ДУАЛЬНЫЕ КОМБИНАТОРНЫЕ ФОРМУЛЫ АМБАРЦУМЯНА

Г. Ю. Панина

Известия Национальной Академии Наук Армении. Математика, том 28, №6, 1993

В своих предыдущих работах автор вывела обобщения комбинаторной формулы Амбарцумяна. В настоящей работе приведены их дуальные версии. Эти формулы вычисляют меры многогранных множеств в IRⁿ с помощью комбинаторных коэффициентов и мер некоторых специальных многогранных множеств.

ВВЕДЕНИЕ

Формулы Амбарцумяна представляют меры множеств Бьюффона гиперплоскостей в \mathbb{R}^n посредством определенных комбинаторных коэффициентов и значений мер некоторых простых подмножеств гиперплоскостей. Впервые эти формулы были получены Р. В. Амбарцумяном для пространств \mathbb{R}^2 и \mathbb{R}^4 (см. [1]) и изучены для общих \mathbb{R}^{2k} в [2].

А. Бадли описал в общих чертах метод получения этих формул для общего \mathbb{R}^n посредством классических формул для многогранников (см. [3]). Другие комбинаторные формулы приводятся автором в работах [4] и [5]. Они касаются мер множеств гиперплоскостей в \mathbb{R}^n и множеств алгебраических поверхностей в \mathbb{R}^n

Цель пастоящей работы — получение дуальных формул, позволяющих получать меры многогранных множеств в \mathbb{R}^n в терминах комбинаторных коэффициентов и значений мер некоторых специальных многогранных множеств.

§1. НЕКОТОРЫЕ ОБОЗНАЧЕНИЯ

Мы используем следующие обозначения:

 E_k множество всех k-мерных плоскостей в \mathbb{R}^n ;

 E_k^0 - множество k-мерных плоскостей в ${\bf IR}^n$, содержащих начало координат O;

 Ω^{n-1} - единичная сфера в \mathbb{R}^n с центром в O;

для $e, e_1, e_2 \in E_{n-1} \setminus E_{n-1}^0$ положим:

 $\mathbb{R}^+(e)$ - полусфера, ограниченная e, которая не содержит O.

 $EX(e_1,\epsilon_2)=\mathbf{IR}^+(e_1)\cap\mathbf{IR}^+(e_2);$

для $K \subset \mathbb{R}^n$ положим

c(K) выпуклая оболочка K;

 $[K] = \{e \in E_{n-1} : e \text{ пересекает } c(K)\};$

 $(K) = \{e \in E_{n-1} : c \text{ содсржит } K\};$

aff(K) – минимальное аффинное прсобразование, содержащее K;

Int(K) - внутренность K в aff(K).

Меры. Мера μ , определенная на E_{n-1} называется беспучковой, если $\mu(\{e:P\in e\})=0$ для любой точки P; μ называется беспучковой относительно множества $\mathcal{P}\subset \mathbf{IR}^n$, если $\mu(\{e:P\in e\})=0$ для любой точки $P\in \mathcal{P}$. Все меры на \mathbf{IR}^n предполагаются конечными. Мера μ на \mathbf{IR}^n называется бесплоскостиюй (б. n.- мера) на множестве гиперплоскостей \mathcal{E} , если для любого $c\in \mathcal{E}$, имеем $\mu(e)=0$.

Симплежсы. Пусть \mathcal{P} - конечное множество точек в \mathbb{R}^n . Подмножество $\theta \subset \mathcal{P}$, состоящее из не более чем (n+1) точек, называется симплексом (вершины, пустое множество не является симплексом). Множество всех симплексов обозначим через $T(\mathcal{P})$. Множество всех симплексов, состоящих из k+1, точек обозначим через $(k) \subset T(\mathcal{P})$. Симплекс Δ содержит симплекс θ , если множество вершин Δ содержит множество вершин θ .

Кольца. Для $A, B \subset \mathcal{P}$ определим

$$\langle A|B\rangle = \{e \in E_{n-1} : e \text{ отделяет } A \text{ от } B\}.$$

Кольцо Бьюффона $\mathcal{B}(\mathcal{P})$ — кольцо всех подмножестя E_{n-1} , порождаемое всеми множествами гипа (A|B), с непустыми $A,B\subset\mathcal{P}$, посредством операций объефинения, пересечения и разности между множестя ми. Кольцо $\mathcal{K}(\mathcal{P})$ — кольцо

всех множеств E_{n-1} , порождаемых множествами из $\mathcal{B}(\mathcal{P})$, $\{(\theta)\}_{\theta \in T(\mathcal{P})}$ и E_{n-1} . Элементы $\mathcal{B}(\mathcal{P})$ называются множествами Бьюффона.

Пусть $\mathcal{E} = \{e_i\}_{i=1}^m$ множество гиперплоскостей из $E_{n-1} \setminus E_{n-1}^0$ в общем положении. Определим кольцо

$$B^*(\mathcal{E}) = \{$$
 многогранник $A \subset {\rm I\!R}^n \colon \ O \notin A,$ грани A лежат на одной гиперплоскости $e_i\}.$

Для конечного множества точек $\mathcal{P} \subset \mathbb{R}^n$ в общем положении и гиперплоскости e будем говорить, что гиперплоскость e' лежит близко κ e, если e может быть непрерывно преобразована в e', не задевая точек из \mathcal{P} кроме тех, что лежат в e. Для конечного общего множества гиперплоскостей $\mathcal{E} \subset \mathcal{E}^{n-1}$ в общем положении и точки e будем говорить, что точка e' лежит близко κ e, если существует путь, соединяющий e и e', внутренность которого не пересекает ни одну из гиперплоскостей из \mathcal{E} .

Атомы. Пусть A, B — непустые подмножества $\mathcal{P}, A \cup B = \mathcal{P}, A \cap B = \emptyset$. Множество (A|B) гиперплоскостей называется *итомом*. Множество Бьюффона можно оквивалентно определить как множество, представимое в виде объединения непересекающихся атомов. Множество гиперплоскостей, представляемых как [K] для некоторого $K \subset \mathbb{R}^n$, называется суператомом.

§2. ОБОБЩЕННЫЕ ФОРМУЛЫ АМБАРЦУМЯНА

Теорема 2.1 (см. [4], [5]) Пусть n – четное, а μ – локально конечная беспучковая мера на E_{n-1} . Для любого конечного множества точек $\mathcal{P} \subset \mathbf{R}^n$ в общем положении и любого множества Бьюффона $\Lambda \in \mathcal{B}(\mathcal{P})$

$$\mu(A) = \frac{1}{2} \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{(k)} c_A(\theta) \mu([\theta]),$$

где коэффициенты $c_A(\theta)$ вычисляются с помощью следующего алгоритма.

Алгоритм 2.1. Коэффициенты $c_A(\theta)$ вычисляются шаг за шагом, начиная с членов высокой размерности, при предположении, что $\mathcal{P} \cup \{0\}$ также янляется множеством в общем положении.

Шаг 1. Пусть $\theta \in (n-1)$, а точки $P_1, P_2, ..., P_n$ суть вершины θ и e гиперплоскость, содержащая θ . Пусть $\left(e, \frac{\pm}{n-1}, \frac{\pm}{n-1}\right)$ — гиперплоскость, которая лежит близко к e и позиция которой относительно $P_1, ..., P_n$ определяется следующим правилом выбора знака: для любого j, имеем $P_j \in \mathbb{R}^+(e, \pm, ..., \pm)$ тогда и только тогда, когда в скобках на j - том месте стоит знак +. Положим теперь

$$c_A(\theta) = \sum_{(\pm,...,\pm)} I_A(e,\pm,...,\pm)(-1)^{\Phi(\pm,...,\pm)},$$

где сумма берется по всем наборам, содержанцим в плюсов и минусов; I_A – индикаторная функция множества A, $\Phi(\pm,...,\pm)$ – число минусов в наборе.

Шаг 2. Пусть $\theta \in (k)$ с четным k. Тогда положим

$$c_A(\theta) = \frac{1}{2} \sum_{m=k+1}^{n-1} (-1)^m \sum_{\substack{\Delta \in (m), \\ \Delta \text{ conspirate}}} c_A(\Delta).$$

Шаг 3. Пусть $\theta \in (k)$ с нечетным k, а $P_1,...,P_{k+1}$ вершины θ . Выберем гиперплоскость e, содержащую θ и не содержащую другие точки \mathcal{P} . Пусть $\left(e,\frac{\pm,...,\pm}{k+1\text{ раз}}\right)$ — гиперплоскость, лежащая близко к e, положение которой относительно $P_1,...,P_{k+1}$ определяется следующим образом. Для каждого j, $P_j \in \mathbf{R}^+(e,\pm,...,\pm)$ тогда и только тогда, если в скобках на j-том месте стоит знак +. Тогда

$$c_{A}(\theta) = \sum_{(\pm,...,\pm)} I_{A}(e,\pm,...,\pm)(-1)^{\Phi(\pm,...,\pm)+1} + \frac{1}{2} \sum_{m=k+1}^{n-1} (-1)^{m} \sum_{\Delta \in (m), \Delta \text{ coaspman } e, \atop \text{Int } (\Delta) \cap e \neq e} c_{A}(\Delta).$$

Теоремя 2.2. (см. [1]) Пусть п нечетно, \mathcal{P} конечное множество точек, μ - беспучковая мера относительно $\mathcal{P} \cup \{O\}$, $A \in \mathcal{B}(\mathcal{P})$. Если $\mathcal{P} \cup \{O\}$ является множеством в общем положении, то

$$\mu(A) = \sum_{m=0}^{n-1} \sum_{\Delta \in \{m\}} \left[d_A^1(\Delta) \mu([\Delta]) + d_A^2(\Delta) \mu([\Delta]) \right],$$

где $\overline{\Delta} = \Delta \cup \{O\}$, $d_A^{1/2}$ — коэффициенты, вычисляемые согласно следующим илгоритмам.

Алгоритм 2.2. Начнем с члена высокой размерности.

Шаг 1. Пусть $\Delta \in (n-1)$, точки $P_1,...,P_n$ – вершины Δ , а e – гиперилос. кость, содержащая Δ . Пусть $(e,\pm,...,\pm)$ – гиперплоскость, лежащая близко к e положение которой относительно $P_1,...,P_n$ определяется следующим правилом знака: для любого j, имеем $P_j \in \mathbf{R}^+(e,\pm,...,\pm)$ тогда и только тогда, когда e скобках на e-том месте стоит знак e- . Теперь положим

$$c_A^1(\Delta) = 0,$$
 $c_A^2(\Delta) = -\sum_{(\pm,...,\pm)} l_A(e,\pm,...,\pm)(-1)^{\Phi(\pm,...,\pm)},$ $c_A^1(\Delta) = \sum_{(\pm,...,\pm)} l_A(e,\pm,...,\pm)(-1)^{\Phi(\pm,...,\pm)},$ $c_A^1(\Delta) = 0,$

где сумма берется по всем наборам, состоящих из п плюсов и минусов.

Шаг 2. Пусть $\Delta \in (n-2)$, точки $P_1,...,P_{n-1}$ – вершины Δ , а g – гиперплоскость, содержащая Δ и O. Пусть $(g,\pm,...,\pm)$ – гиперплоскость, лежащая близко к g, положение которой определяется как и в предыдущем шаге. Теперь положим

$$c_A^1(\Delta) = 0,$$
 $c_A^1(\Delta) = -2 \sum_{(\pm,...,\pm)} I_A(g,\pm,...,\pm)(-1)^{\Phi(\pm,...,\pm)},$ $c_A^2(\Delta) = \frac{1}{2} \sum_m (-1)^{m+1} \sum_{\theta \in (m), \ \theta \text{ содержит } \Delta} c_A^2(\theta) - \frac{1}{2} c_A^4(\Delta),$ $c_A^3(\Delta) = \frac{1}{2} \sum_m (-1)^{m+1} \sum_{\theta \in (m), \ \theta \text{ содержит } \Delta} c_A^3(\theta) - \frac{1}{2} c_A^4(\Delta).$

Шаг 3. Пусть $\Delta \in (k)$ с четным k, точки $P_1, ..., P_{k+1}$ – вершины Δ . Выберем гиперплоскость e, содержащую Δ и не содержащую остальные точки $\mathcal{P} \cup \{O\}$. Определим гиперплоскости $(e, \pm, ..., \pm)$ как в шаге 1. Выберем точку O'(e) такую, что сегмент [O'(e), O] пересскает e. Теперь положим

$$c_{A}^{1}(\Delta) = \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in (m), \ \theta \text{ содержит } \Delta}} [c_{A}^{1}(\theta) - c_{A}^{2}(\theta) - c_{A}^{3}(\theta) + c_{A}^{4}(\theta)] + \frac{1}{2} [c_{A}^{4}(\Delta) - c_{A}^{2}(\Delta) - c_{A}^{3}(\Delta)],$$

$$c_{A}^{2}(\Delta) = \sum_{(\pm, \dots, \pm)} I_{A}(e, \pm, \dots, \pm) (-1)^{\Phi(\pm, \dots, \pm)} - \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in (m), \ \theta \text{ содержит } \Delta \\ \text{Int } (\theta) \cap a \neq \emptyset}} c_{A}^{2}(\theta) + \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in (m), \ \theta \text{ содержит } \Delta \\ \text{Int } (c(\theta) \cup \{O\})) \cap a \neq \emptyset}} c_{A}^{4}(\theta),$$

$$c_A^3(\Delta) = -\sum_{(\pm,\dots,\pm)} I_A(e,\pm,\dots,\pm)(-1)^{\Phi(\pm,\dots,\pm)} - \frac{1}{2} \sum_m (-1)^m \sum_{\substack{\theta \in (m), \ \theta \text{ conermat } \Delta \\ \text{Int } (\theta) \cap e \neq \emptyset}} c_A^3(\theta) + \frac{1}{2} \sum_m (-1)^m \sum_{\substack{\theta \in (m), \ \theta \text{ conermat } \Delta \\ \text{Int } (e(\theta \cup \{O'(e)\})) \cap e \neq \emptyset}} c_A^4(\theta),$$

$$c_A^4(\Delta) = \frac{1}{2} \sum_m (-1)^m \sum_{\substack{\theta \in (m), \ \theta \text{ conermat } \Delta \\ \theta \in (m), \ \theta \text{ conermat } \Delta}} c_A^4(\theta).$$

(Если k=0, то $c^1_A(\Delta)=0$).

Шат 4. Пусть $\Delta \in (k)$ с нечетным k. Выберем гиперплоскость c содержанцую Δ и не содержанцую остальные точки $\mathcal{P} \cup \{O\}$. Выберем гиперплоскость g, содержащую Δ и O, но не содержащую остальные точки \mathcal{P} . Определим гинерплоскости $(e, \pm, ..., \pm)$ и $(g, \pm, ..., \pm)$ как в шагах 1 и 2. Выберем точку O'(e) такую, что сегмент [O'(e), O] пересекает e. Положим

$$c_{A}^{1}(\Delta) = -\sum_{(\pm,...,\pm)} I_{A}(c,\pm,...,\pm)(-1)^{\Phi(\pm_{1}...,\pm)} + \\ + \frac{1}{2} \sum_{m} (-1)^{m} \left[\sum_{\substack{\theta \in (m), \theta \text{ concriment } \Delta \\ \text{Int.}(\theta) \cap \alpha \neq \emptyset}} c_{A}^{1}(\theta) - \sum_{\substack{\theta \in (m), \theta \text{ concriment } \Delta \\ \text{Int.}(c(\theta \cup C')) \cap c \neq \emptyset}} c_{A}^{2}(\theta) - \\ \sum_{\substack{\theta \in (m), \theta \text{ concriment } \Delta \\ \text{Int.}(c(\theta \cup C)) \cap c \neq \emptyset}} c_{A}^{3}(\theta) + \sum_{\substack{\theta \in (m) \\ \text{concriment } \Delta}} c_{A}^{4}(\theta) \right] + \frac{1}{2} c_{A}^{4}(\Delta), \\ c_{A}^{2}(\Delta) = \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in (m), \theta \text{ concriment } \Delta \\ \theta \in (m), \theta \text{ concriment } \Delta}} [c_{A}^{2}(\theta) - c_{A}^{4}(\theta)] + \frac{1}{2} c_{A}^{4}(\Delta), \\ c_{A}^{3}(\Delta) = \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in (m), \theta \text{ concriment } \Delta \\ \theta \in (m), \theta \text{ concriment } \Delta}} [c_{A}^{3}(\theta) - c_{A}^{4}(\theta)] + \frac{1}{2} c_{A}^{4}(\Delta), \\ c_{A}^{4}(\Delta) = \sum_{(\pm,...,\pm)} I_{A}(g,\pm,...,\pm)(-1)^{\Phi(\pm,...,\pm)} + \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in (m), \theta \text{ concriment } \Delta \\ \text{Int.}(\theta) \cap \alpha \neq \emptyset}} c_{A}^{4}(\theta).$$

Шаг 5. Для всех **А** положим

$$d_A^1(\Delta) = \frac{1}{2} [c_A^1(\Delta) + c_A^3(\Delta)], \quad d_A^2(\Delta) = \frac{1}{2} [c_A^2(\Delta) - c_A^3(\Delta)].$$

§3. ДУАЛЬНЫЕ ФОРМУЛЫ

Зафиксируем в \mathbb{R}^n декартову систему координат $O; x_1, ..., x_n$ и воспользуемся стереографической проекцией

$$\phi: \mathbb{R}^n \setminus \{O\} \longmapsto E_{n-1} \setminus E_{n-1}^0$$

определяемой обычным образом : $\phi((a_1,...,a_n))$ гиперплоскость, задаваемая уравнением :

$$a_1x_1 + \cdots + a_nx_n + 1 = 0.$$

Лемма 3.1.

мера на \mathcal{E} мера и $A \in \mathcal{B}^-(\mathcal{E})$.

- 1. $\phi \cdot \phi = -$ тожедественное преобразование на $\mathbb{R}^{s_1} \setminus \{O\}$.
- 2. ф изаимно-однозначное соответствие.
- 3. Для любого $P \in \mathbb{R}^n \setminus \{O\}$ и $e \in E_{n-1} \setminus E_{n-1}^0$,

$$P \in e \iff \phi^{-1}(e) \in \phi(P)$$
.

4. Для любого $P_1, P_2 \in {\rm I\!R}^n \setminus \{O\}$ и $e \in E_{n-1} \setminus E_{n-1}^0$

$$e \in \langle P_1 | P_2 \rangle \iff \phi^{-1}(e) \in EX(\phi(P_1), \phi(P_2)).$$

Пемма 3.2. Пусть $\mathcal{E} = \{e_i\}_{i=1}^m$ множество гиперплоскостей из $E_{n-1} \setminus E_{n-1}^0$ общем положении. Пусть $A \in \mathcal{B}^*(\mathcal{E})$. Тогда A можно получить из множеств типа $EX(e_i,e_j)$ посредством операций \cup и \cap . Следовательно

$$\phi(A) \in \mathcal{B}\left(\{\phi^{-1}(e_i)\}_{e_i \in \mathcal{E}}\right)$$
.

Пусть μ конечная б.п.-мера относительно $\mathcal E$ на ${\bf R}^n$. Отображение ϕ индущирует беспучковую относительно $\{\phi^{-1}(e_i)\}_{e_i\in\mathcal E}$ меру μ на $E_{n-1}\setminus E_{n-1}^0$. Так как $\mu(\Lambda)=\mu^-(\phi(A))$, то можем вычислить $\mu(\Lambda)$, применяя Теоремы 2.1 и 2.2 к $\phi(\Lambda)$.

Теорема 3.1. (Дуальная комбинаторная формула). Пусть $\mathcal E\subset E_{n-1}\setminus E_{n-1}^0$ конечное множество гиперплоскостей в общем положении, μ^- конечная б.п.

1. Если п четно, то

$$\mu(\Lambda) = \frac{1}{2} \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{[k]} c_A(\theta) \mu([\theta]),$$

2. Если n нечетно, то выберем гиперплоскость e_0 из $E_{n-1}\setminus E_{n-1}^0$ такую, что $\mathcal{E}\cup\{e_0\}$ остается в общем положении. Тогда

$$\mu(\Lambda) = \sum_{m=0}^{n} \sum_{\Delta \in [m]} \left[d_A^1(\Delta) \mu([\Delta]) + d_A^2(\Delta) \mu([\Delta]) \right],$$

 $zde\left[k
ight]$ — множество всех (k+1)-элементиых подмиожеств \mathcal{E} , $\overline{\Delta}=\Delta\cup\{c_0\}$,

$$[\theta] = \{x \in \mathbb{R}^n: \exists e_1, e_2 \in \theta \mid maxue, umo \mid x \in EX(e_1, e_2), \quad x \notin e_1, x \notin e_2\},$$

 $c_A(\theta)$ и $d_A^{1,2}(\theta)$ – комбинаторные коэффициенты, вычисанемые с помощью A_A -горитмов 3.1 и 3.2, соответственно.

Алгоритм 3.1. Коэффициенты вычисляются шаг за шагом, начиная с членов высокой размерности.

Шаг 1. Пусть $\theta \in [n-1]$, и пусть $P_1, P_2, ..., P_n$ – гиперплоскости θ , а e пересечение всех P_1 . Пусть $\left(e, \frac{\pm}{n \text{ раз}}\right)$ – точка, лежащая близко к e, позиция которой относительно $P_1, ..., P_n$ определяется следующим правилом знака : для любого j, имеем $(e, \pm, ..., \pm) \in {\rm I\!R}^+(P_j)$ тогда и только тогда, когда в скобах на j-том месте стоит знак +. Теперь положим

$$c_A(\theta) = \sum_{(\pm,...,\pm)} I_A(e,\pm,...,\pm)(-1)^{\Phi(\pm,...,\pm)},$$

где сумма болотся по всем наборам, состоящих из в плюсов и минусов, I_A индикаторная функция множества A, $\Phi(\pm, ..., \pm)$ – число минусов в наборе

Шаг 2. Пусть $\theta \in [k]$ с четным k. Тогда

$$c_A(\theta) = \frac{1}{2} \sum_{m=k+1}^{n-1} (-1)^m \sum_{\Delta \in [m]_i \atop \Delta \in \text{conspant } \theta} c_A(\Delta).$$

Шаг 3. Пусть $\theta \in [k]$ с четным k, и пусть $P_1, \dots P_{k+1}$ – гиперплоскости θ . Выберем точку e, лежащую на пересечении всех I_1 и не лежащую на любой другой гиперплоскости \mathcal{E} . Пусть $\left(e_1 \stackrel{\pm}{\longrightarrow} \stackrel{\pm}{\longrightarrow} \right)$ точка, лежащая близко к e

положение которой относительно P_1, \dots, P_{k+1} определяется следующим образом. Для каждого j, $(e, \pm, ..., \pm) \in {\rm I\!R}^+(P_j)$ тогда и только тогда, когда в скобках на j - том месте стоит знак +. Тогда

$$c_{A}(\theta) = \sum_{(\pm, ..., \pm)} I_{A}(\theta, \pm, ..., \pm)(-1)^{\Phi(\pm, ..., \pm)+1} + \frac{1}{2} \sum_{m=k+1}^{n-1} (-1)^{m} \sum_{\Delta \in [m], \Delta \text{ conspant } \theta.} c_{A}(\Delta).$$

Алгоритм 3.2. Коэффициенты вычисляются шаг за шагом, пачиная с членов высокой размерности.

Шаг 1. Пусть $\Delta \in [n-1]$, а $P_1,...,P_n$ – гиперплоскости Δ , e – пересечение всех P_i . Пусть $(e,\pm,...,\pm)$ – точка, лежащая близко к e, положение которой относительно $P_1,...,P_n$ эпределяется следующим образом. Для каждого j $(e,\pm,...,\pm) \in {\rm I\!R}^+(P_j)$ тогда и только тогда, когда в скобках на j-том месте стоит знак +. Теперь положим

$$c_A^1(\Delta) = 0, \qquad c_A^2(\Delta) = -\sum_{(\pm,\dots,\pm)} I_A(e,\pm,\dots,\pm)(-1)^{\Phi(\pm,\dots,\pm)},$$

$$c_A^3(\Delta) = \sum_{(\pm,\dots,\pm)} I_A(e,\pm,\dots,\pm)(-1)^{\Phi(\pm,\dots,\pm)}, \qquad c_A^4(\Delta) = 0,$$

где сумма берется по всем наборам, состоящих из п плюсов и минусов.

Шаг 2. Пусть $\Delta \in [n-2]$, $P_1, ..., P_{n-1}$ гиперплоскости Δ , а g – пересечение всех P_i и e_0 . Пусть $(g, \pm, ..., \pm)$ – точка , лежащая близко к g, позиция которой определяется как в предыдущем шагс. Положим

$$c_A^1(\Delta) = 0,$$
 $c_A^4(\Delta) = -2 \sum_{(\pm, \dots, \pm)} I_A(g, \pm, \dots, \pm)(-1)^{\Phi(\pm, \dots, \pm)},$ $c_A^2(\Delta) = \frac{1}{2} \sum_m (-1)^{m+1} \sum_{\theta \in [m], \ \theta \text{ содержит } \Delta} c_A^2(\theta) - \frac{1}{2} c_A^4(\Delta),$ $c_A^3(\Delta) = \frac{1}{2} \sum_m (-1)^{m+1} \sum_{\theta \in [m], \ \theta \text{ содержит } \Delta} c_A^3(\theta) - \frac{1}{2} c_A^4(\Delta).$

Шаг 3. Пусть $\Delta \in [k]$ с четным k, $P_1,...,P_{k+1}$ – гиперплоскости Δ . Выберем точку e, лежащую в пересечении всех P_i и не лежащую в любой другой гиперплоскости из $\mathcal{P} \cup \{e_0\}$. Определим $(e,\pm,...,\pm)$ как в шаге 1. Выберем гиперплоскость

O'(e) так, чтобы $c \in EX(e_0, O'(e))$. Положим

$$c_{A}^{1}(\Delta) = \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in [m], \ \theta \text{ солержит } \Delta}} [c_{A}^{1}(\theta) - c_{A}^{2}(\theta) - c_{A}^{3}(\theta) + c_{A}^{4}(\theta)] + \frac{1}{2} [c_{A}^{4}(\Delta) - c_{A}^{2}(\Delta) - c_{A}^{3}(\Delta)],$$

$$c_{A}^{2}(\Delta) = \sum_{(\pm, \dots, \pm)} I_{A}(c_{1} \pm, \dots, \pm)(-1)^{\Phi(\pm, \dots, \pm)} - \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in [m], \ \theta \text{ солержит } \Delta \\ \text{int } (\theta) \cap e \neq \theta}} c_{A}^{2}(\theta) + \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in [m], \ \theta \text{ солержит } \Delta \\ \text{int } (e[\theta \cup \{0^{+}\}\}) \cap e \neq \theta}} c_{A}^{4}(\theta),$$

$$c_{A}^{3}(\Delta) = -\sum_{(\pm, \dots, \pm)} I_{A}(e_{1} \pm, \dots, \pm)(-1)^{\Phi(\pm, \dots, \pm)} - \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in [m], \ \theta \text{ солержит } \Delta \\ \text{int } (e[\theta \cup \{0^{+}\}\}) \cap e \neq \theta}} c_{A}^{4}(\theta),$$

$$c_{A}^{4}(\Delta) = \frac{1}{2} \sum_{m} (-1)^{m} \sum_{\substack{\theta \in [m], \ \theta \text{ солержит } \Delta \\ \text{int } (e[\theta \cup \{0^{+}\}\}) \cap e \neq \theta}} c_{A}^{4}(\theta).$$

(Если k = 0, то $c_A^1(\Delta) = 0$).

Шаг 4. Пусть $\Delta \in [k]$ с нечетным k. Выберем точку e, лежащую в любой гиперплоскости Δ и не лежащую в любой другой гиперплоскости $\mathcal{E} \cup \{e_0\}$. Выберем точку g, содержащуюся в каждой гиперплоскости Δ и в e_0 , но не лежащую в любой другой гиперплоскости \mathcal{E} . Определим точки $(e, \pm, ..., \pm)$ и $(g, \pm, ..., \pm)$ как в шагах 1 и 2. Выберем гиперплоскость O'(e) так, чтобы $e \in \mathcal{E}X(e_0, O'(e))$. Положим

$$c_A^1(\Delta) = -\sum_{(\pm,\dots,\pm)} I_A(e,\pm,\dots,\pm)(-1)^{\Phi(\pm,\dots,\pm)} + \\ + \frac{1}{2} \sum_m (-1)^m \left[\sum_{\substack{\theta \in [m], \theta \text{ codepment } \Delta \\ \text{Int } (\theta) \cap c \neq \theta}} c_A^1(\theta) - \sum_{\substack{\theta \in [m], \theta \text{ codepment } \Delta \\ \text{Int } (e(\theta \cup O')) \cap a \neq \theta}} c_A^2(\theta) - \\ \sum_{\substack{\theta \in [m], \theta \text{ codepment } \Delta \\ \text{Int } (e(\theta \cup O')) \cap a \neq \theta}} c_A^3(\theta) + \sum_{\substack{\theta \in [m] \\ \theta \text{ codepment } \Delta \\ \theta \in [m], \theta \text{ codepment } \Delta}} c_A^4(\theta) \right] + \frac{1}{2} c_A^4(\Delta),$$

$$c_A^2(\Delta) = \frac{1}{2} \sum_m (-1)^m \sum_{\substack{\theta \in [m], \theta \text{ codepment } \Delta \\ \theta \in [m], \theta \text{ codepment } \Delta}} [c_A^2(\theta) - c_A^4(\theta)] + \frac{1}{2} c_A^4(\Delta),$$

$$c_A^3(\Delta) = \frac{1}{2} \sum_m (-1)^m \sum_{\theta \in [m], \theta \text{ содержит } \Delta} \left[c_A^3(\theta) - c_A^4(\theta) \right] + \frac{1}{2} c_A^4(\Delta),$$

$$c_A^4(\Delta) = \sum_{(\pm, \dots, \pm)} l_A(g, \pm, \dots, \pm)(-1)^{\Phi(\pm, \dots, \pm)} + \frac{1}{2} \sum_{m} (-1)^m \sum_{\substack{\theta \in [m], A \text{ codephist } \Delta \\ |n|}} c_A^4(\theta),$$

Шаг 5. Для всех Δ положим

$$d_A^1(\Delta) = \frac{1}{2} [c_A^1(\Delta) + c_A^3(\Delta)], \quad d_A^2(\Delta) = \frac{1}{2} [c_A^2(\Delta) - c_A^3(\Delta)].$$

ABSTRACT. In previous papers the author derived generalizations of Ambartzumian's combinatorial formulae. Now she obtaines their dual versions. These dual formulae calculate measures of polyhedral sets in \mathbb{R}^n by means of certain combinatorial coefficients and measures of some special polyhedral sets.

ЛИТЕРАТУРА

- 1. R. V. Ambartzumian, Combinatorial Integral Geometry, Wiley, New York, 1982.
- 2. Р. В. Амбарцумян, "О комбинаторных основаниях интегральной геометрии", Изв. АН Арм. ССР, Математика, т. 16, №4, стр. 285 292, 1981.
- 3. A. Baddeley, "Combinatorial foundations of stochastic geometry", Proc. of London Math. Soc, vol. 42, part 1, pp. 151 177, 1981.
- 4. G. Yu. Panina, "Many-dimensional combinatorial Ambartzumian's formulae", Math. Nachr., vol. 159, pp. 271 277, 1992.
- 5. G. Yu. Panina, "Generalized Ambartzumian's formulae", Math. Nachr., (в печати).

22 Июня 1993

Институт информации и автоматизации Санкт-Петербург