ПЕРЕДАЧА МАЛОСТИ И ЕДИНСТВЕННОСТЬ ГАРМОНИЧЕСКИХ И ГОЛОМОРФНЫХ ФУНКЦИЙ

Н. У. Аракелян, П. М. Готье

Известия Национальной Академии Наук Армении. Математика, т. 30, № 4, 1995

В настоящей работе мы устанавливаем некоторые аналоги теоремы Адамара о трех окружностях для случая гармонических функций $n \geq 2$ переменных и для трех возможных некоцентрических n-мерных шаров (см. Теоремы 1-2). Эти результаты приводят к теореме единственности для гармонических и голоморфных функций в духе классической теоремы Фрагмена-Линделефа (см. Теоремы 3-6).

§1. ВВЕДЕНИЕ

Концепция "передачи малости" была развита в основном для голоморфных функций. Ее можно рассматривать в качестве следствия свойства логарифмической субгармоничности модуля голоморфной функции, выраженной в теореме о двух константах (см. [12], гл. III, §2). Эта теорема приводит к теореме Адамара о трех окружностях и к теореме Фрагмена-Линделефа со следующим дополнением:

Пусть f — голоморфная функция в верхней полуплоскости $\Pi, |f(z)| \leq 1$ для $z \in \Pi$ и $|f(z)| \leq \varepsilon_m$ для $z \in \Pi, |z| = R_m \to \infty$ при $m \to \infty$. Если

$$\lim_{m \to \infty} r_m^{-1} \log \varepsilon_m = -\infty, \tag{*}$$

mo $f \equiv 0$ o Π .

Для гармонических функций двух (и более) переменных свойство логарифмической субгармоничности их модулей не действительно и приведенное выше утверждение о единственности теряет силу.

Данное исследование было поддержано со стороны NSERC(Канада) и FCAR(Квебек).

Контриример. Рассмотрим полукольцо

$$\Omega = \{ z \in \Pi : \quad 0 < r_1 < |z| < r_2 < \infty \},$$

и пусть u - гармоническая мера радиальных интервалов $[-r_2, -r_1] \cup [r_1, r_2]$ относительно Ω . Но принципу симметрии гармонических функций, u имеет ограниченное гармоническое продолжение на Π такое, что u(z) = 0 для $z \in \Pi$, $|z| = r_m$, где $r_m = r_1(r_2/r_1)^{m-1} \to \infty$.

Таким образом, для гармонических функций двух переменных полуокружность является слишком "тонким" множеством для передачи малости. Для того, что-бы иметь некоторые ориептиры для этого случая, рассмотрим опять условия отмеченного выше утверждения о единственности. Используя решение проблемы Карлемана-Мию (см. [12], гл. IV, §5), мы легко можем вывести из этих условий, что для $m \in \mathbb{N}$

$$|f(z)| < \varepsilon_m^e$$
 mpw $z \in \Pi$, $|z - ir_m| \le \frac{r_m}{2}$, (**)

где c > 0 - некоторая абсолютная константа.

Для ограниченных голоморфных на II функций условие (**) вместе с (*) снова достаточно для заключения $f\equiv 0$ на II. Интересно, что это же самое утверждение верно и для гармонических функций. Это легко следует из приведенных далее Теорем 4, 5 (случаи $p=\infty$ и n=2).

В настоящей статье трудности, связанные с отсутствием свойства логарифмической субгармоничности для гармонических функций, обходятся с помощью развития некоторых гармонических аналогов теоремы Адамара о трех окружностях на случай трех n-мерных ($n \ge 2$) и возможно неконцентрических шаров (см. ниже Теоремы 1-2; в связи с этим см. также [4], [5] и [11]). Из этих результатов мы выводим некоторые теоремы единственности в духе классического условия (*). Относительно проблемы единственности см. также [1].

Мы благодарим Луис-Филип Жиро и Манфред Стол за полезные комментарии.

Мы будем использовать следующие обозначения :

 $\mathbb{R}^n = \text{п-мерное евклидово пространство};$

$$\mathbb{R}^n_a = \mathbb{R}^n \setminus \{a\}$$
 для $a \in \mathbb{R}^n$;

 $\langle x,y\rangle=$ скалярное произведение для $x,y\in {\rm I\!R}^n$;

|x| = порма элемента $x \in \mathbb{R}^n$, $|x| = \sqrt{\langle x, x \rangle}$;

$$B_{x,r} = B_{x,r}^n = \{ y \in \mathbb{R}^n : |y - x| < r \}, B_r = B_{0,r} ;$$

 $B=B^n(\equiv B_{0,1})$ — открытый единичный шар ${\bf IR}^n$;

 $S_{x,r} = S_{x,r}^n =$ граница $B_{x,r}$, сфера с центром в x и радиуса r, $S_r = S_{0,r}$;

 $S = S^n (\equiv S_{0,1})$ — единичная сфера в \mathbb{R}^n ;

 $d\nu = d\nu_n$ — n-мерная мера Лебсга, $\nu_n(r) \equiv \nu(B_{x,r}) = \nu_n r^n$;

 $d\sigma = d\sigma_n - (n-1)$ -мерная поверхностная мера, $\sigma_n(r) \equiv \sigma_n(S_{x,r}) = \sigma_n r^{n-1}$;

Отметим: $\sigma_n = n\nu_n$;

C(E)= множество непрерывных комплекснозначных функций на $E\subset {\rm I\!R}^n$;

$$||f||_{\infty,E} = \sup\{|f(x)| \colon x \in E\}.$$

Для поверхности $S\subset {\rm I\!R}^n$ с $\sigma(X)<+\infty$ и функции $f\in C(S)$ мы полагаем

$$||f||_{p,S} = \left(\frac{1}{\sigma(S)}\int_{S}|f|^{p}d\sigma\right)^{1/p},$$
 для $0 ;$

$$L_p(x,r,f) = ||f||_{p,S}$$
 для $S = S_{x,r}$ и $L_p(r,f) = L_p(0,r,f)$ для $0 .$

Для открытого множества $\Omega\subset {
m I\!R}^n$ с $u(\Omega)<+\infty$ и функции $f\in C(\Omega)$, мы

полагаем

$$||f||_{p,\Omega} = \left(\frac{1}{\nu(\Omega)}\int_{\Omega}|f|^pd\nu\right)^{1/p},$$
 при 0

$$A_p(x,r,f) = \|f\|_{p,\Omega}$$
 для $\Omega = B_{x,r}$ и $A_p(r,f) = A_p(0,r,f)$ при $0 ;$

 $h(\Omega)=$ множество (комплекснозначных) гармонических на Ω функций;

$$H(\Omega)=$$
 множество голоморфных на $\Omega\subset {\bf C}\equiv {\bf I}{\bf R}^2$ функций.

Мы рассматриваем следующие пространства Харди :

$$h^p = \{u \in h(B^n): ||u||_p \equiv \sup_{0 \le r < 1} L_p(r, u) < +\infty\};$$

$$H^p = \{ f \in H(B^2) : ||f||_p \equiv \sup_{0 \le r \le 1} L_p(r, f) < +\infty \};$$

$$h^p_u = \{u \in h(B^n) : ||u||_{p,B^n} < +\infty\};$$

$$H_p^p = \{ f \in H(B^2) \colon ||f||_{p,B^2} < +\infty \}.$$

§2. СФЕРИЧЕСКИЕ ГАРМОНИКИ И

ЛОГАРИФМИЧЕСКАЯ ВЫПУКЛОСТЬ

Для $n \in \mathbb{N}$, $n \geq 2$ и $m = 0, 1, 2, \ldots$, через \mathcal{P}_m^n обозначим семейство всех однородных гармонических на \mathbb{R}^n полиномов точной степени m (и, таким образом, точной степени однородности m). Включение в \mathcal{P}_m^n нулевого полинома 0, имеющего бесконечную степень однородности, превращает \mathcal{P}_m^n в линейное полупространство $h(\mathbb{R}^n)$.

Пусть $S=S^n$ — единичная сфера в ${\bf I\!R}^n$. Сужение $P\mid S$, где $P\in {\cal P}_m^n$, иногда называется сферической гармоникой в ${\bf I\!R}^n$ (степени m) (см. [2], [3] или [13]). В ${\cal P}^n=\cup_{m=0}^\infty {\cal P}_m^n$ естественно использовать норму $P\to ||P||_{2,S}$ наслаждаясь следующим свойством ортогональности : для $P\in {\cal P}_n^n$ и $Q\in {\cal P}_n^n$

$$\frac{1}{\sigma_n} \int_S P \overline{Q} \, d\sigma_n = \begin{cases} 0 & \text{если} & i \neq j, \\ ||P||_{2,S}^2 & \text{если} & i = j & \text{и} & Q = P. \end{cases} \tag{1}$$

Рассмотрим теперь зармонический элемент u на \mathbb{R}^n (с центром 0), т. е. функцию u, гармоническую в некоторой окрестности начала координат. Поскольку u – аналитическая функция от вещественных переменных $(x_1, \ldots, x_n) = x \in \mathbb{R}^n$, существует $\delta > 0$ такое, что u может быть разложена в равномерно и абсолютно сходящийся степенной ряд на \overline{B}_{δ} , т. е.

$$u(x) = \sum_{|\alpha|=0}^{\infty} c_{\alpha} x^{\alpha}, \quad x \in \overline{B}_{\delta}$$
 (2)

с мультииндексами $\alpha \in \mathbf{Z}_+^n$. Отсюда вытекает следующее однородное разложение u на \overline{B}_{δ} :

$$u(x) = \sum_{m=0}^{\infty} u_m(x), \qquad u_m(x) = \sum_{|\alpha|=m} c_{\alpha} x^{\alpha}.$$
 (3)

Очевидно, что u_m является однородным полиномом степени m (или $u_m \equiv 0$), и ряд (3) сходится абсолютно и равномерно на \overline{B}_{δ} .

Заменяя в (3) x на tx, $t \ge 0$, для любого фиксированного $x \in {\rm I\!R}^n$ мы получим разложение по степеням t

$$u(tx) = \sum_{m=0}^{\infty} t^m u_m(x), \quad t|x| \le \delta, \tag{4}$$

сходящееся абсолютно и равномерно для $t|x| \le \delta$. Из (4) следует единственность разложения (3). Кроме того, применяя к (4) оператор Лапласа Δ для достаточно

малых t, имеем, что $\Delta u_m(x)=0$ для любого $x\in {\rm I\!R}^n$, так что $u_m\in \mathcal{P}_m^n$ для $m=0,1,2,\ldots$

Полагая в (5) $x=\theta\in S$ и $t=r\leq \delta$, мы получим следующее разложение в терминах сферических гармоник:

$$u(r\theta) = \sum_{m=0}^{\infty} r^m u_m(\theta),$$
 для $\theta \in S$, $0 \le r \le \delta$, (5)

где сходимость абсолютная и равномерная (относительно r и θ). Из (5) и (1) прямым вычислением следует равенство Парсеваля :

$$L_2^2(r,u) = ||u||_{2,S_r}^2 = \sum_{m=0}^{\infty} r^{2m} ||u_m||_{2,S}^2, \quad \text{для} \quad 0 \le r \le \delta, \tag{6}$$

где $S_r=S_{0,r}$. Обозначим также $B_r=B_{0,r}$ и $B_\infty={\rm I\!R}^n$.

Замечание 1. Любой гармонический полином P имеет только конечное число сферических гармоник (остальные тождественно равны нулю). Равенство Парсеваля выполняется для u-P при $0 \le r \le \delta$ и в частности для самого P для всех $r \ge 0$.

Кратко подведем итоги. С каждым гармоническим элементом u мы ассоциируем однозначно определенную последовательность $(u_m)_{m=0}^{\infty}$ сферических гармоник $u_m \in \mathcal{P}_m^n$. Абсолютно и равномерно сходящееся разложение (5), а также тождество (6) выполняется для достаточно малого $\delta > 0$. Обратно, любое такое разложение для некоторой последовательности $u_m \in \mathcal{P}_m^n$ определяет гармонический элемент u. Следующая лемма дает дополнительную информацию о взаимосвязи между u и $(u_m)_{m=0}^{\infty}$. Для ее формулировки введем некоторую терминологию. Для $R < +\infty$, скажем что точка $x_0 \in S_R$ является особой точкой функции $u \in h(B_R)$, если для любой окрестности ω точки x_0 не существует функции $v \in h(\omega)$, такой, что u(x) = v(x) для $x \in \omega \cap B_R$. В противном случае точку x_0 назовем регулярной точкой.

Лемма 1.. Пусть $u \in h(B_R)$ с ассоциированной последовательностью полиномов $u_m \in \mathcal{P}_m^n$. Тогда :

1) Для ряда (3) выполняется формуль типа формулы Коши-Адамара:

$$\limsup_{m \to \infty} ||u_m||_{2,S}^{1/m} \le 1/R,\tag{7}$$

где 1/R = 0, если $R = \infty$;

- 2) В случае $R < \infty$ равенство в (7) выполняется только при условии, что и имеет особую точку на S_R ;
- 3) Ряд (5) сходится к и абсолютно для $x=r\theta\in B_{R'}$ и равномерно относительно $x=r\theta$ на любом замкнутом шаре $\overline{B}_{R'}\subset B_R$;
- 4) Равенство Парсеваля для суммы и в (5) выполняется для всех $0 \le r < R$. Показательство. Достаточно доказать лемму для случая $R < \infty$, и в этом случае можно без ограничения общности считать, что R=1. Поскольку любая непрерывная функция на сфере может быть равномерно приближена линейными комбинациями сферических гармоник (см. [13]), для функции $u \in h(B)$ существует последовательность $(P_k)_{k \in \mathbb{N}}$ гармонических полиномов на \mathbb{R}^n , так что $\|u-P_k\|_{\infty,\overline{B}_r} \to 0$ при $k \to \infty$ для всех $0 \le r < 1$. Для $k \in \mathbb{N}$ обозначим через $P_{m,k}$, $m=0,1,\ldots$ сферические гармоники для P_k . Фиксируя $r=\delta < 1$ и $m \in \mathbb{N} \cup \{0\}$, для $u-P_k$ из (6) мы получим, что

$$||u_m - P_{m,k}||_{2,S} \le \delta^{-m} ||u - P_k||_{2,S_\delta} \le \delta^{-m} ||u - P_k||_{\infty,S_\delta} \to 0$$
 (8)

при $k \to \infty$ (см. также Замечание 1). Для $m \in \mathbb{N} \cup \{0\}$ имеем

$$||P_{m,k}||_{2,S} \rightarrow ||u_m||_{2,S}, \quad \text{при} \quad k \rightarrow \infty,$$

и полагая $k \to \infty$ в неравенстве $\|P_{m,k}\|_{2,S} \le r^{-m} \|P_k\|_{2,S_r}$, получим

$$||u_m||_{2,S} \leq r^{-m} ||u||_{2,S_\tau}.$$

Мы заключаем, что

$$\limsup_{m \to \infty} \|u_m\|_{2,S}^{1/m} \le 1/r$$
 для $0 < r < 1$,

что и доказывает (7) при R=1.

Относительно других утверждений леммы : 2) следует прямо из 1) и единственности u_m ; 3) это Следствие 5.23 из [2]; 4) следует из утверждения 3) и из (1) прямым вычислением.

Функцию L>0 на (R_0,R) называют логарифмически выпуклой (см. [6], стр. 16), если $\log L$ выпукла. Аналогично, если $0\leq R_0< R\leq +\infty$, мы скажем, что

функция L>0 на (R_0,R) логарифмически-выпуклая (лог-выпуклая) функция (от логарифма), если для $r\in (R_0,R)$ и $x=\log r$ функция $x\longmapsto \log L(e^x)$ выпуклая. Равносильное условие состоит в том, что для $r_1,r_2\in (R_0,R)$ и $\alpha\in (0,1)$

$$L(r_1^{\alpha}r_2^{1-\alpha}) \le L^{\alpha}(r_1)L^{1-\alpha}(r_2)$$
 (9)

или что для $r \in (r_1, r_2)$ и lpha, заданное по $r = r_1^{lpha} r_2^{1-lpha}$

$$L(r) \le L^{\alpha}(r_1) L^{1-\alpha}(r_2), \quad \alpha = \frac{\log(r_2/r)}{\log(r_2/r_1)}.$$
 (10)

Отметим, что если $L \ge 0$ удовлетворяет условию (10) и $L(r_1) = 0$ для некоторого r_1 , то $L \equiv 0$. Более общо, для функции L > 0, удовлетворяющей (10), имеем

$$\inf_{r \in (R_0, R)} \frac{\log L(r)}{|\log r| + 1} > -\infty, \tag{11}$$

где $|\log r|$ может быть заменен 0, если $R_0 \neq 0$ и $R \neq \infty$. Теория выпуклых функций учит (см. [6], секция 3), что функция L > 0, удовлетворяющая (10), должна быть непрерывна или даже локально удовлетворять условию Липшица. Кроме того, пределы $L(R_0+0)$ и L(R-0) существуют в $[0,+\infty]$ и в (9) и (10) мы можем положить $r_1 = R_0$ и $L(R_0) = L(R_0+0)$, если $0 < R_0$ и $L(R_0+0) \in (0,+\infty)$ (соответственно, мы можем положить $r_2 = R$ и L(R) = L(R-0), если $R < +\infty$ и $L(R-0) \in (0,+\infty)$.

Предполагая, что L ограничена вблизи $R_0=0$, рассмотрим функцию

$$A(r) = \int_0^1 L(rt) \, d\mu(t), \quad \text{для} \quad r \in (0, R),$$
 (12)

где μ - положительная мера на (0,1). Из (10) следует, что для $r_1,r_2\in(0,R)$ и $lpha\in(0,1)$

 $A(r_1^{\alpha}r_2^{1-\alpha}) \le \int_0^1 L^{\alpha}(r_1t) L^{1-\alpha}(r_2t) d\mu(t).$

Применяя неравенство Гельдера (с $p=1/\alpha$ и $q=1/(1-\alpha)$) к интегралу в правой части, приходим к условию (9) для A. Итак, имеет место следующая

Лемма 2. Если L — лог-выпуклая функция от \log , такова же функция A, определенная по (12).

Примеры

- 1. Теорема Харди о выпуклости (см. [7], стр. 9, теорему 1.5) утверждает, что для функции f, голоморфной в единичном круге $\mathbf{C} (\equiv \mathbf{R}^2)$ и 0
 - (i) функция $L_p(r,f)$ неубывающая функция от r;
 - (ii) если $f \not\equiv 0$, то функция $L_p(r,f)$ является лог-выпуклой от \log .

В случае $p=\infty$, утверждение (ii) – это хорошо известная теорема Адамара о трех окружностях. Случай p=0 также может быть включен, если мы положим

$$L_0(r, f) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta\right).$$

Тогда оба свойства (i) и (ii) следуют из свойства субгармоничности функции $\log^+|f|$.

- 2. Для функции u, гармонической в единичном шаре B в \mathbb{R}^n , $n \geq 2$, свойство (i) выполняется для $p \geq 1$: функция $v = |u|^p$ субгармонична и тогда $L_1(r,v) = L_p^p(r,u)$ неубывающая функция от r (см. [9], стр. 70, Лемма 4.18). Важно отметить, что свойство (ii) выполняется для p = 2 (см. [11], Лемма 2.1). Это сразу следует из теоремы Адамара о трех окружностях, примененной к степенному ряду в тождестве Парсеваля для u.
- 3. Легко видеть, что для функции $f \in C(B_{x,r})$

$$A_p^p(x,r,f) = \int_0^1 L_p^p(x,rt,f) dt^n.$$

Отсюда и из предыдущей леммы следует, что если функция f обладает свойствами (i) и (ii) (с центром x), то этим двум свойствам удовлетворяет также функция $A_p(x,r,f)$.

§3. ГЕОМЕТРИЧЕСКИЕ СРЕДСТВА

3.1. Инверсия и преобразование Кельвина

Инверсия относительно сферы $S_{a,\rho}$ — это взаимно-однозначное преобразование $\varphi=\varphi_{a,\rho}\colon {\bf R}^n_a \to {\bf R}^n_a$, определенное по формуле

$$\varphi(x) = a + \frac{\rho^2}{|x-a|^2}(x-a).$$

Точки $x \in \mathbb{R}^n_a$ и $x^* = \varphi(x)$ называются симметричными относительно $S_{a,\rho}$. Очевидно, $\varphi^{-1} = \varphi$, т. е. $(x^*)^* = x$.

Замечание 2. Для $x_1, x_2 \in \mathbb{R}^n$ мы отождествим разность $x_2 - x_1$ с вектором с начальной точкой в x_1 и концом в x_2 . Тогда по приведенному выше определению

- а) векторы x-a и x^*-a колинеарны, одинаково направлены и $|x-a||x^*-a|=$ $=
 ho^2$;
- b) если $|x-a|> \rho$, тогда для $r=(|x-a|^2-\rho^2)^{1/2}$ сферы $S_{x,r}$ и $S_{a,\rho}$ ортогональны; вектор x^*-a является ортогональной проекцией на направление x-a касательных к $S_{x,r}$ векторов с началом в точке a.

Преобразование φ бесконечно дифференцируемо на ${\bf IR}_a^n$. Чтобы вычислить $\varphi'=\varphi'_{a,\rho}$, достаточно рассмотреть a=0. Очевидно

$$\varphi'(x)v = \frac{\rho^2}{|x|^2}v - \frac{2\rho^2\langle x,v\rangle}{|x|^4}x \quad \text{для} \quad x \in {\rm I\!R}_0^n, \quad v \in {\rm I\!R}^n,$$

MJM

$$\varphi'(x) = \frac{\rho^2}{|x|^2} I - \frac{2\rho^2}{|x|^4} \langle x, \cdot \rangle x,$$

где I – тождественный оператор в \mathbb{R}^n .

Вычислим Якобиан $J_{\varphi}(x)=\det arphi'(x)$. Полагая $x=\sum_1^n x_i e_i$, где $(e_i)_1^n$ — стандартный базис в ${
m I\!R}^n$, имеем

$$\varphi'(x) = \left(\frac{\rho^2}{|x|^2} a_{ij}\right)_{i,i=1}^n, \quad a_{ij} = \delta_{ij} - \frac{2x_i x_j}{|x|^2},$$

где δ_{ij} – символ Кронекера. Таким образом

$$J_{oldsymbol{arphi}}(x) = \left(rac{
ho}{|x|}
ight)^{2n} \det(a_{ij}).$$

Полагая $\det(a_{ij})_{i,j=1}^n = d(x_1,\ldots,x_n)$ и записывая элементы последнего столбца a_{in} в виде

$$a_{in} = \delta_{in} - \frac{2x_ix_n}{|x|^2},$$

мы представляем $\det(a_{ij})$ как сумму соответствующих детерминантов :

$$d(x_1,\ldots,x_n)=d(x_1,\ldots,x_{n-1})+d'.$$

Детерминант d' может быть легко вычислен. После того, как мы вынесем множитель $-x_n$ из последнего столбца, умножая этот столбец на x_j и прибавляя к j-тому столбцу, j-тый столбец становится равным δ_{ij} . Поэтому $d' = -2(x_n/|x|)^2$

и поскольку $d(x_1)=1-2(x_1/|x|)^2$, мы получим, что $d(x_1,\dots,x_n)=-1$. Окончательно мы имеем, что $J_{\varphi}(x)=-(\rho/|x|)^{2n},\,x\in{\rm I\!R}_0^n$, а для произвольного $a\in{\rm I\!R}^n$

 $J_{\varphi_{a,\rho}}(x) = -\left(\frac{\rho}{|x-a|}\right)^{2n}, \quad x \in \mathbb{R}_a^n. \tag{13}$

C каждой функцией $f\in C(\Omega)$, где $\Omega\subset {
m I\!R}^n_a$, мы ассоциируем ее преобразование Kельвина $f^*=f_{a,\rho}\in C(\varphi(\Omega))$ (где $\varphi=\varphi_{a,\rho}$), определенное в $\varphi(\Omega)=\varphi^{-1}(\Omega)$ формулой

 $f^{\bullet}(y) = \left(\frac{\rho}{|y-a|}\right)^{n-2} \overline{f(\varphi(y))}, \quad y \in \varphi(\Omega) = \varphi^{-1}(\Omega). \tag{14}$

Главное свойство f^* состоит в том, что $f^* \in h(\varphi(\Omega))$ если $f \in h(\Omega)$. Для n=2 $f^* \in H(\varphi(\Omega))$, если $f \in H(\Omega)$. Кроме того, $(f^*)^* = f$. С помощью замены переменных, учитывая (13) для 0 , получим

$$\int_{\Omega} |x-a|^{\beta} |f(x)|^{p} dx = \int_{\varphi(\Omega)} |y-a|^{\beta} |f_{a,\rho}(y)|^{p} dy,$$

$$\int_{\varphi(\Omega)} |f_{a,\rho}(y)|^{p} dy = \int_{\Omega} \left(\frac{|x-a|}{\rho}\right)^{2\beta} |f(x)|^{p} dx,$$
(15)

где $\beta = (p/2)(n-2) - n = (n/2)(p-2) - p$. Интересно отметить, что β не зависит от n, если p=2 и не зависит от p, если n=2.

Если $0 < d_1 < |y-a| < d_2$ для $y \in \Omega \cup \varphi(\Omega)$, то из первой формулы следует,

OTP

$$\left(\frac{d_2}{d_1}\right)^{-|\beta|} \int_{\Omega} |f|^p d\nu \le \int_{\varphi(\Omega)} |f^*|^p d\nu \le \left(\frac{d_2}{d_1}\right)^{|\beta|} \int_{\Omega} |f|^p d\nu$$

или

$$c^{-1} \left(\frac{d_2}{d_1} \right)^{-\gamma} \cdot ||f||_{p,\Omega} \le ||f^*||_{p,\varphi\Omega} \le c \left(\frac{d_2}{d_1} \right)^{\gamma} \cdot ||f||_{p,\Omega}, \tag{16}$$

где

$$\gamma = |\beta|/p = \left|\frac{n}{2}\left(1 - \frac{2}{p}\right) - 1\right|, \qquad c = [\nu(\Omega)/\nu(\varphi(\Omega))]^{1/p}.$$

Из (14) легко видеть, что (16) выполняется также для $p=\infty$, когда $\gamma=\frac{n}{2}-1$ и c=1.

3.2. Концентризация шаров

Найдем теперь образ $\varphi(\Omega)$ в случае $\Omega = B_{x,r}$. Поскольку $a \notin B_{x,r}$, то длина касательной точки a к сфере $S_{x,r}$ равна

$$\rho_{x,r}(a) = \rho_{x,r} = (|x-a|^2 - r^2)^{1/2}. \tag{17}$$

Заметим, что условие $\zeta \in B_{x,r}$ равносильно условию

$$|\zeta-a|^2-2\langle\zeta-a,x-a\rangle+\rho_{r,r}^2<0.$$

Полагая $z=\varphi(\zeta)$ для $z\in \varphi(B_{x,r})$ и учитывая, что $|z-a|\,|\zeta-a|=\rho^2$ и $\zeta=\varphi(z)$, имеем

$$\rho^4 - 2(z-a, \rho^2(x-a)) + \rho_{x,r}^2 |z-a|^2 < 0,$$

так что |z-x'| < r', т.е. $\varphi(B_{x,r}) = B_{x',r'}$, где

$$x' = a + \left(\frac{\rho}{\rho_{x,r}}\right)^2 (x - a), \quad r' = \left(\frac{\rho}{\rho_{x,r}}\right)^2 r.$$
 (18)

Согласно (18) векторы x'-a и x-a колинеарны и одинаково направлены. Для наблюдателя из точки a шары $B_{x,r}$ и $\varphi(B_{x,r})$ видны под одинаковым углом α . Это следует из равенства

$$\frac{r'}{|x'-a|} = \frac{r}{|x-a|} \equiv \sin(\alpha/2).$$

Рассмотрим теперь шары $B_{x,r} \subset B_{x_0,r_0}$ и пусть $x \neq x_0$. Найдем условия на ρ и $a \notin \overline{B}_{x_0,r_0}$ при которых $\varphi = \varphi_{a,\rho}$ -образы этих шаров становятся концентрическими. Очевидное необходимое условие состоит в том, чтобы границы этих шаров не пересекались и поэтому $|x-x_0|+r < r_0$.

Мы полагаем, что ρ задан соотношением $\rho=\rho_{x_0,r_0}(a)$ (см. (17)). Тогда сферы S_{x_0,r_0} и $S_{a,\rho}$ ортогональны и из (18) имеем, что $x_0'=x_0$ и $r_0'=r_0$, так что $\varphi(B_{x_0,r_0})=B_{x_0,r_0}$. Согласно (17) и (18), образ $B_{x',r'}$ шара $B_{x,r}$ концентричен с B_{x_0,r_0} , если $x'=x_0$, т.е. если

$$\frac{x_0 - a}{\rho^2} = \frac{x - a}{\rho_{x,r}^2}. (19)$$

Можно легко проверить, что (19) можно записать как $\varphi_{a,\rho_{x_0,r_0}}(x_0)=\varphi_{a,\rho_{x,r}}(x)$. Используя Замечание 2, мы приходим к следующей геометрической интерпретации условия (19): векторы x_0-a и x-a колинеарны и одинаково направлены; ортогональные проекции на это направление касательных от точки a к сферам S_{x_0,r_0} и $S_{x,r}$ совпадают.

Рассмотрим теперь (19) как уравнение относительно переменной a, и докажем существование и единственность решения. Поскольку векторы x_0-a и x-a колинеарны с x_0-x и выполнено условие $|x-a|>r_0$, мы имеем

$$x_0 - a = \lambda(x_0 - x), \qquad x - a = (\lambda - 1)(x_0 - x),$$
 (20)

для некоторого $\lambda \in \mathbb{R}$, такого, что $|\lambda| > r_0 |x-x_0|^{-1}$. Вместе с (20) уравнение (19) эквивалентно

 $\frac{\rho_{x_0,r_0}^2}{\lambda} = \frac{\rho_{x,r}^2}{\lambda - 1}.$

Учитывая (17) и (20), имеем

$$\frac{r_0^2}{\lambda} = \frac{r^2}{\lambda - a} + |x - x_0|^2. \tag{21}$$

Квадратное уравнение (21) (относительно переменной λ) имеет два корня $0 < < \lambda_1 < \lambda_2$, причем $\lambda_1 \lambda_2 = r_0^2 |x-x_0|^{-2}$, так что $\lambda = \lambda(a) = \lambda_2$ – единственный корень (21) такой, что $\lambda > r_0 |x-x_0|^{-1}$. Таком образом, чтобы найти точку $a \in \mathbb{R}^n$, удовлетворяющую (19), мы можем воспользоваться (20) с $\lambda = \lambda(a)$.

Следующая двусторонняя оценка $\lambda(a)$ будет нам полезна :

$$\frac{2r_0-r-|x-x_0|}{|x-x_0|}<\lambda(a)<\frac{r_0^2}{|x-x_0|^2}.$$
 (22)

Вторая оценка в (22) сразу следует из (21). Чтобы доказать первую оценку отметим сначала очевидное неравенство

$$\lambda \geq 2 rac{r_0}{|x-x_0|} - rac{r_0^2/\lambda}{|x-x_0|^2},$$
 для всех $\lambda > 0.$

Остается подставить значение r_0^2/λ из (21) и заметить, что согласно (20)

$$\frac{r}{(\lambda-1)|x-x_0|}=\frac{r}{|a-x|}<1.$$

Для a, удовлетворяющего (19), обозначим через d=d(a) расстояние a от B_{x_0,r_0} . Поскольку для $\lambda=\lambda(a)$

$$d = |a - x_0| - r_0 = \lambda |x - x_0| - r_0,$$

неравенства (22) приводят к

$$0 < \delta_0 < d < \frac{r_0}{|\boldsymbol{x} - \boldsymbol{x}_0|} \delta, \tag{23}$$

где $\delta_0=r_0-|x-x_0|-r$, $\delta=r_0-|x-x_0|$. Используя также формулу (18) для радиуса r' шара $\varphi(B_{x,r})$, мы получим по (19) и (20), что $r'r^{-1}=\lambda(\lambda-1)^{-1}$. Отсюда и (22) легко вывести оценки

$$\frac{r_0}{2\delta} < \frac{r'}{r} < \frac{r_0}{\delta},$$
 при $r < r'$. (24)

Рассмотрим теперь множество \mathcal{M} всех шаров $B_{\bar{x},\bar{r}}\subset B_{x_0,r_0}$, $\varphi=\varphi_{a,\rho}$, образы которых концентричны с B_{x_0,r_0} . Фактически, параметры a и ρ были выбраны таким образом, чтобы обеспечить включение $B_{\bar{x},\bar{r}}\in\mathcal{M}$ для предыдущих двух случаев, когда соответственно $\bar{x}=x_0$, $\bar{r}=r_0$ и $\bar{x}=x$, $\bar{r}=r$. Согласно (18) условие

$$\frac{x_0 - a}{\rho^2} = \frac{\bar{x} - a}{\rho_{\bar{x}, \bar{t}}^2} \tag{25}$$

необходимо и достаточно для включения $B_{\bar{x},\bar{r}}\in\mathcal{M}.$

Согласно (25) вектор $\bar{x}-a$ колинеарен и одинаково направлен с x_0-a и поэтому с x_0-x . Можно считать, что $\bar{x}-x_0=\mu(x-x_0)$ для некоторого $\mu\geq 0$ и переписать (25) в виде

$$\frac{\rho_{x_0,r_0}^2}{|a-x_0)|} = \frac{\rho_{\bar{x},\bar{r}}^2}{|a-\bar{x}|}$$

или согласно (17)

$$\frac{r_0^2}{|a-x_0|} = \frac{\bar{r}^2}{|a-\bar{x}|} + |\bar{x}-x|. \tag{26}$$

Теперь рассмотрим множество

$$\mathcal{M}_0 = \{B_{\bar{x},\bar{r}} \in \mathcal{M} \colon B_{x,r} \subset B_{\bar{x},\bar{r}}\}.$$

Необходимым и достаточным условием для $B_{z,r} \in \mathcal{M}_0$ вместе с (26) является условие $\bar{r} \geq r$. Поскольку $B_{z,r} \in \mathcal{M}$, мы приходим к условию

$$\bar{r}^2 = \left(\frac{r_0^2}{|a-x_0|} - |\bar{x}-x_0|\right) \, |a-\bar{x}| \geq \left(\frac{r_0^2}{|a-x_0|} - |x-x_0|\right) |a-x| = r^2.$$

Очевидно, что неравенство выполняется тогда и только тогда, если $|a-\bar{x}| \ge 2$ $\ge |a-x|$, т.е. если $|\bar{x}-x_0| \le |x-x_0|$ или $\mu \le 1$ и таким образом $\bar{x} \in [x_0,x]$. Правая часть этого неравенства положительна, а левая часть определяет \bar{r}^2 как функцию от \bar{x} . Наконец, $B_{\bar{x},\bar{r}} \in \mathcal{M}_0$ тогда и только тогда, если $\bar{x} \in [x_0,x]$ и \bar{r} является положительным корнем (26).

Имеется другое представление \bar{r} без привлечения точки a. Легко проверить, что (26) может быть записано в виде

$$\frac{r_0^2 + |\bar{x} - x_0|^2 - \bar{r}^2}{|\bar{x} - x_0|} = \frac{r_0^2 + |a - x_0|^2}{|a - x_0|}.$$

Правая часть этого равенства не зависит от \bar{x} и \bar{r} ; заменяя \bar{x} на x и \bar{r} через r, находим

$$\frac{r_0^2 + |\bar{x} - x_0|^2 - \bar{r}^2}{|\bar{x} - x_0|} = \frac{r_0^2 + |x - x_0|^2 - r^2}{|x - x_0|}.$$
 (27)

Это равенство явным образом определяет \bar{r} в терминах x_0 , r_0 , x, r и $\bar{x} \in [x_0, x]$. Полагая теперь $\varphi(B_{\bar{x},\bar{r}}) = B_{x_0,\bar{r}'}$, из (18) получим

$$\frac{\bar{r}'}{\bar{r}} = \frac{|a - x_0|}{|a - \bar{x}|} = \frac{|a - x_0|}{|a - x_0| - |\bar{x} - x_0|} < \frac{r_0}{r_0 - |\bar{x} - x_0|},\tag{28}$$

так как $|a-x_0| > r_0$. Чтобы оценить \vec{r}' сверху, представим (26) в виде

$$\bar{r}^2 = |a - \bar{x}|^2 - \frac{|a - \bar{x}|}{|a - x_0|} \rho_{\bar{x}_0, r_0}^2,$$

откуда с учетом (28)

$$(\bar{r}')^2 = r_0^2 - \frac{|\bar{x} - x_0|}{|a - \bar{x}|} \rho_{x_0, r_0}^2.$$

Поскольку для d = d(a)

$$|a-x_0|=r_0+d$$
, $\rho_{\bar{x}_0,r_0}^2>2r_0d$, $|a-\bar{x}|=(r_0-|\bar{x}-x_0|)+d$,

из (23) следует, что

$$\rho^2_{x_0,r_0} > 2r_0\delta_0, \quad |a-\bar{x}| < \frac{2r_0}{|\bar{x}-x_0|}(r_0 - |\bar{x}-x_0|).$$

С учетом этих оценок и формулы $(\bar{r}')^2$ получим

$$\left(\frac{\bar{r}'}{r_0}\right)^2 < 1 - \left(\frac{|\bar{x} - x_0|}{r_0}\right)^2 \frac{\delta_0}{r_0 - |\bar{x} - x_0|} = 1 - t.$$

Так как 0 < t < 1, из оценки $\log(1-t)^{-1} > t$ имеем

$$\log \frac{r_0}{\bar{r}'} > \frac{|\bar{x} - x_0|^2}{2r_0^2} \cdot \frac{\delta_0}{r_0 - |\bar{x} - x_0|}.$$
 (29)

Подведем итоги предыдущей дискуссии. Для не касающихся и неконцентрических шаров $B_{x,r} \subset B_{x_0,r_0}$, (20) определяет точку $a \in {\rm I\!R}^n \setminus \overline{B}_{x_0,r_0}$, где $\lambda = \lambda(a)$ —

наибольший корень (21). Далее определим ρ из условия $\rho = \rho_{x_0,r_0}(a)$ (см. (17)). Тогда для инверсии $\varphi = \varphi_{a,\rho}$ имеем, что $\varphi(B_{x_0,r_0}) = B_{x_0,r_0}$ и $\varphi(B_{x,r}) = B_{x_0,r'}$. Мы доказали, что для любой $\bar{x} \in [x_0,x]$ и для $\bar{r} > 0$, удовлетворяющего (26) или (27), $\varphi = \varphi_{a,\rho}$ образы шаров $B_{x,r} \subset B_{\bar{x}_0,r_0}$ концентричны с B_{x_0,r_0} :

$$\varphi(B_{x,r}) = B_{x_0,r'} \subset \varphi(B_{\bar{x},\bar{r}}) = B_{x_0,\bar{r}'} \subset \varphi(B_{x_0,r_0}) = B_{x_0,r_0}.$$

§4. ЛОГ-ВЫПУКЛОСТЬ (НЕКОНЦЕНТРИЧНЫЕ ШАРЫ)

Обозначим через $B_r=B_{0,r}$ открытый шар в ${\rm I\!R}^n$ с центром в точке 0 и радиуса r ; $B_1=B=B^n$ – это единичный шар в ${\rm I\!R}^n$.

Рассмотрим теперь обсужденные выше не касающиеся и неконцентричные шары. Для простоты будем полагать, что $B_{x_0,r_0}=B$, т.е. $x_0=0$, $r_0=1$. Тогда отмеченные выше параметры зависят лишь от x и r. Итак, мы рассматриваем шары $B_{x,r}\subset B_{x,r}\subset B$ для $\bar x\in [0,x]$, имеющие концентрические $\varphi=\varphi_{a,\rho}$ -образы

$$B_{\mathbf{r}'} = \varphi(B_{\mathbf{z},\mathbf{r}}) \subset B_{\mathbf{r}'} = \varphi(B_{\mathbf{z},\mathbf{r}}) \subset B = \varphi(B). \tag{30}$$

Возьмем функцию $f \in C(B)$ с $||f||_{p,B} < +\infty$ для некоторого $p \in (0, +\infty]$ и ее преобразование Кельвина $f^* = f_{a,\rho}$ с параметрами а и ρ как выппе. Поскольку $\varphi(B) = B$, из (14) и (16) следует, что $f^* \in C(B)$ и $||f^*||_{p,B} < +\infty$. Подчиним функцию $A_p(r) = A_p(r, f^*)$ на [0, 1) следующим условиям:

- (i) А_p не убывает;
- (ii) A_p является лог-выпуклой от log.

Согласно (іі) и (10) для A_p с $r_1=r'$, $r=\bar{r}'$ и $r_2=1$ получим

$$A_p(\bar{r}', f^*) \le A_p^{\alpha}(r', f^*) A_p^{1-\alpha}(1, f^*),$$
 (31)

где

$$\alpha = \frac{\log(1/\bar{r}')}{\log(1/r')}.$$
 (32)

Из (i) следует, что в (31) можно заменить α произвольным $\omega \in (0, \alpha]$. Согласно (18) r'/r = |a|/|a-x|, $\bar{r}'/\bar{r} = |a|/|a-\bar{x}|$, где $\bar{r} > 0$ – корень уравнения (27) (с $x_0 = 0, r_0 = 1$). Кроме того, $a = \lambda x$, где λ (см. (21)) – больший корень уравнения $1/\lambda = r^2/(\lambda - 1) + |x|^2$.

Для того, чтобы переписать (31) в терминах f, мы должны оценить $A_p(\bar{r}', f^*)$ снизу и $A_p(r', f^*)$ вместе с $A_p(1, f^*)$ сверху. Отметим сначала, что для некоторого $y \in B$ из (23) следует, что $\delta_0 < |y-a| < 2+d < 2|x|^{-1}$.

Применяя (16) для $\Omega=B_{r'}$ с $d_1=\delta_0$ и $d_2=2|x|^{-1}$ и учитывая, согласно (24) r< r' и отсюда в (16) c<1, получим

$$A_p(r', f^*) \leq \left(\frac{2}{\delta_0|x|}\right)^{\gamma} A_p(x, r, f).$$

Аналогично, согласно (28), (30) и (16) имеем

$$A_{p}(\bar{r}', f^{*}) \geq \left(\frac{2}{\delta_{0}|x|}\right)^{-\gamma} (1 - |\bar{x}|)^{n/p} A_{p}(\bar{x}, \bar{r}, f), \qquad A_{p}(1, f^{*}) \leq \left(\frac{2}{\delta_{0}|x|}\right)^{\gamma} A_{p}(1, f).$$

Подставляя последние три оценки в (31), для $0 < \omega \leq \alpha$ мы приходим к следующему "приближенному" условию лог-выпуклости:

$$A_{p}(\bar{x}, \bar{r}, f) \leq A_{p}^{\omega}(x, r, f) A_{p}^{1-\omega}(1, f) \cdot \left[\left(\frac{2}{|x|} \right)^{2\gamma} (1 - |\bar{x}|)^{-n/p} \right] \delta_{0}^{-2\gamma}, \quad (33)$$

где $\gamma=|\beta|/p$, $2\beta=p(n-2)-2n$. Из (32), (27), (29) (дяя $x_0=0$ и $r_0=1$) можно усмотреть некоторое конкретное значение $\omega\in(0,\alpha]$, определенное формулой

$$\omega = \frac{|\bar{x}|^2}{2(1-|\bar{x}|)} \cdot \frac{\delta_0}{\log \frac{1-|x|}{(r/2)}}, \quad \text{rge} \quad \delta_0 = 1-|x|-r.$$
 (34)

Применяя (15) в (31), представим вместо (33) более точную версию лог-выпуклости для неконцентрических шаров. Полагая $d\mu_a=|x-a|^{2\beta}dx$, получим для $0<\omega\leq\alpha$

$$\int_{B_{z,r}} |f|^p \, d\mu_a \le \left(\int_{B_{z,r}} |f|^p \, d\mu_a \right)^{\omega} \left(\int_B |f|^p \, d\mu_a \right)^{1-\omega}. \tag{35}$$

Напомним теперь, что наши условия (i) и (ii) фактически выполнены в следующих двух случаях (см. §2, Примеры 1-3):

- 1). Если p=2 и $f\in h(B)$, где $B=B^n$ единичный шар в ${\rm I\!R}^n$, $n\geq 2$, то (i) и (ii) следуют из Примера 2. Если $f\in h^2_\nu$, то $f^*\in h^2_\nu$.
- 2). Если n=2 и $f\in H(B)$, p>0, где B единичный круг в комплексной плоскости $\mathbb C$, то (i) и (ii) следуют из Примеров 1 и 3. Если $f\in H^p_{\nu}$, то $f^*\in H^p_{\nu}$.

Следующие теоремы резюмируют (31)-(35).

Теорема 1. Пусть $f \in h^2_v$ в $B = B^n$, $n \ge 2$, $\overline{B}_{x,r} \subset B$, $\overline{x} \in [0,x]$ и $\overline{r} > 0$ – корень уравнения (27) (с $x_0 = 0$, $r_0 = 1$). Пусть $\omega \in (0,\alpha]$, где α определяется по (32) (в частности, ω может быть выбран согласно (34)). Тогда, для p = 2 условия (33) и (35) выполняются с $\beta = -2$ и $\gamma = 1$.

Теорема 2. Пусть $f \in H^p_x$ в единичном круге $B \subset \mathbb{C}$ для некоторого $p \in (0, +\infty)$, $\overline{B}_{x,r} \subset B$, $\overline{x} \in [0,x]$ и $\overline{r} > 0$ — корень уравнения (27) (с $x_0 = 0$, $r_0 = 1$). Пусть $\omega \in (0,\alpha]$, где α определяется по (32) (в частности, ω может быть выбрано согласно (34)). Тогда условия (33) и (35) выполняются с $\beta = -2$ и $\gamma = 2/p$.

Замечание 3. В Теоремах 1 и 2 условия (33) и (35) могут быть рассмотрены как аналоги хорошо-известной теоремы Адамара о трех окружностях в новой ситуации (гармонические функции многих переменных, неконцентрические шары). Условие (33) представляется более "приближенным", а условие (35) более точным, особенно для $\omega = \alpha$.

§5. ТЕОРЕМЫ ЕДИНСТВЕННОСТИ

Из Теорем 1 и 2 мы можем вывести некоторые результаты о единственности.

Теорема 3. Пусть $u \in h^2_\nu$ в $B = B^n$, $n \ge 2$, $B_{x_m,r_m} \subset B$ и $A_2(x_m,r_m,u) \le \varepsilon_m$, для $m \in \mathbb{N}$. Если для некоторой константы c > 0

$$\lim_{m\to\infty}\left(\rho_m\log\varepsilon_m+c\log\frac{1}{1-|x_m|}\right)=-\infty,\quad \text{rge}\quad \rho_m=\frac{1-|x_m|}{\log\frac{1-|x_m|}{(r_m/2)}},\qquad (36)$$

TO $u \equiv 0$ B B.

Доказательство. Классический вариант теоремы единственности для $u \in h(B)$ утверждает, что если u(x) = 0 для $x \in \overline{B}_{x_0,\sigma_0} \subset B$, то $u \equiv 0$ в B. Последнее условие может быть заменено на $A_2(x_0,\sigma_0,u) = 0$. Используя аргумент компактности, мы заключаем : для фиксированной $u \in h(B)$, $u \not\equiv 0$ и $\tau \in (0,1)$, $\sigma \in (0,1-\tau)$ существует константа $a = a_{\tau,\sigma} > 0$, такая, что

$$a_{\tau,\sigma} < A_2(x,\sigma,u)$$
 для $x \in \overline{B}_{\tau}$. (37)

Докажем, что допущение $u\not\equiv 0$ противоречит предположениям Теоремы 3.

Пусть сначала $r_m \not= 0$. Тогда $1-|x_m| \ge r_m > 2\sigma$ для некоторого $\sigma > 0$ и подпоследовательности $m=m_k \to \infty$. Из (36) заключаем, что $\varepsilon_{m_k} \to 0$. Однако

$$A_2(x_{m_k}, \sigma, u) \leq A_2(x_{m_k}, r_{m_k}, u) \leq \varepsilon_{m_k},$$

что противоречит условию (37) с $\tau = 1 - 2\sigma$ для $k > k_{\sigma}$.

Предположим теперь, что $r_m \to 0$ и $|x_m| \not\to 1$. Тогда $1-|x_m| > 4\sigma$ для некоторого $\sigma > 0$ и $m=m_k \to \infty$. Из (36) следует что

$$\lim_{k \to \infty} \frac{\log \varepsilon_{m_k}}{\log(1/r_{m_K})} = -\infty. \tag{38}$$

Полагая $au=1-4\sigma$, рассмотрим константу $b_\sigma>1$, для которой

$$A_2(x, e\sigma, u) < b_\sigma$$
 для $x \in \overline{B}_\tau$. (39)

Применим теперь свойство (10) лог-выпуклости к функции $L(r)=A_2(x,r,u)$ (см. §2, примеры 1—3). Поскольку $r_{m_k}<\sigma$ для $k>k_\sigma$, в (10) можно выбрать $r_1=r_{m_k}$ для $k>k_\sigma$, $r=\sigma$ и $r_2=e\sigma$. Используя также (37) и (39), получим

$$\log \frac{a_{\tau,\sigma}}{b_{\sigma}} < \alpha_k \log \varepsilon_{m_k}, \quad \text{rge} \quad \alpha_k = \left(\log \frac{e\delta}{r_{m_k}}\right)^{-1}.$$

Левая часть этой оценки конечна и не зависит от k. Это противоречит условию (38).

Для завершения доказательства остается только рассмотреть случай $|x_m| \to 1$. Можно считать, что $1-|x_m| \ge 2r_m$ для $m \in \mathbb{N}$ (иначе можно заменить B_{x_m,r_m} на $B_{x_m,r_m/2}$, не изменяя условия (36)). Применим Теорему 1 с (33) к функции f=u и к шарам $B_{x_m,r_m} \subset B_{\bar{x}_m,\bar{r}_m} \subset B$, где $\bar{x}_m = \frac{1-2\sigma}{|x_m|} x_m$ с достаточно малым фиксированным $\sigma \in (0,1/4)$ и \bar{r}_m , определенным по (26) или (27) (с $x_0=0$, $r_0=1,\ x=x_m,\ r=r_m$ и $\bar{x}=\bar{x}_m$). Поскольку $|x_m|\to 1$, имеем, что $|x_m|>1-\sigma$ для $m>m_\sigma$. Тогда $\bar{r}_m>|x_m-\bar{x}_m|>\sigma$ и $B_{\bar{x}_m,\sigma}\subset B_{\bar{x}_m,\bar{r}_m}$. Из (37) для $\tau=1-2\sigma$ и $x=\bar{x}_m$ (полагая $a_{\tau,\sigma}=a_{\tau}$) следует, что

$$a_{\sigma} < A_2(\bar{x}_m, \sigma, u) \le A_2(\bar{x}_m, \bar{r}_m, u), \quad m > m_{\sigma}. \tag{40}$$

Поскольку $\delta_0=1-|x_m|-r_m\geq \frac{1}{2}(1-|x_m|)$, можно в (33) и (34) заменить δ_0 на $\frac{1}{2}(1-|x_m|)$. Из (34) следует

$$\omega \ge \omega_m = \frac{1}{32\sigma} \rho_m, \quad m > m_\sigma. \tag{41}$$

Полагая $b=1+A_2(1,u)$ и применяя (40), из (33) с p=2 и $\gamma=1$ для $m>m_\sigma$ получим

 $arepsilon_m^{\omega_m}(1-|x_m|)^{-1}>b_\sigma, \quad \text{rge} \quad b_\sigma=rac{\sigma^{n/2}a_\sigma}{16b}.$

Отсюда и из (41) для $m > m_{\sigma}$ имеем

$$\rho_m \log \varepsilon_m + 64\sigma \log \frac{1}{1 - |x_m|} > c_\sigma \tag{42}$$

с $c_{\sigma} = 32\sigma \log b_{\sigma}$. Для константы c > 0 в (36) можно выбрать σ так, чтобы $64\sigma < c$. Тогда (42) противоречит (36). Это доказывает Теорему 3.

Совершенно аналогично, теорему единственности для голоморфных функций можно вывести из Теоремы 2 с условием (33).

Теорема 4. Пусть $f \in H^p_p$ в единичном шаре $B \subset \mathbb{C}$ для некоторого $p \in (0, +\infty]$, $B_{x_m,r_m} \subset B$ и $A_p(x_m,r_m,f) \leq \varepsilon_m$ для $m \in \mathbb{N}$. Предположим, что условие (36) выполнено для некоторой константы c, полагая, что c > 0, если $p \neq \infty$ и c = 0 (см. (45)), если $p = \infty$. Тогда $f \equiv 0$ в B.

Замечание 4. В Теоремах 3 и 4 условие (36) может быть заменено более простым условием

$$\lim_{m\to\infty}\left(r_m\log\varepsilon_m+c\frac{1}{1-|x_m|}\right)=-\infty,\tag{43}$$

которое в Теореме 4 для $p=\infty$ принимает крайне простой вид :

$$\lim_{m\to\infty} r_m \log \varepsilon_m = -\infty. \tag{44}$$

Это следует из очевидной оценки $ho_m \geq (r_m/2)$.

Пример 4. Условие (44) точное. Чтобы показать это, выберем произвольную последовательность $x_m \in (0,1), \ x_m \to 1$, положим $2r_m = 1 - x_m$ и выберем $f \in H(B), \ B = B^2 \subset \mathbb{C}, \ ||f||_{\infty,B} = 1$ по формуле

$$f(z) = \exp\left(-A\frac{1+z}{1-z}\right), \quad A > 0.$$

Легко видеть, что для $\varepsilon_m = ||f||_{\infty,B_{\sigma_m,r_m}}$

$$\lim_{m\to\infty}r_m\log\varepsilon_m=-\frac{2}{3}A,$$

откуда следует, что для каждой последовательности $\alpha_m \in (0,1), \, \alpha_m \to 1$ и $x_m,$ подчиненной условию $(1-x_m)^{1-\alpha_m} \to 0$ при $m \to \infty$ мы имеем

$$\lim_{m\to\infty}r_m^{\alpha_m}\log\varepsilon_m=-\infty.$$

Следующее условие заменяет условие (36) в Теореме 4 для равномерной пормы $p=\infty$:

$$\lim_{m \to \infty} \rho_m \log \varepsilon_m = -\infty \qquad c \quad \rho_m = \frac{1 - |x_m|}{\log \frac{1 - |x_m|}{(r_m/2)}}.$$
 (45)

Для наиболее интересного случая $|x_m| \to 1$, условия (45) и (44) равносильны при условии $1-|x_m|=O(r_m)$ при $m\to\infty$ (Пример 4).

Для общего случая рассмотрим произвольную последовательность $\alpha_m \in (0,1)$ такую, что $\alpha_m \to 1$, и построим функцию $f \in H(B)$, $B = B^2 \subset \mathbb{C}$, $||f||_{\infty,B} = 1$ (так что $f \not\equiv 0$), удовлетворяющую слегка более слабому, чем (45) условию :

$$\lim_{m \to \infty} \frac{(1 - |x_m|)^{\alpha_m}}{\log \frac{1 - |x_m|}{r_m}} \log \varepsilon_m = -\infty.$$
 (46)

Для $m \in \mathbb{N}$ определим $x_m \in (0,1), x_m \to 1$ из

$$(1-x_m)^{1-\alpha_m} = m^{-4} (47)$$

и выберем $r_m \in (0, 1-x_m)$ произвольным образом; чтобы избежать трудностей со знаменателем в (46), мы теперь считаем, что $2r_m \le 1-x_m$.

Записывая через [t] целую часть числа t>0, рассмотрим последовательность натуральных чисел

$$N_m = [(1 - x_m)^{-\frac{1 + \alpha_m}{2}}], \qquad m \in \mathbb{N}.$$
 (48)

Согласно (47) и (48), $N_m(1-x_m) \leq m^{-2}$, что обеспечивает сходимость ряда $\sum N_m(1-x_m)$. Это позволяет определить функцию f как произведение Бляшке :

$$f(z) = \prod_{m=1}^{\infty} \left(\frac{x_m - z}{1 - x_m z} \right)^{N_m}, \quad |z| < 1.$$

Очевидно, для $z \in B_{x_{r_m}, r_{r_m}}$

$$|f(z)| \le \varepsilon_m = \left(\frac{r_m}{1-x_m}\right)^{N_m}$$

Выражение под знаком предела в (46) равно $-(1-x_m)^{\alpha_m}N_m$. Согласно (48) и (47), оно эквивалентно $-m^2\to -\infty$. Что доказывает (46).

Из случая $p=\infty$ Теоремы 4 напрашивается вопрос. Является ли присутствие константы c>0 реально необходимым в условии (36) Теорем 3 и 4 (случай $p\neq\infty$), или выбор c=0 достаточен? Мы не имеем ответа на этот вопрос для Теоремы 4 (случай $p\neq\infty$). Тем не менее, для Теоремы 3 ответ положителен (см. Теорему 6). Рассмотрим сначала равномерный вариант этой теоремы.

Теорема 5. Пусть $u \in h_{\nu}^{\infty}$ в $B = B^{n}$, $n \geq 2$ в $\|u\|_{\infty} \leq \varepsilon_{m}$ в $B_{x_{m},r_{m}} \subset B$ для $m \in \mathbb{N}$. Тогда из условия (45) следует, что $u \equiv 0$ в B.

Доказательство. Так как $||u||_{2,\Omega} \leq ||u||_{\infty,\Omega}$ для $\Omega \subset B$, имеем, что $u \in h^2_v(B)$ и $A_2(x_m,r_m,u) \leq \varepsilon_m$ для $m \in \mathbb{N}$. Если $|x_m| \not \to 1$, то условия (45) и (36) становятся равносильными для некоторой подпоследовательности $m=m_k \to \infty$, и Теорема 5 следует из Теоремы 3.

Рассмотрим теперь главный случай $x_m \to 1$ и допустим $u \not\equiv 0$ в B. Применим Теорему 1 с условием (35) (полагая там p=2 и $\beta=-2$) к функции f=u и к шарам $B_{x_m,r_m} \subset B_{\bar{x}_m,r_m} \subset B$, $m \in \mathbb{N}$.

Предположим, что $1-|x_m|\geq 2r_m$ для $m\in \mathbb{N}$ (иначе, можно просто заменить r_m через $r_m/2$). Как и в доказательстве Теоремы 1, выберем $\bar{x}_m=\frac{1-2\sigma}{|x_m|}x_m$, но теперь $\sigma=32^{-1}$. Согласно (41), положим в (35) $\omega=\rho_m$, $m\in \mathbb{N}$. Определим \bar{r}_m по (27) с $x_0=0$, $r_0=1$, $x=x_m$, $r=r_m$ и $\bar{x}=\bar{x}_m$. В частности, $\bar{r}_m>|x_m-\bar{x}_m|>\sigma$ для $m\geq m_1$. Наконец, положим $a_m=\lambda_m x_m$, где $\lambda=\lambda_m$ — больший корень уравнения

$$\frac{1}{\lambda} = \frac{r_m^2}{\lambda - 1} + |x_m|^2.$$

Таким образом, согласно (35) при $m \geq m_1$

$$\int_{B_{x_m,r_m}} |u|^2 d\mu_{a_m} \le \left(\int_{B_{x_m,r_m}} |u|^2 d\mu_{a_m} \right)^{\rho_m} \left(\int_B |u|^2 d\mu_{a_m} \right)^{1-\rho_m}. \tag{49}$$

Из (23) для $x \in B$ следует, что

$$|x-a_m| < 2 + d(a_m) < 2 + \frac{1-|x_m|}{|x_m|} < 3.$$

Поскольку $d\mu_{a_m} = |x - a_m|^{-4} dx > 3^{-4} dx$

$$\int_{B_{a_m,n}} |u|^2 d\mu_{a_m} > 3^{-4} \int_{B_{a_m,n}} |u|^2 dx > 3^{-4} \int_{B_{a_m,n}} |u|^2 dx > a, \qquad (50)$$

где a>0 – не зависящая от m константа. Последнее утверждение следует из предшествующего (37) утверждения (с $\sigma=32^{-1}$ и $\tau=1-2\sigma$). Из (49) и (50), используя оценку $||u||_{\infty} \leq \varepsilon_m$ в B_{x_m,r_m} и положив $M=1+||u||_{\infty,B}$,, получим

$$a < \varepsilon_m^{\rho_m} M \int_B |x - a_m|^{-4} dx \quad \text{fig.} \quad m \ge m_1. \tag{51}$$

Ограничим временно наше внимание случаем $n \geq 5$. Теперь последний интеграл сходится, если позволить a_m быть произвольной точкой \mathbb{R}^n , и интеграл достигает своего максимума при $a_m = 0$, так что

$$\int_{B} |x-a_{m}|^{-4} dx < \int_{B} |x|^{-4} dx = \frac{\sigma_{n}}{n-4},$$

где σ_n – поверхностная мера на S^n . Отсюда и из (51) для $n \geq 5$

$$\frac{(n-4)a}{M\sigma_n} < \varepsilon_m^{\rho_m}, \quad m \ge m_1.$$

Левая часть этой оценки положительна и не зависит от m. Для достаточно больших m это противоречит условию (45), согласно которому $\varepsilon_m^{\rho_m} \to 0$ при $m \to \infty$. Это доказывает теорему для $n \ge 5$.

Показательство Теоремы 5 для остальных размерностей n=2,3 и 4 следует из утверждения: если Теорема 5 верка для некоторой размерности $n_0>2$, то она верка также для всех размерностей п между 2 и n_0 .

Для доказательства мы используем вложение ${\bf R}^n$ в ${\bf R}^{n_0}$, полагая ${\bf R}^{n_0}=$ $={\bf R}^n\times {\bf R}^l$; $l=n_0-n$. Функция $u\in h^\infty_\nu(B^n)$ может быть продолжена до функции $u\in h^\infty_\nu(B^n\times B^l)$ по формуле

$$u(x,y) = u(x)$$
, для $x \in B^n$ и $y \in B^l$. (52)

Применяя Теорему 5 с $n=n_0$ к продолженной функции u и n_0 -мерным шарам

$$B_{(\mathbf{x}_m,0),\mathbf{r}_m}^{n_0} \subset B^{n_0}, \quad m \in \mathbb{N}, \tag{53}$$

и учитывая, что $||u||_{\infty} \le \varepsilon_m$ остается в силе для m-того шара, мы получим, что $u \equiv 0$ в B^{n_0} и поэтому в B^n . Это завершает доказательство Теоремы 5.

Теперь докажем L^2 -нормный вариант Теоремы 5, используя процедуру вложения для всех размерностей $n \geq 2$. Мы приходим к следующей теореме, которая усиливает как Теорему 3, так и Теорему 5.

Теорема 6. Пусть $u \in h^2_v$ в B^n , $n \geq 2$, $||u||_2 \leq \varepsilon_m$ в $B^n_{x_m,r_m} \subset B^n$ для $m \in \mathbb{N}$. Тогда из условия (45) следует, что $u \equiv 0$ в B^n .

Доказательство. Сравним условия (36) и (45). Аналогично доказательству Теоремы 3, мы можем ограничиться случаем $|x_m| \to 1$. Пусть $u \not\equiv 0$ в B^n . Вложив \mathbb{R}^n в \mathbb{R}^{n+5} и используя (52) для l=5, мы найдем продолжение функции $u \in h^2_\nu(B^n)$ к функции $u \in h^2_\nu(B^n \times B^5)$. Как в доказательстве Теоремы 5, рассмотрим точки $a_m = \lambda_m x_m$, где $\lambda = \lambda_m > 1$ – наибольший корень уравнения

$$\frac{1}{\lambda} = \frac{r_m^2}{\lambda - 1} + |x_m|^2,$$

соответствующий шарам $B^n_{x_m,r_m}$, $m\in\mathbb{N}$. Используем подготовительный материал доказательства Теоремы 5, включая оценки (49) и (50). Роль точек a_m для случая продолженной функции u и для (n+5)-мерных шаров (53) играют точки $(a_m,0)\in\mathbb{R}^{n+5}$. Пусть для $x\in\mathbb{R}^n$ и $y\in\mathbb{R}^5$

$$\psi_{a_m}(x,y) = |(x,y) - (a_m,0)|^{-4} = (|x - a_m|^2 + |y|^2)^{-2}, \tag{54}$$

так что $d\mu_{a_m}=\psi_{a_m}\; d\nu_{n+5}.$ Из (49) и (50), для $m\in {f N}$

$$a < \left(\int_{B_{(m_m,0),r_m}^{n+5}} |u|^2 \psi_{a_m} \, d\nu_{n+5} \right)^{\rho_m} \left(\int_{B^{n+5}} |u|^2 \psi_{a_m} \, d\nu_{n+5} \right)^{1-\rho_m}, \tag{55}$$

где a>0 – константа, не зависящая от $m\geq m_1$.

Нам будет удобно распространять интегралы (55) на произведение множеств. Более точно, мы расширим первый интеграл на $B^n_{x_m,r_m} \times B^5$, а второй — на $B^n \times B^5$. Согласно (54)

$$\psi_{a_m}(x,y) \leq |y|^{-4}$$
, для $x \in {\rm I\!R}^n$, $y \in {\rm I\!R}^5$.

Из (55) и (52), для $m \ge m_1$, применяя теорему Фубини, получим

$$a < \left(\int_{B_{x_m,r_m}^n} |u(x)|^2 dx \right)^{\rho_m} \left(\int_{B^n} |u(x)|^2 dx \right)^{1-\rho_m} \int_{B^s} |y|^{-4} dy. \tag{56}$$

Поскольку $r_m < 1$, первый интеграл не превосходит $\nu_n \varepsilon_m$ (где ν_n — объем B^n). Второй интеграл конечен и так как $u \not\equiv 0$ в B^n можно считать его равным

1. Третий интеграл cxodsщийся и фактически равен σ_5 — поверхностной мере сферы S^5 . Поэтому из (56)

$$\frac{a}{\sigma_b} < (\nu_n \varepsilon_m)^{\rho_m}, \quad m \geq m_1.$$

Здесь левая часть положительна и независима от $m \in \mathbb{N}$, между тем правая часть согласно (45) стремится к нулю при $m \to \infty$. Это противоречие доказывает Теорему 6.

Замечание 5. Применяя нашу технику вложения, Примеры 4 и 5 могут быть прямо использованы для демонстрации точности условия (45) в Теоремах 5 и 6 для всех размерностей n.

Замечание 6. Пусть n=2, тогда, для $p=\infty$ Теорема 5 усиливает Теорему 4, а для p=2 Теорема 6 распространяет Теорему 4 на случай гармонических функций.

ЛИТЕРАТУРА

- 1. D. H. Armitage, T. Bagby and P. M. Gauthier, "Note on the decay of solutions of elliptic equations", Bull. London Math. Soc. vol. 17, pp. 554 556, 1985.
- S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer-Verlag, Heidelberg, 1992.
- 3. М. Брело, Основы Классической Теории Потенциала, М., Мир, 1964.
- 4. R. G. M. Brummelhuis, "Logarithmic convexity of L^2 norms for solutions of elliptic equations, Indag. Math. N.S., vol. 4, pp. 423 429, 1993.
- 5. R. G. M. Brummelhuis, Three-spheres Theorem for Second Order Elliptic Equations, preprint Leiden University, 1993.
- W. F. Donoghue, Distributions and Fourier Transforms, Academic Press, New York, 1969.
- 7. P. L. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- 8. У. Хейман, П. Кеннеди, Субгармонические Функции, М., Мир, 1980.
- 9. L. L. Helms, Introduction to Potential Theory, Wiley, New York, 1969.
- J. Korevaar, Chebyshev-type Quadratures: use of complex analysis and potential theory, Complex potential theory, NATO-ASI, Series C, vol. 439, ed. P. M. Gauthier, Kluwer, Dordrecht, 1994.
- J. Korevaar and J. L. M. Meyers, "Logarithmic convexity for supremum norms of harmonic functions", Bull. London Math. Soc., vol. 121, pp. 353 — 362, 1994.
- 12. Р. Неванлинна, Однозначные Аналитические Функции, ОГИЗ, М.- Л., 1941.
- 13. И. Стейн, Г. Вейс, Введение в Гармонический Анализ на Евклидовых Пространствах, М., Мир, 1974.

28 Мая 1995

Ереванский государственный университет e-address: arakel@pnas.sci.am,

Монреальский университет e-address: gauthier@ere.umontreal.ca