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A method of successive projections for the solution of LP-problems is 
presented, where the computation of the optimal solution is replaced 
by determination of fixed points of nonexpanding operators. The non- 
differentiable projection onto the positive cone is then replaced by a 
sequence of smooth approximations that facilitates the application of 
rapidly convergent numerical methods. As the corresponding sequence 
of operators turns out to be equicontinuous, stability of the sequence of 
solutions follows. The method can be highly efficient, in particular for 
semi-infinite type problems. A particular feature of the method is that 
it does not require presence of interior points in the restriction set (as 
Karmarkar’s method does).

fl. INTRODUCTION

The method described below can be applied for numerical solution of a number 

of approximation and optimization problems like Chebyshev-approximation, Zl- 

approximation, One-sided Z^-approximation, Markov moment problems, Semi-infi

nite linear optimization.

However, we present an algorithm tailored for linear programming problems. It uses 

the method of successive projections analogous to the Kaczmarz / v. Neumann 

method.

For the LP—problem we use the following notation :

the following problem :

Let c, x G IRn, A = G IRm. Then we consider

min{(c, г)х| A x = 6, x > 0}.
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§2. THE PROJECTION METHOD

Method 2.1. We chose the mapping P = Pnt o P,n-i o ... o Fj of the successive 

projections P, onto the hyperplancs

Si = {s € IRrl| < (LiyS >= for i e {1,

that is
^•(®) — X + || ||2 a«

and the projection P/< onto the positive cone IR>0, given by

PK(x) := ((Z!)+..... (xn)+)).

Furthermore we introduce a regularization parameter a > 0 to determine fixed points 

of

TQ(x) := PK o P(x) + a • c.

For a positive sequence (<*,,),։giN tending to zero the sequence (x,»)n€iN °f fixed points 

of nonexpanding mappings TOn(x) every limit point of (xw),i€iN is a solution of the 
LP-problem.

The above method evolved in the context of a general theory on two-stage solutions 

of variational inequalities. For the determination of the fixed points the usual Picard 

iteration was used. The disadvantage of the above method is the nondifferentiability 

of the projection P# on IR>o, which prevents the application of rapidly convergent 

numerical methods (Newton like methods), where the fixed points are determined via 

solution of the corresponding nonlinear equation.
I

The modification of the “old” method now consists in a smoothing of the projection 

Pk, more specifically : the function s (s) + is replaced by a one-dimensional 

smoothing : JR —> 1R that approximates the (-) +-function.

The projection PK is then replaced by P„ = (y>Q(xi),..., y?o(zn)). By use of the 

Newton-method the nonlinear equation Ft, := PQ o P(x) + ac-i = 0is solved. 

The directional derivation of Fa turns out to be F„(x,z) - P^(P(x)) • P0(z). The 

derivative of Po is then given by the diagonal matrix

and Po is the linear part of tne affine mapping P, which corresponds to the successive 
projection onto the hyperplanes {i|(altx) = 0), i G {l,...,n}.
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Theorem 2.2. Let X be a normed space, A: X —> X' and for (A„ : X —> X*) 

let L — limH-+3o{®|A։։® = 0} C {z|A® = 0} =: S. Let further (a,J be a sequence 
of positive numbers such that a,։(AH — A) converges continuously to a 

mapping D : X —> X‘. Let x 6 L, then for all x G S the following inequality 

(Dx, x — x) > 0 holds.

Proof : Let = 0} such that (x*) converges to an x G X. i.e. x 6 L-

Let x € S, i.e. Ax = 0. Since A monotone and radially continuous it follows from 

Vainberg [6] :
otk((Ak - A)xk,x - xk) > 0

Since otk(Ak — A) converges to D it follows that ak(Ak — A)xjt converges to Dx in 

the norm.
Application of this theorem to the uold” method yields for A = P/< o P — I and the 

sequence An = Pk o P + anc-I for a„ = that an(A„ - A) = c, which is a constant 

sequence obviously continuously convergent to the constant function D = c.

If x is a limit point of the sequence of the fixed points of the sequence of operators 

(An), then for all x G S we obtain (c, x - x) > 0. Note that x is a solution of the 

original ZP֊problcrn, once we have shown that L C S.

Application of the above theorem to the “smoothed method’ yields for A„ ~ Fnn 

and A = PK oP -1 a condition for <pa> that enforces continuous convergence. We 

have for an = —

a„(A„ - A) = a.(P,„ o P + a„c - Pt o P) = — (P„. o P - Pk o P) + c. 
^11

It follows that, if jL(yjQ, “(')+) 6 uniformly on compact subsets of IR. then

an(An — A) converges continuously to c.

Remark. The above method can be extended to convex functionals / it in the 

operator An the vector c is replaced by the derivative f'. Then a,»(A,։ — A) converges 

continuously to f = D. The characterization theorem of convex optimization yields 

that every point of accumulation is a minimal solution of f on S. The computational 

part of the method remains essentially unchanged.

Example 2.3. For (3 — fl(a) let

a for s > /3
(s+ (3}-/W for -{3<s<(3
0 for s < -/3,

^o(s) =
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hence <po ֊ (՛)+ = 11 ou (-<»» ~0) U (fr °°) on (-0.0) we obtain

ha(s) - (»)+! =
1 Z(* + 0)2 
a \ Afi

If -*n-oo 0, then ^-(y>on — (•)+) —► uniformly on cornpact subsets of IR and 

hence an(j4„ — >1) converges continuously to c.

Theorem 2.4. Let for all s 6 IR and all or > 0, |^(s)| < 7 < 1» then

Ta = PQ o P 4֊ ac is a contraction and Fo = I - Ta is strongly monotone 

(well posed problem). Moreover F/,(x) is positive definite everywhere.

Proof : We first show that Ta is a contraction. Using the mean value theorem and 

the nonexpandivity of P it follows
||TQ(z) - TUv)!! < IIPo(Px) ֊ P<APy)\\ =

x — Py)(Py — Px) dt =
o

= / ll^(Py֊<(P*֊Pv)(P։/-^)ll-«<TllP։/֊^ll<ll*֊!/ll 
Jo

Thus, Ta is a contraction and hence Fa = I — TQ strongly monotone, because
{(I — To)x — (I — TQ)y, x-y) = ||z - t/||2 - ((TQx - TQy,x - y) >

> ||r ֊ t/ll2 ֊ ||Tftx - TQT/llllx - j/| > (1 - 7)||« ֊ I/ll2.
Thus it follows for all x, v € IRn (•Fo(x4-tv) — Fn(x),tv) > (1 — 7)t2||”||2 and for

t h ?(t) := (Fo(x 4- tv) - F„(x), v) > (1 - 7)11|v||2, 

hence for v / 0 :

¥>'(0) = (Fa(x)v, v) > (1 - 7)l|v||2 > 0.

Example 2.5. Let

1
0 3<0 (0 3<0
—fi՜՜8 O<s<0, (p«(s) = < ֊j/’2 °<s<0

(1-0) *>0 l(l-/?)(«֊f) 3>0,

then for 0 < s < /3 we obtain

I~(^n(«) ֊ (*)+)l =
1(1 -P)32 s (l-p)a-2p
— ■ — —■ Q ^2 ֊   .   ֊

a 2/3 o/3 

and for s > /3
|֊^-(¥>a„(s) ֊ («) + )| = 
«n a z

֊03֊ (1-0)^

The following lemma expresses the fact that the angle between x — ko and k — ko is 
obtuse : 
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Lemma 2.6. Let K C IR-" convex and let k0 be best Euclidean approximation 

of x € JR." (with respect to K). T. hen for all k £ K the following inequality 
holds :

||z - /;||2 > ||z - *o||2 + ||*o - Jtjf.

The following theorem states that a composition of projections is a contraction with 
respect to its fixed points :

Theorem 2.7. Let S be nonempty and bounded. Then for-every z0 G S 

there is a r > 0 and a 7 E (0, 1) such that for all x E IRn with ||t — z0|| > r 

we have

||z0 - P(x)|| < 7||z0 ֊ Z'H-

Proof: Let z0 E S, and for i E {1,..., n) let am+, := -e, and bm+i = 0. Furthermore,

let M > 0 be chosen such that /f(0. M/2) D S. Then for all x K(0, M)

(3(x) := max |(x - T0,Ui)| |l<i<Tn + n>>0

and using the compactness of the sphere S(0, M) it follows :

7 := min{/?(z)|r E S(0, M)} > 0.

Let
6, - (a,, T0)|6 := max{ |1 < ii < m 4- n).

As Tq E S obviously we have 6 = ||t-o||oo > 0- Chose r >
2d M

7
and t £ A"(0,r). For

some j E {1,..., m 4֊ n} we have

M(x - T0, aj) 
11» - x0||||a7j|

= max{ M{x- xo,ai} 
ll»-»olllM

|1 < t < m 4- n}.

It follows that

|67- — (®,a7)| _ lfy~(»o>aj) 5/11» »oll( ||x-r0|pQj)l > 
IM ■ IK II

> —I|x - Toll - 6 > ^t||® - ®o||. 
L jVl •

Let Po(t) := t and for k E {1,...» m 4- n) : A := Pt ©...0 Pi- Because of P7(x) G Sj
•it follows that ||P7(t) — x|| > d(i, Sj) and by using the triangle inequality

llA(x) - A-i(x)ll > l|P,(x) - x|l > - loll
Jl = l
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Then there is I G m։ch that

2m M II® ֊ zoll№)֊ A-։(x)|| >

By Lemma 2.6 we obtain using the nonexpandivity of P/ :

Ik - ®ol|2 > IA-1W - P,-i(xo)||2|A-1(։) - Zoll2 > lA-.(z) - P,_։(z)||։+ 

+ |p,(z) - zoii2 > - *oii + ia(z) ֊ zoii2.

For c := y/1 — (j^y)2 using once more the nonexpandivity of projections we 
establish the claim of the theorem.

We still have to answer the stability question 0 lim{z|Ariz = 0} C {z|Az = 0}. 

The following theorem gives a positive answer for examples 2.3 and 2.5 :

Theorem 2.8. Let (Bk : IR" —> IRn) be a sequence of nonexpanding operators 

that converges pointwise to ProP. Then there is N G IN such that for k > N 

the set of fixed points Fix{Bk} 0 and |J~ N Fix(Bk) is bounded. Moreover, 

every point of accumulation of a sequence (xk G Fix(Bk)) is a fixed point 
of Pr o P.

Proof: Apparently, the sequence (2?*), being a sequence of nonexpanding operators, 

is equicontinuous. Therefore, pointwise convergence ofBr- to ProP implies continuous 

convergence, which is equivalent to uniform convergence on compact subsets of IR’1. 
We first observe : let r0 G Fix(Px o P) then

||Pjf o P(x) - z0|| < ||z - Zoll,

i.e. any ball with center z0 is mapped into itself via Pr oP. In particular, the interior 

of such a ball is mapped into the interior. Let R > r we have by Theorem 2.7 

for x E F(xo, R) that Pr o P(x) is an interior point of K(zq, R). For reasons of 
compactness there is e > 0 such that

PA-oP(R(X0,R))cR(z0,R֊e).

Because of the uniform convergence of (PA.) there is a K G IN such that 

Bk(K(xq, R) c R(z0, R- |). Because of the nonexpandivity of Bk we have for 
k > N

V)/Fix(Bk)CK(xQtR).
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Continuous convergence guarantees that every point of accumulation of fixed points 

of Bk is a fixed point of o P.
We summarize the results for the second example :

1. The Newton-method converges supcrlinearly (because of the icgularity of the 
Jacobian).

2. Fo„(x) = 0 is uniquely solvable and the sequence of the solution is bounded.

3. The accumulation point is a solution of the original £P-problcm.

The above algorithms have been successfully tested. The method turned out to 

be particularly effective for many variables and a moderate number of restrictions, 

among those : discretizations of moment problems, and the dual of semi-infinite linear 

optimization problems.

A more general framework for treating stability questions is given by the following 

scheme [4] :

Theorem 2.9 (K. Muller-Wichards). Let An : IR" —> IR" be a sequence of 

continuous operators that converges uniformly on compact subsets of IR" 

to an operator A : IR” —> IR" with the property :

there exists a ball 7<(zo,r),r > 0 such that (Az, z — zq) > 0 for all z in the 

sphere S(xq, r).

Then there exists no € IN such that for all n > no the equations Anx = 0 

have a solution in K{xo,r). Furthermore every point of accumulation of 

these solutions is a solution of At = 0.

The above theorem is a consequence of the following well known lemma.

Lemma 2.10. Let f : IR" —> IRn. If there is zo G IR” and R > 0 such that 

(/(z),z — z0) > 0 for all x G S(z0,7?), then the nonlinear equation /(z) = 0 

has a solution in K(xq, R).

Proof : Otherwise Brouwer’s fixed point theorem applied to the mapping

would lead to a contradiction.

In particular, the above principle can be applied to the limiting function Pk 0 P in 

the following sense : by Theorem 2.7 wc have for all x G S(zq, R) :

((7 - Pk o P)x, z - zo) = ((7 - Pk 0 P)z - (7 — Pk 0 P)^o, x - z0) >

> ||x - zo||2 - ||P/< o Px - zo||||x - xo|| = (1 - 7)||z ~ ^oll2 = (1-7)7?՜.
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A large class of operators can be treated using the above stability principle, where 

pointwise convergence already implies uniform convergence on compact subsets. 

Among them are : convex operators, monotone operators, component-wise convex 

operators, compositions conserving equicontinuity. ՝

АБСТРАКТ. Представлен метод последовательных проекций для 
решения ЬР-задач, в котором вычисление оптимального решения 
заменяется определением фиксированных точек нерастягивающихся 
операторов. Недифференцируемая проекция на положительный конус 
заменяется на последовательность гладких приближений, что облег
чает использование быстро сходящихся численных методов. Так как 
соответствующая последовательность операторов оказывается экви- 
непрерывна, то последовательность решений является стабильной. 
Этот метод может быть очень эффективным, в частности, для задач 
полубесконечного типа. Преимущество этого метода также состоит 
в том, что он не требует наличия внутренних точек в суженном 
множестве (как это делается в случае метода Кармаркара).
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