НЕНАСЛЕДСТВЕННЫЕ МОНОМОРФИЗМЫ В КАТЕГОРИЯХ ГРУПП НАД ОБЩИМИ КАТЕГОРИЯМИ

Г. Р. Асатрян

Известия Национальной Академии Наук Армении. Математика, том 35, № 5, 2000

Ненаследственный мономорфизм в групповой категории с над категорией С определяется как мономорфизм GC с немоническим базовым морфизмом в С. В статье построены типичные примеры категорий С с ненаследственными мономорфизмами в С и получены необходимые и достаточные условия для существования ненаследственных мономорфизмов.

Многие из результатов классической теории групп перестают быть верными для категорий групп над объектами общей категории С. Например, для моничности гомоморфизма групп над категорией S множеств необходимо и достаточно, чтобы в основании гомоморфизма лежало бы инъективное отображение. Достаточность этого условия сохраняется при замене S произвольной абстрахтной категорией С. В то же время, существуют категории С такие, что категория С групп над С имеет мономорфизм, в основании которого лежит немоничный морфизм категории С. Такие мономорфизмы групп называются ненаследственными.

В настоящей статье строятся типичные примеры категорий С с ненаследственными мономорфизмами в СС (пункты 3, 5 и 6) и выводятся необходимые и достаточные условия для их существования (пункты 4 и 5).

Существуют два разных подхода для определения групповой структуры на объекте категорий C. Прямой способ предполагает существование конечных произведений в C (см. [1]). Этот метод был развит Ловером ([2], [3], см. также [4], [5]), который обобщил этот метод для алгебраических теорий. Но есть другой, более общий метод, использующий контравариантные функторы из C в категорию теоретико-множественных групп G (см. [6]). Второй способ не требует существования конечных произведений в C. Мы получаем наши результаты, для категорий

не имеющих конечные произведения. Тем не менее, они верны и для категорий с конечными произведениями, но все конструкции в этом случае становятся более сложными. Сказанное может служить ответом на заключительную фразу главы III в [1], стр. 76, относящуюся к определению групповой структуры посредством контравариантных функторов: "Я не знаю ни одного реального использования этой дополнительной общности".

1. Напомним, что для произвольной категории С и любого объекта А из С определяются стандартный ковариантный функтор

$$h^A: \mathcal{C} \to \mathcal{S} \mid X \mapsto \mathcal{C}(A, X), (u: X \to Y) \mapsto h^A(u)(v) = v \circ u,$$

и контравариантный функтор

$$h_A: \mathcal{C} \to \mathcal{S} \mid X \to \mathcal{C}(X, A), \ (u: X \to Y) \mapsto h_A(u)(v) = u \circ v.$$

Каждый морфизм u:A o B категории $\mathcal C$ определяет естественное преобразование

$$h_u: h_A \to h_B \mid X \mapsto h_u(X) = h^X(u)$$
 для любого $X \in \mathrm{Ob}\,\mathcal{C}$.

Пусть $U : \mathcal{G} \to \mathcal{S}$ — стирающий функтор из категории групп в категорию множеств.

Определение 1. Контравариантный функтор $\sigma: \mathcal{C} \to \mathcal{G}$ называется групповой структурой в категории \mathcal{C} , если существует объект A из \mathcal{C} такой, что $\sigma: \mathcal{U} = h_A$. Такой объект A определяется однозначно и называется основой структуры σ . Пара (A, σ) называется \mathcal{C} -группой.

Для определения групповой структуры на объекте A по контравариантному функтору σ необходимо и достаточно задание групповых операций * на множествах $h_A(X)$ для всех $X \in \mathrm{Ob}\,\mathcal{C}$ таких, что для любого морфизма $u: X \to Y$ из \mathcal{C} отображение $h_A(u): h_A(Y) \to h_A(X)$ было бы гомоморфизмом групп. Последнее условие означает, что

$$u \circ (\xi \star \eta) = (u \circ \xi) \star (u \circ \eta)$$
 для всех $\xi, \eta \in h_A(Y)$. (1)

Определение 2. Гомоморфизм из \mathcal{C} -группы (A, σ) в \mathcal{C} -группу (B, τ) есть ественное преобразование $\varphi: \sigma \to \tau$. Основон ψ гомоморфизма φ является морфизм

$$v_{\varphi} = (\varphi \cdot 1_U)_A(1_A) : A \rightarrow B,$$

 I_{A} — тождественный морфизм объекта A и · — "горизонтальная композиция естественных преобразований.

Соответствие $\varphi\mapsto v$ определяет биективное отображение между гомоморфизмами из (A,σ) в (B,τ) и морфизмами $v:A\to B$, удовлетворяющими следующему условию :

$$(\xi \star \eta) \circ v = (\xi \circ v) \star (\eta \circ v)$$
 для всех $\xi \eta \in h_A(X) = C(X, A),$ (2)

т.е. условию гомоморфности отображения групп

$$(\varphi \cdot 1_U)_X = h_v(X) : h_A(X) \to h_B(X).$$

Через \mathcal{GC} обозначается категория, объектами которой являются все \mathcal{C} -группы, а морфизмами — все гомоморфизмы \mathcal{C} -групп. Стирающий функтор $U_{\mathcal{G}}(\mathcal{C}):\mathcal{GC}\to\mathcal{C}$ сопоставляет объектам и морфизмам из \mathcal{GC} их основы. Функтор $U_{\mathcal{G}}(\mathcal{C})$ является унивалентным. Как следствие, если основа гомоморфизма монична, то и сам гомоморфизм моничен. Обратное, в общем случае, неверно

Определение 3. Будем говорить, что мономорфизм из GC — наследственный, если его основа монична в C, и ненаследственный — в противном случае.

Целью статьи является построение типичных примеров категорий C с ненаследственными мономорфизмами в GC, и вывод необходимых и достаточных условий для наличия ненаследственных мономорфизмов в категории GC.

2. Если A – основа групповой структуры σ в категории C, то через 0_{XA} мы обозначаем единицу групповой операции \star на множестве $h_A(X) = C(X,A)$, а через u^* обратный элемент к u.

Предложение 1. (a) Единицы 0_{XA} являются постоянными морфизмами. Более того, $u\circ 0_{YA}=0_{XA}$ для всех $u\in \mathcal{C}(X,Y)$.

- (b) Если $v:A\to B$ является основой гомоморфизма \mathcal{C} -групп, то $0_{XA}\circ v=0_{XB}\quad \text{для всех}\quad X\in \mathrm{Ob}\,\mathcal{C}.$
- (c) Все 0_{AB} удовлетворяют (2), т.е. для любой групповой структуры на A единица 0_{AB} является основой гомоморфизма групповых структур.
- (d) Если A основа групповой структуры, то тождественный морфизм $\mathbf{1}_A$ совпадает с $\mathbf{0}_{AA}$ тогда и только тогда, когда A является терминальным объектом.

Доказательство : (a) и (b) имеют место, поскольку $h_A(u)$ и $h_a(X)$ являются гомоморфизмами групп. (c) непосредственно следует из (a).

(d). Пусть A — основа групповой структуры. Тогда из $1_A = 0_{AA}$ следует. что

$$\xi = \xi \circ 1_A = \xi \circ 0_{AA} = 0_{XA}$$
 для всех $X \in \text{Ob}\,\mathcal{C}$ и $\xi \in \mathcal{C}(X,A)$,

поэтому объект А терминален. Обратное очевидно.

Замечание. Из Предложения 1 следует, что GC есть категория с системой нулевых морфизмов 0_{AB} (см. [7]).

3. Пусть $\varphi: \sigma \to \tau$ — ненаследственный мономорфизм в \mathcal{GC} , и $r: A \to B$ — его основа. Так как r не является мономорфизмом в \mathcal{C} , то существует объект \mathcal{C} и морфизмы $u_1, u_2 \in \mathcal{C}(\mathcal{C}, A)$ такие, что $u_1 \neq u_2, u_1 \circ r = u_2 \circ r$. Тогда для обратного элемента u_2^* имеем

$$(u_1 \star u_2^*) \circ r = (u_1 \circ r) \star (u_2^* \circ r) = (u_2 \circ r) \star (u_2^* \circ r) = (u_2 \star u_2^*) \circ r = 0_{CA} \circ r.$$

Обозначая $u=u_1\star u_2$ получаем

$$u \neq 0_{CA}, \quad u \circ r = 0_{CA} \circ r. \tag{3}$$

Как следствие (3) получаем, что объект A не терминален, и согласно Предложению 1, d), вмеем $1_A \neq 0_{AA}$. Если предположить, что $r = 0_{AB}$, то $1_A \circ r = 0_{AA} \circ r$, что противоречит мономорфности φ (отметим, что $1_A, 0_{AA}$ и r являются основами гомоморфизмов). Таким образом, $r = 0_{AB}$ и поэтому объект B не терминален и $1_B \neq 0_{BB}$ Таким образом, получили следующее утверждение.

Предложение 2. Если $r:A\to B$ — основа ненаследственного мономорфизма, то $r\neq 0_{AB}$, A и B не терминальны (следовательно, $1_A\neq 0_{AA}$, $1_B\neq 0_{BB}$), и существуют объект C и морфизм $u:C\to A$, удовлетворяющие (3).

Сейчас мы можем построить простейший пример категории C с ненаследственным мономорфизмом в \mathcal{GC} . Эта категория \mathcal{N}_2 имеет три объекта A, B, C и следующие множества морфизмов $\mathcal{N}_2(X,Y)$:

X,Y	A	В	C
A	$\{1_A, 0_{AA}\}$	$\{0_{AB}, r\}$	0
В	{0 _{BA} }	$\{1_{\mathbf{B}}, 0_{\mathbf{BB}}\}$	0
C	$\{0_{CA}, \mathbf{u}\}$	{0 _{CB} }	{1c}

Композиция морфизмов определяется следующим образом:

$$u = \begin{cases} u, & \text{если} \quad v = 1; \\ 0, & \text{если} \quad u \neq 1, \quad v \neq 1; \\ v, & \text{если} \quad u = 1. \end{cases}$$
 (4)

Предложение 3. Категория GN_2 изоморфна полной подкатегории категории N_2 с объектами A и B. Соответствующий изоморфизм задается стирающим функтором $U_0(N_2)$.

Доказательство : Так как $\mathcal{N}_2(X,C)=\emptyset$ при X=A,B, то на объекте C невозможно задать групповую структуру. На объектах A и B однозначно определяются групповые структуры, поскольку множества $\mathcal{N}_2(X,Y)$ содержат не более двух элементов и морфизмы 1_A , 1_B не являются постоянными морфизмами (следовательно, 0_{XY} являются единицами групп $\mathcal{N}_2(X,Y)$). Когда $X,Y\in\{A,B\}$, то все элементы из $\mathcal{N}_2(X,Y)$ являются основами гомоморфизмов : для 0_{XY} это следует из Предложения 1, (c): для r, а также для 1_A и 1_B Условие (2) проверяется непосредственно.

Следствие. Морфизм г не моничен в N_{2} , но соответствующий гомоморфизм в $\mathcal{G}N_{2}$ моничен. Поэтому N_{2} является категорией с ненаследственным мономорфизмом в $\mathcal{G}N_{2}$

- 4. Предложение 4. Категория \mathcal{GC} содержит ненаследственный мономорфизм тогда и только тогда, когда существует функтор $f: \mathcal{N}_2 \to \mathcal{C}$, удовлетворяющий условиям :
 - (i) $f(\mathbf{u}) \neq f(0_{CA})$ и
 - (ii) $f(\mathbf{r})$ является основой некоторого мономорфизма из \mathcal{GC} .

Доказательство : Необходимость. Пусть $\mathcal C$ есть категория с ненаследственным мономорфизмом $\mathcal G$ в $\mathcal G$ имеющим в основе немоничный морфизм $\mathcal F:A\to B$ (здесь возможно A=B). Из сказанного (перед конструкцией $\mathcal N_2$) в пункте 3 следует, что $\mathcal C$ имеет морфизмы:

$$1_A, 0_{AA}, 0_{AB}, \tau, 0_{BA}, 1_B, 0_{BB}, 0_{CA}, u, 0_{CB}, 1_C,$$
 (5)

индексированные объектами $A, B, C \in \text{Ob } C$ (некоторые из них могут совпадать). Более того, композиции этих морфизмов определяются согласно (4). Следовательно, отображения $\text{Ob } \mathcal{N}_3 \to \text{Ob } C$, M или $\mathcal{N}_2 \to M$ или C, сопоставляющие буквы жирного шрифта тем же буквам обычного шрифта, определяют функтор $f: \mathcal{N}_2 \to C$. По конструкции, f удовлетворяет условиям (i), (ii).

Достаточность. Морфизм $f(\mathbf{r})$ не моничен в C, поскольку согласно (i) имеем $f(\mathbf{u}) \neq f(0_{CA})$ и

$$f(\mathbf{u})\circ f(\mathbf{r})=f(\mathbf{u}\circ\mathbf{r})=f(0_{\mathsf{CB}})=f(0_{\mathsf{CA}}\circ\mathbf{r})=f(0_{\mathsf{CA}})\circ f(\mathbf{r}).$$

Отсюда, учитывая (ii), получаем, что f(r) является основой ненаследственного мономорфизма. Если некоторые из объектов A, B, C равны, то некоторые из морфизмов (5) равны. Однако нетрудно проверить, что функтор f, определяемый в доказательстве необходимости, является унивалентным. Условие (i) выполняется для каждого унивалентного функтора.

Следовательно, можно дать новую формулировку Предложения 4.

Предложение 5. Категория \mathcal{GC} имеет ненаследственный мономорфизм тогда и только тогда, когда существует ковариантный унивалентный функтор $f: \mathcal{N}_2 \to \mathcal{C}$ такой, что f(r) является основой некоторого мономорфизма из \mathcal{GC} .

5. Предложения 4 и 5 позволяют выявлять категории групп с ненаследственными мономорфизмами, но не доставляют возможности построения новых примеров таких категорий. С. Г. Далалян видоизменил конструкцию типкчного примера категории \mathcal{N}_2 с ненаследственным мономорфизмом в \mathcal{GN}_2 таким образом, чтобы можно было бы факторизацией получать новые примеры категорий. Ниже приводятся эти результаты.

Пусть A, B, C суть объекты из N_∞ , а множества морфизмов $N_\infty(X,Y)$ определяются следующей таблицей :

X, Y	A	В	C
A	ZAA	ZAB	0
В	$\{0_{BA}\}$	ZBB	0
C	ZCA	{0 _{CB} }	(1c)

где \mathbb{Z} – кольцо целых чисел, и $\mathbb{Z}_{XY} = \{n_{XY} : n \in \mathbb{Z}\}.$

Композиция определяется равенством

$$m_{XY} \circ n_{YZ} = \begin{cases} (mn)_{XZ}, & \text{если} & (X, Y, Z) \neq (C, A, B); \\ 0_{CB}, & \text{если} & (X, Y, Z) = (C, A, B). \end{cases}$$
 (6)

Невозможно задать групповую структуру на объекте C, поскольку $\mathcal{N}_{\infty}(A,C)=\emptyset$. Для любых $X\in\{A,B,C\}$, $Y\in\{A,B\}$ на множестве $\mathcal{N}_{\infty}(X,Y)$ определим коммутативную групповую операцию $\star:m_{XY}\star n_{XY}=(m+n)_{XY}$. Эта система операций удовлетворяет Условию (1) и. следовательно, определяет групповые

структуры σ и τ на A и B, соответственно. Очевидно, что морфизм 1_{AB} не моничен в \mathcal{N}_{∞} и удовлетворяет Условию (2). Следовательно, он является основой гомоморфизма из σ в τ . Этот гомоморфизм моничен в \mathcal{N}_{∞} Таким образом. 1_{AB} является основой ненаследственного мономорфизма из \mathcal{N}_{∞}

Теперь существование ненаследственного мономорфизма в GC эквивалентно существованию ковариантного функтора $f:\mathcal{N}_{\infty}\to C$, удовлетворяющего следующим условиям:

- (i) $f(1_{CA}) \neq f(0_{CA})$,
- (ii) $f(1_{AB})$ является основой мономорфизма из GC (отсюда следует, что даны групповые структуры σ и τ на объектах f(A) и f(B) категории C).
- (III) для всех $X,Y\in \mathrm{Ob}\,\mathcal{N}_\infty,\,Y=\mathbf{C}$ отображение $f_{X,Y}:\mathcal{N}_\infty(X,Y)\to \mathcal{C}(f(X),f(Y))$ является гомоморфизмом групп.

Аналогичное отображение $f_{X,Y}: \mathcal{N}_2(X,Y) \to \mathcal{C}(f(X),f(Y))$ в общем случае не является гомоморфизмом групп. Другим отличнем между \mathcal{N}_2 и \mathcal{N}_∞ является то, что в этом случае полной подкатегории \mathcal{N}_∞ , имеющей в качестве объектов A и B, оказывается изоморфиа не вся категория $\mathcal{G}\mathcal{N}_\infty$ а полная подкатегория, содержащая объекты (A,σ) и (B,τ) . Такой изоморфизм устанавливается ограничением стирающего функтора $U_\mathcal{G}(\mathcal{N}_\infty)$.

Атрибут ненаследственного мономорфизма $\varphi:(A,\sigma)\to(B,\tau)$ категории \mathcal{GC} состоит из φ , его основы $r:A\to B$ и морфизма $u:C\to A$ категории \mathcal{C} , удовлетворяющий (3).

Если объекты A,B,C попарно различны, то образ $\mathcal D$ функтора f будет подкатегорией категории C. Категория $\mathcal D$ имеет три объекта A,B,C. Для любых $X,Y\in \operatorname{Ob}\mathcal N_\infty$, Y=C отображение

$$f_{X,Y}: \mathcal{N}_{\infty}(X,Y) \to \mathcal{D}(f(X),f(Y))$$

является сюръективным гомоморфизмом групп. где $\mathcal{N}_{\infty}(X,Y)$ – бесконечная циклическая или тривиальная группа. Следовательно, $\mathcal{D}(f(X),f(Y))$ изоморфна $\mathbb{Z}/\nu_{XY}\mathbb{Z}$, где ν_{XY} – неотрицательное целое число, удовлетворяющее следующим условням: (1) $\nu_{BA} = \nu_{CB} = 1$; (ii) остальные целые $\nu_{XY} \neq 1$; (iii) ν_{AB} делит ν_{AA} и ν_{BB} ; (iv) ν_{CA} делит ν_{AA} .

Если групповая структура σ абелева (т.е. все теоретико-множественные группы $\mathcal{C}(X,A)$ коммутативны), то из моничности φ получаем $\nu_{AA} = \nu_{AB}$.

База данных, состоящая из (a) трех объектов A, B, C, (b) системы множеств морфизмов

$$\mathcal{D}(X,Y)=\mathbb{Z}/
u_{XY}\mathbb{Z}$$
 $(X,Y\in\{A,B,C\},Y\neq C).$ $\mathcal{D}(X,C)=egin{array}{c}\emptyset,& ext{ecam}&X\neq C,\ \{1_C\},& ext{ecam}&X=C, \end{array}$

где иху - целые неотрицательные числа, удовлетворяющие (i)-(iv) и (c), и закона композиции морфизмов

$$(a + \nu_{XY} \mathbb{Z}) \circ (b + \nu_{YZ} \mathbb{Z}) = \begin{cases} 0_{CB}, & \text{если} & (X, Y, Z) = (C, A, B), \\ ab - \nu_{XZ} \mathbb{Z}, & \text{если} & (X, Y, Z) \neq (C, A, B) \end{cases}$$

образует категорию. Для групповых структур σ и τ , определённых на объектах A и B естественными циклическими групповыми структурами множеств $\mathcal{D}(X,Y)$, морфизм 1_{AB} является основой гомоморфизма $\varphi:\sigma\to\tau$. Этот гомоморфизм моничен (следовательно, будет ненаследственным мономорфизмом) тогда и только тогда, когда $\nu_{AA}=\nu_{AB}$. Категории \mathcal{N}_2 и \mathcal{N}_∞ можно получить из этой общей конструкции, если взять в качестве всех $\nu_{XY}=1$, соответственно, два и ноль.

6. Используя идею композиции морфизмов (6), можно предложить следующую общую конструкцию категорий C с ненаследственными мономорфизмами в GC, основанную на понятии почти-кольца (см. [8]). Алгебра $R = \langle R, \star, \circ \rangle$ с двумя бинарными операциями называется почти-кольцом, если (i) R - группа относительно операции \star , (ii) R - полугруппа относительно операций σ . в (iii) R удовлетворяет правому распределительному закону (1).

Пусть почти-кольцо R удовлетворяет следующим дополнительным условням : 1) оно имеет единичный элемент 1. 2) $0 \circ x = 0$ для нулевого элемента 0 почти-кольца R и любого $x \in R$. Тогда заменяя кольцо Z на такое почти-кольцо R в таблице множеств морфизмов категории \mathcal{N}_{∞} и в (6), получаем категорию \mathcal{N}_{R} .

Теорема. Для произвольного нетривиального почти-кольца R, удовлетворяющего условиям 1) и 2), категория GVR содержит ненаследственный мономорфизм.

ABSTRACT. A non-hereditary monomorphism, in a group category GC over a category C, is a monomorphism of GC with a non-monic base morphism in C. The present article constructs typical examples of categories C with non-hereditary monomorphisms in GC and gives necessary and sufficient conditions for existence of non-hereditary monomorphisms.

ЛИТЕРАТУРА

- 1. S. Mac Lane. Categories For the Working Mathematician, Springer-Verlag, 1971.
- 2. F. W. Lawvere, "Functorial semantics of algebraic theories", Proc. Nat. Acad. Sci., vol. 52, pp. 869 872, 1963.
- 3. F. W. Lawvere, "Algebraic theories, algebraic categories, and algebraic functors", Symposium on the theory of Models; North-Holland Publ. Co., pp. 413 418, Amsterdam, 1965.
- 4. B. Pareigis, Categories and Functors, N.Y., Acad. Press, 1970.
- 5. П. Т. Джонстон, Теория Топосов, Москва, Наука, 1986.
- 6. И. Букур, А. Деляну, Введение в Теорию Категорий и Функторов, Москва, Мир, 1972.
- 7. М. Цаленко, Е. Шульгейфер, Основы Теории Категорий, Москва, Мир, 1974.
- 8. А. Г. Курош, Общая Алгебра. Лекции 1969-1970 учебного года, Москва. Наука, 1974.

15 марта 2000

Ереванский государственный университет