := {u€ lRr‘: (u,u) = 1},
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and its spherical Lebesgue measure is denoted by a. If (OIF denotes orthogonal 
projection from IR" to the linear subspace E of IR", then (Bx n E)° = B°\E. We 
will show in Section 3 that in a projective Finsler space (4) can be replaced by

vol»(M) = - / W‘(B;|T,M)<rH‘(x). 
Kt J m

(5)

(Note that and the orthogonal projection depend on the auxiliary scalar product ; 
the integral, however, is independent of the choice of the Euclidean structure.) 
Analogously, the Busemann fc-area can be represented by

(6)

Special cases of (6) for general Finsler spaces are contained in Theorem 4.1 of Belletini, 
Paolini and Venturini [10].
Defining the ‘local scaling function’ of the Holmes-Thompson h-area (with respect to 
the chosen auxiliary Euclidean structure) by

<Tk(x,E) := — Rk(B°x\E) for x e IR" and EeG(n,k) (7) 
K-k

(G(n,k) is the Grassmannian of ^-dimensional linear subspaces of IR"), we write (5) 
in the form

volJM) = f vi,(x,T,M)dHk{z). (8)
J m

Now we assume that (IR",F) is a smooth projective Finsler space. It follows from 
the work of Pogorelov [28] (see [34] for a brief sketch of the relevant parts) that there 
exists a continuous function g : S”՜1 x IR -> IR such that, for each x € IRn, the 
support function h(B°, •) of the figuratrix can be represented by

^°x^)= I(£, u)Mu, (ar,u)) da(u)
Jsn~l

(9)

for £ € IR". Since the integral depends only on the even part of the function 
u f?(u, (x,u)), one can assume that g(u,t) = p(-u,-t) for (u,t) € S"՜1 x IR. 
Parameterizing hyperplanes of IRn by

Hu,t := {y € IR": (j/,u) = t}
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with u E Sn՜1 and t € IR, we can consider the function g as a function on the space 
of hyperplanes, via g(Huj) = g(u,t). If this function is considered as a density with 
respect to the (Euclidean) Haar measure on j4(n,n - 1), it defines a signed measure 
T] on v4(n,n - 1). This signed measure is given by

' f dr) = / / f(Hut)g(u,t)dtdcr(u)
/4(n,n —1) JSn~} JIR

(10)

for nonnegative measurable functions f on the space A(n,n — 1) of hyperplanes.
Let k € {!,..., n). The signed measure t/ induces a signed measure on the space 
A(n,n — k) of (n — fc)-flats by means of

f fdTjn-k=ck[ ••• [ f(HiO...OHk)drj(Hl)--֊dri(Hk)
A(n,n—k) J A(nji—1) J A(n,n—1)

(ID
for nonnegative measurable functions f on A(n,n - k) ; here

2k 
k'.Kk

is a convenient normalizing factor. (Observe that Hi O.. .OHk € A(n,n — k) for rj® - 
almost all Jt-tuples (Hi,..., Hk) € A(n, n ֊ 1)*.) In terms of hyperplane parameters, 
this reads

n-k = ck til.

(12)

X g(u\,ti)--’9(uk,tk)dti ■ ■ ■ dtk do(ui) ՝ ’ • da(uk).

The measures thus defined appear in the Crofton formulae of I heorem 1. In the 
Euclidean case, where F(x, £) = {£, <), they coincide with the Haar measures in the 
classical formula (1). This construction of the measures ijn-k °n n ~ k) appeared 
first, for the case of Minkowski spaces, in [35], Theorem 7.1.
For the proof of Theorem 1 in Section 4, we need the following preparations. For each 
x € IB", we define a signed measure px on S’1՜1 by

px(A) := / g(u,(z,u))da(u) (13)
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for Borel sets A CS" x. Then we can write (9) as

Ke,u)i<Wu). (14)

It is known from the theory of generalized zonoids that this formula, which can be 
considered as giving (half of) the Euclidean lengths of the one-dimensional orthogonal 
projections of B®, extends to higher-dimensional projections. For affine subspaces 
E,L E A(n,k), let [£,£-*-] = |(E, L)| be the absolute value of the determinant 
(in dimension fc) of the orthogonal projection from E to L. By L(uj,...,u*) and 

we denote, respectively, the linear subspace spanned by the vectors 
«1,... , Ujt and the k-dimensional volume of the parallelepiped spanned by them. Let 
k 6 {1, -.. ,n} and E 6 >l(n, k). Then, for x 6 DR.՞,

Rk(B°\E) = —f ■■■ f [^,L(ui,...,Ufe)x] (ui,...,ufc]dpx(ui)
Js”-՝ J s^-1

(15) 
see Weil [38], p. 176. It is important to notice that this follows from (14) even if px 
is only a signed measure. Defining the signed measure pxk} on G(n, k) by

• •.t**))(ui,. • •, ujt] dpz(ui) • • • dpx(uk) (16)

for Borel sets A C G(n,fc), we can write (7) and (15) in the form

ak(x,E)=l [E,LL]dpW(L) for x € IR", E € G(n, k). 
JG(n.k)

(17)

(Essentially, the definition (16) goes back to Matheron [25], p. 101 ; later uses of this 
‘projection generating measure’, as it has been called, begin with Goodey and Weil 
[23].) With these notations, we have

G(n,n->) Ck

for € {1,..., n — 1} with k + j՛ — n > 0 and for every E € G(n, k). The proof given 
in [35], Lemma 7.2, for this equation in the case of a measure p carries over without 
change to the signed measure px, for every x G IRn .
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§3. THE AREA FORMULA FOR PROJECTIVE FINSLER SPACES 
For the proof of (5), we need an extension of Federer’s area formula ([20], p. 243), 
which holds for Lipschitz mappings from IR* to IRn (k < n), to Lipschitz mappings 
into a projective Finsler space (IRn, F). This could be deduced from a general version 
for metric spaces (Kirchheim [24], Corollary 8), but for convenience we give here an 
elementary proof, by just adapting the proof in [35] for Minkowski spaces to the 
present situation.
In the following, Ek denotes the Euclidean unit ball of IR*. For a Lipschitz mapping 
/ : IR* -> IR", the differential of f at z € IR* exists for "H^-almost all z and is 
denoted by Dfz.

Theorem 2. Let (IRn, F) be a projective Finsler space. Let k € {1,... ,n}, and let 
f : IR* -> IRn be a Lipschitz map. Then

card (4 n/-*({։))) <fWj.(ï) = /
J A

for every 'Hk-measurable subset A oflRk.
If h is a nonnegative Hk-measurable function on IR*, then

I Y h(y) d-H^x) = 
1R՞ »€/-'((*}) R‘

The metric dF in a Finsler space (IR",F) was introduced in Section 2. For a norm 
N on IR* and functions f : IR* ֊+ IRn and g : C -4 IR* with C C IR” we use the
notation

N(g(x} -
Lip (N,dFJ) := sup dF(/(x),/(y)) 

N(x - y)
and Lip (dF,lV,p) := sup 9(y))

dF(x,y)

By [x,y] we denote the closed segment in IR'1 with endpoints x,y.
Now suppose that a projective Finsler space (IR",F), a positive integer k < n and 
a Lipschitz map / : IR* -> IRn are given, as in Theorem 2. The proof of Theorem 2 
requires the following lemma.

Lemma. Let A be a Borel subset of {x € IR* : f is differentiable at x and Dfx is 
injective] and let t > 1. Then there is a countable BoreJ covering C of A such that, 
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for each C € C, the restriction f\c is injective and there is a norm N (depending on 
C) on HV satisfying

Lip (N,dF,flc) < t, ' tip (dF,W,(/lc)-։) < t

and
Гкры(Ек) < И* (B*)) < tkpN(Ek) fori e C, 

where рн is the k-dimensional Hausdorff measure induced on nV by the norm N. 

Proof. We extend the proof of Lemma 5.1 in [35]. Choose e > 0 such that 
t՜1 + e< 1 <t-c, further a countable, dense subset D of DV and a countable 
family Af of norms on nV such that, for each norm N' on nV, there is a norm 
N G Af satisfying (t՜1 4֊ c)N < N' < (t - e)7V. For z € D, N G N and i G IN let • •
C(z,7V, ։) be the set of all 6 G E(z,i՜1) (where E(z,r) is the Euclidean ball in nV 
with centre z and radius r) such that, for all a G E(z,i-1) and all p G [/(a),/(b)],

(«“1 + ^<||D/ft()||P<(t֊e)iV, (19)

||/(a) - /(6) - Dfb(a ֊ b)||p < <N(a ֊ &). (20)

For a. 6 G C(z.N,i) we infer from (19) and (20) that

t-։H(u - 6) < ||/(a) -/(6)||p < tN(a-b) for all p e [/(a), /(»)). (21)

In particular, /Ic7(z./v.։) is injective. We assert that

Lip (N,dp,f\C(ZtNti)) < t, (22)

Lip (dF1 N, < t. (23)

For the proof, let a,h G C(z,N, i). Since the Finsler space (TRn,F) is projective, the 
distance dF(/(a),/(h)) is given by the Finsler length of the segment [/(a),/(h)], thus

dF(/(a),/(b)) = [ j|/(b) - /(a)||(։_ r)/(a)+T/(b) h)
Jo

by (21). This gives (22), and (23) is obtained similarly (only here we use the fact that 
the Finsler space is projective).
The inequalities (19) for the norms (t՜1 + c)7V, ||Z)/b( )||p, (t - i)N imply for the 
induced fc-dimensional Hausdorff measures the estimates

t~kpN(Ek) < (Г1 +e)‘p«(£‘ ) < -HkFMbl(DMEk)} < (( - < tkpN(Ek)
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We show that {C(z, N,i) : z G D, N € AS, i G IN} is a covering of A. Let b € A. For 
c € E(b, 2), consider the norm Nb՝c := ||LV&( )ll/(c)- Since F is continuous, we can 
choose a number i G IN and a norm jV € so that

(t 1 + e)/V < Nb,c < (t - c)W for all c € E(b,2i 1).

Also by continuity of F, and by compactness of E(b, 2), there is a number M so that 
II • ll/(c) < M|| • ll/(t>) for all c € E(b,2). Since f is differentiable at b, we can further 
choose i so small that, for all a G E(b, 2t-1),

||/(a) ֊ f(b) - DfbÇa - 6)||/(6) < M~\N(a - b).

This implies

||/(a) - f(b) - Dfb(a - 6)||/(c) < eN(a - b) for all a,c£E(b,2i 1).

Now we choose z G D with z G F(b,t՜1). Then (20) is satisfied for all a G E(z,i~l) 
and all pG [/(a),/(&))> hence be C(z,N,i).
Finally, we choose {x; : j G IN} dense in IR' and {r;: j G IN} dense in [0,1] and put

AJim := {b € : (t՜1 + e)N(xj) <

and

BJ<m := {b G ^(z.t՜1) : ||/(xJ)-/(6)֊PA(xJ ֊6))||(1_rm)/(lj+Tm/l6) < <N(Xj-b)}.

Then
C(z,7V, ։) — P| Fl P| Bj.m,

which shows that C(z, TV, i) is a Borel set.

Proof of Theorem 2. This is now a straightforward generalization of the proof of 
Theorem 5.2 (and of (32), corrected) in [35] : one has merely to replace pk(f(G)) in 
that proof by Hp(/(G)) and pk(Dfz(Ek)) in the integrands by 'HkF f{z)(Df.(E*)).
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For the envisaged application, recall that ft* is the fc-dimensional Hausdorff measure 
induced on IRn by the auxiliary Euclidean structure. Let L C IR" be a fc-dimensional 
linear subspace. Let x € IRn. The restriction of the norm || • ||x to L has unit ball 
Bz AL ; the corresponding k-dimensional Hausdorff measure on L is ftpxZL, and we 
have RpX(BX Cl L) = k*. Since both, 7{kF XLL and ft*ZL are Haar measures on L, 
they are proportional, thus

ft£z(nL) = ft*(nL) 
Kk ~ 'Hk(BxnL)‘ (24)

Now suppose that f : A -> IRn is an injective Lipschitz map, A C IR* is a bounded 
Borel set, and f(A) = M is a Borel set. Let g : M -> IR be a nonnegative Hk- 
measurable function. If we apply Theorem 2, equation (24), and then Theorem 2 to 
the Euclidean metric, we get

' g(x՝)dHtFM= / ------------- dW‘(z) =
M J A Kk

= f g(/W)7WBof <***<*> = Kt / nr
J A Jm Hk(Bxr\TxM)

Now the choice g = 1 on M gives (6), and the choice

9(i) = vp(Bz n = 'Hk(B°\T։M)‘Hk(Bx n

gives (5), under our special assumptions on M. However, to this special case the 
proof for a general ('Hk, fc)-rectifiable Borel set AL can be reduced; see Theorem 
3.2.29 in Federer [20]. The same special assumptions on M can be made in the proof 
of Theorem 1 in the next section. Here one has to observe that both sides of (3) are 
zero if ftp(Af) = 0. This is true in the Euclidean case, as follows from Federer [19]; 
in a smooth projective Finsler space it then follows by observing that the measure 
has a density with respect to the Euclidean invariant measure /xj and that in compact 
subsets of IRn, the Hausdorff measure ftp can be estimated from above by a constant 
multiple of ft*.

§4. A GENERAL CROFTON FORMULA
Now we can prove Theorem 1. We assume that (IRn,F) is a smooth projective 
Finsler space, and the signed measure r/7 on A(n,j) is defined as in Section 2. Let
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k G € {1,..., n — 1} with q :=֊ k + j — n > 0, and put m := n - j. Let
M C IK'1 be a (Hfc, k)-rectifiable Borel set. We may assume that M is of the special 
form as assumed at the end of the last section. From (12), we have

’ volg(Fn M)dT)j(F)

with

1 (ill j • • • > Wm) • —

n M)ÿ(ui, <1 ) • • • g(um, tm) dti ■ ■ - dtm.

For i = let Ct be an (n - l)-dimensional unit cube in v՝ := {z € IRn :
(x,Ui) = 0}. As in [35], formula (54) (where no invariance property of Tq is needed), 
we get 

volg(HU1,f։n...nHUm>imnA/) - I ‘‘'I volç(Z)^ (j/, t)) dAn_i (j/i ) • • • dÀn-i (ym)> 

where An_] denotes the (n - l)-dimensional Lebesgue measure and where

Dq(y, t) (C*l 4՜ tiUi + 1/1 ) n . . . n (Cm + tm Um + J/m )

By (8), this gives

<W’(z)dAn-i(j/i) • • dXn-i(ym)g(u\, ti) • • ■g(um,tm)dti ■ ■dtm =

ffq(x, TzDq(y, t))g(ui, (z, ui)) • • • g(um, {x, um))

d'Hg(x)dtl “ ■ dtmdXn-i(yi) ■ ■ • dXn-i(ym).
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Here we have applied Fubini’s theorem and then made use of the fact that x € Dq(yy t)
satisfies x € u/՜ + t,Ui = hence (x,ui) = t,, for t = l,...,m. Thus we obtain

I (x, I z D q (֊))<?( Ul, ($, Ul) ) * ’ ' (^ |Um))^
IR." JD'^z)

X dhg(x) dXn(zi) • • dXn(zm) 

with D'q(z) := (C] 4֊ z։) Cl... Cl (Cm 4- zm) A Af. Writing

f(x) :=aq (x,L(ui,...,um)x A TXM) g(ul} (x, Ui)) • • • g(um, (x, um})t

we get

/(x) dW(x)dXn(z1)---dXn(zm).

Now we use Lemma 6.1 of [35], where we put p = m, Mq = M, Mt = Ci for 
i = 1,... ,m. We obtain

Z(U1....... u™)= [ ■■■ [ [ f(z։>)[Tx\M,T,1-tClt...,TI\Cm]<mt(x<>)x
Jct Jc„ JM

xdH"-*(i1) - dH"-1(x,„) = [U1....... um] f /(։)[£(«,,...,um)x,T։M)dH*(x).
J m

Inserting this and using (13), (16) and (18) we conclude that

' vol,(FAM)d^(F) =

-Cm/ / [Ul,--.,Um][L(Ul,...,Um)‘L,TxA/](Tfl(x, L(Ui,...,Um)-L ATj-M)

g(ui, (x,ui)) • • • g(um, (x,um)) d^f (x) (ui, . . . , Ufn)

( ni I I tfq (•£» ^(ul) • • • 1 n T,zAf)[L(Ui> . . . , Um) "L, TXA/] 
Jm J(Sn"‘l)rri
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(ui,..., um)9(u,. (։, «։))••• 9(u,„, (x, um)) da®m(u1,..., u„) dW‘(i) =

Л/ ^G(n,m)
riT,M)[L\T,M]dP[m'(L)<mk(x) =

ck JM Ck

This completes the proof of Theorem 1.

Резюме. Докалываются интегрально-геометрические J ©Jрмулы типа тонаК
для площадей Холмса-Том пеона спрямляемых борелевских множеств в гладких 
проективных пространствах Финслера.
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