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INEQUALITIES IN THE SENSE OF BRUNN-MINKOWSKI-VITALE 
FOR RANDOM CONVEX BODIES

J. Mecke and A. Schwella

FYiedrich-Schiller University Jena, Germany

Abstract. The well-known Brunn-Minkowski inequality concerning convex addition 
of measurable sets was generalized by R. A. Vitale for the case of random sets. The 
paper presents a new proof in the special case of random convex bodies, which does 
not employ the law of large numbers for random sets, but the mixed area measure. 
In this way, inequalities for mixed volumes and intrinsic volumes of random convex 
bodies are also obtained. Finally, consequences for stationary random hyperplane 
processes are discussed.

§1 . INTRODUCTION
Nonempty compact convex subsets of IR'1 are called convex bodies. Let us denote 
by K 4- L the Minkowski sum of the convex bodies K, L C IR 7 and by Vd(K) the 
volume of a convex body K. The formula

vyd(pK + (1 - p)L) > pV՝d'd(K) + (1 - p)Vd,d(L),

where 0 < p < 1, is known as the Brunn-Minkowski inequality for convex bodies
K, L [7]. By iteration, for convex bodies

V՝dldljp,K, + ... + P„K„) > pyV^K,) + --+p„l'd,/d(K„). (1)

where pi,...,pn > 0, pi + ... +pn = 1.
This formula may be interpreted in a stochastic manner : Let K be a random convex 
body with range {Ki,..., Kri} and Prob(K = Kt) = p,, i — l,...,n. Then (1) can be 
written in the form

Vd/d(EK) > EVdl/J(K), (2)

where EK means the set-valued expectation of K [9], [10]. On the right we have the 
usual expectation of the real random variable Vd <Z(K).
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The question arises, whether (2) is valid for arbitrary random convex bodies not 
necessarily discrete. R. Vitale [10] proved (2) for a large class of random sets K 
including random convex bodies. His proof relies on the strong law of large numbers 
for random sets [1], cf. [11].
The main results of the paper are as follows.

- Generalization of (2) for intrinsic volumes V,n(K) of random convex bodies K 
in nV (Theorem 2)

> ^'"(K), m = 2,...,d-l. (3)

- A new method of proof for (2) and (3), which makes no use of the law of large 
numbers for random sets.

- An inequality for mixed volumes of random convex bodies (Theorem 1), 
interesting in its own right. The inequalities (2) and (3) are obtained as special case.

- Consequences of the above results for the intersection densities of stationary 
Poisson hyperplane processes (their distribution can be described by a convex body, 
the so-called Steiner compact [3]).

§2 . BASIC NOTIONS AND NOTATIONS
Let us denote the set of all non-empty compact convex subsets in IRrf։ d > 2 by AC, 
and the a-algebra of subsets of IC as defined in [3] by IK. A random convex body 
is a random variable K with range [AC, IK] (random element in [AC, IK]). Every K G IC 
is described by its support function h(K, •) : IRd >—> [0, oo) defined by

h(K,u) = sup{(x,u) : x € K՜},

where (x, u) denotes the inner product of x, u € IRrf. The norm of an element K G K. 
is

11*11 = max{||x|| : x G K}, J
where ||z|| denotes the Usual norm in nV.
Let K be a random convex body. Assuming 2E7||K|| < oo, it can be shown [1], [9], 
[11], that there exists a convex body EK G AC with the support function

h(EK,u) = Eh(K,u), uGHV. (4)

The convex body EK is called set-valued expectation of the random convex body 
K.
'1 he volume V^K) of a convex body K and the (d- l)-content Oj(K) of its boundary 
dK are invariant under Euclidean motions and, as functions on AC, have several 
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properties of continuity and additivity. In convex geometry they are considered as 
special cases of the so-called intrinsic volumes Vm : K. ։—> [0, oo), possessing similar 
properties (m = 0,1, ...,d). They are closely related to the Minkowski-functionals [7]. 
A more general notion is that of mixed volume V(K\՝...,Kd) of convex bodies 
Ki,..., Kd € K. [7]. Let B be the unit ball in IR'1, and a* be the volume of the 
fc-dimensional unit ball, i.e.

- T(1 + i/2)’
The intrinsic volume Vm(K) of K € K. can be expressed as a special mixed volume 
[7]:

Vm(K) = (d)(ad_m)-1V ( , m = 0,l..... d. (5)
\771/ \ m d—m 1

Then, Vd{K) is the usual volume of Vd-\(K) = Od(K)/2, Vi(K) is proportional 
to the mean width of K, and Vq(/C) = 1.

§3. INEQUALITIES FOR MIXED VOLUMES
Let S be the a-algebra of Borel subsets of the unit sphere Sd՜1 in IR'\ d > 2 let 
be fixed. There exists a function S : /Cd-1 x S »—> [0,oo), the so-called mixed area 
measure [7], with the properties

(i) For fixed K2,..., Kd € £, S(1G,..., Kd, •) is a finite measure on S.
(ii) For all Ki,...,Kd € JC the equation

V(K։.....Kd)=l-[ h(K,, u)S(K2..... Kj.du) (6)
a Js^-i 

holds.
The following formula plays a key role in the proofs of our main results.

Proposition 1. Let K be a random convex body with E\|K|| < 00. IfK2,..., Kd 6 
then

V(Æ?K, K2tKd) = EV(K, K2,Kd).

Proof. Applying formulae (4), (6) and Fubini’s theorem we get 

dV(EK.K2,...,Kd) = I h(EK,u)S(K2,...,Kd,du) = 

= e[ h(K,u)S(Ki...... Kd.du).

Finally, (6) implies

I A(K,u)S(K2.....Æj.du) = dV(K.tf2......Kd).

Proposition 1 is proved.
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We learn from Schneider [7] the following special case of a generalized Alexandrov-
Fenchel inequality (formula (6.4.5) in [7] for i = 0, j' = in — 1 and k — in) :

Proposition 2. For 2 < m < d and Y, Z, KFn+i,..., Kd € IC, we have

(Cf. also [2], exercise p. 321.) That particular inequality can also be verified by 
repeated application of the Alexandrov-Fenchel inequality.
The next theorem contains our main result.

Theorem 1. Let K be a random convex body with Æ?||K|| < oo. If 2 < m < d and 
Km+it...,Kd € IC, then

yl/m / ^K- — , -Km+1. -, Kd \ , Km+i,...» Kd\
\ m / ~~ \ m J

Proof. Proposition 2 implies
U(K,EK EK.Kra+l,...,Kd) > EK, K,n+1,..., Kd) x

xV’'’(K...,K,K.tl.....Kd).
Forming the expectation on both sides and applying Proposition 1, we obtain 

V (EK...... EK, Kd) > (EK..... EK, Kd) x

xEVl'm(K,...,K,Km+i..... Kd).
The assertion follows immediately.

§4. INEQUALITIES FOR INTRINSIC VOLUMES
The next theorem is derived from Theorem 1 and (5), putting Km+i = ... = Kd = B.

Theorem 2. Let K be a random convex body with E\|K|| < oo. If 2 < m < d, then 

V^m(EK) > EV^m(K).

These formulae are called generalized Brunn-Minkowski-Vitale inequalities. 
In the case m = d the result was already proved by R. Vitale in [10], and quoted by 
Weil and Weacker in [11].
If K € IC and D is a random rotation about the origin, then DK is a random convex 
body.

Corollary 1. Let D be a random rotation about the origin. Then for all K G IC and 
m = 2,...,d the inequalities Vm{EDK} > Vm(K) are fulfilled.

Proof. From Theorem 2 we obtain V^/Tn(^DK) > EVn\/m(DK). The rotation 
invariance of Vm implies Vm(DK) = Vm(K).
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§5 . ALTERNATIVE PROOF FOR INTRINSIC VOLUMES
Theorem 2 might as well be proved in the same way Vitale [10] proved (2). We make 
use of a generalized Brunn-Minkowski inequality concerning intrinsic volumes [2], [7].

Proposition 3. For Ki, Kz € IC, 0 < A < 1 and m = 2, ...,d the inequality

+ (1 ֊ p)/<2> > + (1 - A)V^™(K2) (7)

holds.
Now, given a random convex body K, such that 2E||K|| < 00, we consider a sequence 
Xi, X2,... of mutually independent random sets, each distributed like K. By iteration 
(7) is transformed into

(8)

For a constant c depending only on m and d, we have Vn,/n։(L) < c||L|| for any 
L E IC. Since E\|K|| < 00, the Kolmogorov strong law of large numbers implies, that 
the right-hand side of (8) tends to EVm'n(K) as n -> 00.

n
Regarding the left-hand side of (8), there is the a.s. convergence of ֊ £ X, to EK 

t=l
by a strong law of large numbers for random convex sets (Artstein and Vitale [1], cf. 
[11]). Due to the continuity of Vm (cf. e.g. [2]), we have V™m(EK) > EVm m(K), 
which is the assertion of Theorem 2.

§6 . SOME CONSEQUENCES FOR HYPERPLANE PROCESSES
Let $ be a stationary Poisson hyperplane process (SPHP) in IR'r [3]. [4]. The mean 
(d — l)-content of 4> per unit volume is called intensity and denoted by A. The 
direction of a hyperplane is described by the perpendicular line through the origin 
(1-subspace). We denote the set of all 1-subspaces by 7/ and the tr-algebra of Borel 
subsets of ft by B [3], [4].
Given A E B, let us denote by 4>x the set of all hyperplanes from 4> with a direction 
in A. Then $4 is again a SPHP, the intensity of which is denoted by h,(A). In this 
way, a finite measure h on [ft, 5] is established, the so-called directional measure 
of 4>. The distribution of a SPHP 4» is completely determined by h. The intensity A 
of 4> is equal to the total mass of h : A = h(ft).
Every m-tuple of hyperplanes from ‘1» in general position has for the set of intersection 
points a (d — m)-dimensional affine subspace (m = 1......d). For fixed m, all these
intersection (d - m)-flats form a stationary (non-Poisson) (d — m)-dimensional Hat 
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process . Note that 4>t = 4> and 4»^ is the point process of vertices of the tessellation 
formed by 4>. The (d — m)-content of <1% per unit volume is said to be the m- 
intersection density and denoted by p,n(h). Note that pi = A and pd equals the 
intensity of the point process of vertices.
To every finite measure h on [H, P] different from the zero-measure there corresponds 
a convex body (more precisely a zonoid), the so-called Steiner compact <S[h] [3], [4]. 
It is known, that

pm(h) = Vn.GW (9)

if h is the directional measure of 4> [3], [4].
Let D be a random rotation about the origin. It transforms h in a random measure 
Dh and the Steiner compact 5[h] in a random convex body D5[h] = <S[Dh]. We define 
a measure EDh on [H, 5] by (EDh)(A) = E(Dh)(A), A € B. It can be shown that

S[EDh] = EDS[h]. (10)

Corollary 1 and (10) lead to

Vm(S[EDh]) > Vm(5[h])։ m = 2,..,d. (11)

Combining (9) with (11), we get

pm(EDh) > pm(h), m = (12)

For m = d the result can be found in [5], [6].
If the distribution of D is a Haar measure on the group of rotations about the origin, 
we say that D is uniformly distributed. In this case, EDh is proportional to the 
uniform distribution 7 on [H, : EDh = A7. A SPHP with directional measure Xy
is called isotropic.
For an arbitrary random rotation D, it seems to be reasonable to say, that EDh is 
“more isotropic” than h. We say also, that a SPHP 4» with directional measure EDh 
is “more isotropic" than the SPHP 4» with directional measure h. Note that 4> and ‘I* 
have the same intensity A.
In this context, formula (12) means that the intersection densities of a stationary 
Poisson hyperplane process 4> are not greater, than the corresponding intersection 
densities of a stationary Poisson hyperplane process 4>, which is “more isotropic” 
than 4>. but has the same intensity.
As a special case, the result of Thomas [8], cf. [4] is reestablished : for fixed intensity 
A, the intersection densities of stationary Poisson hyperplane processes take their 
maximal value in the isotropic case.



Inequalities in the sense of Brunn Minkowski-Vitale ... 25

Резюме. Хорошо известное неравенство Брунна-Минковского, относящееся 
к выпуклому сложению измеримых множеств было обобщено Р. А. Витале 
для случая случайных множеств. В настоящей статье приводится его новое 
доказательство в частном случае случайных выпуклых тел, где вместо закона 
больших чисел для случайных множеств используется смешанная мера соот­
ветствующая площади. Этим путём получены неравенства для смешанных 
обёмов и внутренних обёмов случайных выпуклых тел. Обсуждаются следствия 
для стационарных случайных процессов гиперплоскостей.
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