ОБЩАЯ ГРАНИЧНАЯ ЗАДАЧА В ДВУГРАННОЙ ОБЛАСТИ ДЛЯ СИСТЕМ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ

А. А. Андрян

Известия Национальной Академии Наук Армении. Математика, том 28, №2, 1993

Пусть M - класс вектор-функций $u(x,t) \in C^{\infty}(\mathbb{R}^n \times \Pi_{\alpha})$, аналитических в $t \in \Pi_{\alpha} = \{t | 0 < \arg t < \alpha < \pi\}$ и имеющих полиномиальный рост по (x,t). Пусть $A(\xi)$, $\xi \in \mathbb{R}^n$ - квадратная матрица порядка m с полиномиальными элементами. Для системы

$$\frac{\partial u}{\partial t} = A(i\frac{\partial}{\partial x})u, \quad u \in M, \quad (x,t) \in \mathbb{R}^n \times \Pi_\alpha \tag{1}$$

определим строго регулярные и регулярные случаи. Пусть r обозначает порядок регулярности системы (1), а $B(\xi)$ - полиномиальная матрица размерности $r \times m$. Поставим граничное условие :

$$B(i\frac{\partial}{\partial x})u(x,0) = f(x), \quad f(x) \in M. \tag{2}$$

Получены условия корректности задачи (1), (2) в строго регулярном случае. В регулярном случае аналогичные условия гарантируют существование решения.

Также изучена однородная ($f \equiv 0$) задача.

0. ВВЕДЕНИЕ

Пусть $\Pi_{\alpha}=\{t|0<\arg t<\alpha<\pi\}, \Pi_{\alpha}^{*}=\{\lambda|\frac{\pi}{2}\leq\arg\lambda\leq\frac{3}{2}\pi-\alpha\}$ - угловые области в комплексной плоскости Π_{α} а $A(\xi),\ \xi=(\xi_{1},...,\xi_{n})\in\mathbb{R}^{n}$ - квадратная матрица порядка m_{α} элементы которой полиномы с постоянными коэффициентами.

Обозначим через $M_{\gamma}, \gamma \in R$, класс вектор-функций $u(x,t) \in C^{\infty}(R^n \times \Pi_a)$, аналитических по $t \in \Pi_a$ и удовлетворяющих неравенствам

$$|(i\frac{\partial}{\partial x})^k u(x,t)| \le c_k (1+|x|)^{\gamma} (1+|t|)^{\beta}, \quad (x,t) \in \mathbb{R}^n \times \Pi_{\alpha}, \tag{1}$$

где $k=(k_1,...,k_n)$ - мультийндекс, $(i\frac{\partial}{\partial x})^k=i^{[k]}\frac{\partial^{[k]}}{\partial x_1^{k_1}...\partial x_n^{k_n}}, |k|=k_1+...+k_n,$ $i=\sqrt{-1},\,\beta\in R,\,c_k\geq 0.$

Положим

$$M = \bigcup_{\gamma \in R} M_{\gamma}.$$

Рассмотрим систему

$$\frac{\partial u}{\partial t} = A(i\frac{\partial}{\partial x})u, \quad (x,t) \in \mathbb{R}^n \times \Pi_\alpha, \tag{2}$$

гле $k=(k_1,\dots,k_n)$ - мультииндекс, $(i\frac{\partial}{\partial x})^k=\frac{1}{\partial x_1^{k_1}\dots\partial x_n^{k_n}}, |k|=\sum_{i=1}^n k_i$ и $u=(u_1,\dots,u_m)\in M$.

Обозначим через $\lambda_1(\xi),...,\lambda_m(\xi)$ корни (с учетом их кратности) характеристического уравнения

$$P_m(\xi,\lambda) = \det(\lambda E_m - A(\xi)) = 0, \tag{3}$$

соответствующие системе (2), где E_m - единичная матрица порядка m. Пусть $\rho(\xi)$ - число корней уравнения (3), принадлежащих Π_α^* . Система (2) называется строго регулярной, если

 $a) \
ho(\xi) = const = r$ для любых $\xi \in R^n$ и регулярной, если

b) $\rho(\xi) = const = r$ за исключением быть может конечного числа точек. Для определенности предположим, что $\rho(\xi) = r$ для любых $\xi \in R^n \setminus \{O\}$, $\rho(0) > r$, тогда система (2) является регулярной (это не ограничивает общности). Пусть $B(\xi)$ - полиномиальная матрица с постоянными коэффициентами размерности $r \times m$. Для решения и системы (2) рассматривается граничная

Задача А.

$$B(i\frac{\partial}{\partial x})u(x,0) = f(x), \quad x \in \mathbb{R}^n, \tag{4}$$

где $f = (f_1, ..., f_r) \in M$.

Введем матрицу-функцию

$$P^{+}(\xi) = \frac{1}{2\pi i} \int_{\gamma^{+}(\xi)} (\lambda E_{m} - A(\xi))^{-1} d\lambda, \qquad (5)$$

где замкнутый контур $\gamma^+(\xi)$ содержит только те корни характеристического уравнения (3), которые принадлежат области $C\Pi^*_{\alpha}=\Pi\setminus\Pi^*_{\alpha}$.

Основной результат работы следующий.

Теорема 1. Пусть система (2) строго регулярна. Тогда условис

$$\operatorname{rank}\begin{pmatrix} P^{+}(\xi) \\ B(\xi) \end{pmatrix} = m \quad \partial_{\Lambda R} \, \operatorname{Ambbuz} \, \xi \in \mathbb{R}^{n} \tag{6}$$

является необходимым и достаточным для существования и единственности решения Задачи А. Если $f \in M_{\gamma}$, то и $\in M_{\gamma}$. Если система (2) регулярна $(\rho(0) > r)$ и условие (6) нарушается только в конечном числе точек, то неоднородная Задача А разрешима для любых f, а однородная Задача А имеет бесконечное число линейно независимых решений.

§1. ВСПОМОГАТЕЛЬНЫЕ ПРЕДЛОЖЕНИЯ

1. Рассмотрим дифференциальное уравнение первого порядка

$$\frac{\partial u(t)}{\partial t} - \lambda u(t) = f(t), \tag{1.1}$$

гле $\lambda \in \Pi$, $f \in M$ и $u \in M$ - искомая функция.

Имеет место

Исмма 1.1. Уравнение (1.1) разрешимо для любой функции f(t). Если $\lambda \in \Pi_{\alpha}^*$, то однородное уравнение имеет одно нетривиальное решение; если же $\lambda \in C\Pi_{\alpha}^*$, то однородное уравнение имеет только нулевое решение.

Доказательство. Утверждение леммы относительно однородного уравнения очевидно. Пусть $\lambda \in \Pi_{\alpha}^*$. Решение уравнения (1.1) имеет вид

$$u(t) = \int_0^t e^{\lambda(t-\tau)} f(\tau) d\tau \in M,$$

где интегрирование производится по отрезку [0,t].

Нусть теперь $\lambda \in C\Pi_{\alpha}^*$. Введснисм новых функций $v(t) = u(\frac{t}{\lambda}), g(t) = \frac{1}{\lambda} f(\frac{t}{\lambda})$ уравнение (1.1) запишется следующим образом :

$$\frac{\partial v(t)}{\partial t} - v(t) = g(t), \quad t \in \lambda \Pi_{\alpha} = \Pi_{\alpha}^{\lambda} = \{z | z = \lambda t, \quad t \in \Pi_{\alpha}\}. \tag{1.2}$$

Так как $-\frac{\pi}{2}-\alpha<$ агд $\lambda<\frac{\pi}{2}$ то по крайней мере одна сторона угла Π^{λ}_{α} будет находиться в правой полуплоскости. Пусть это $L_{o}=\{z|z=\lambda t,\ \arg t=0\}.$ Гогда, оченидно, что фулкция

$$v(t) = -\int_{t}^{\infty} e^{t-\tau} g(\tau) d\tau = -\int_{t_{t_0}} e^{-\eta} g(t+\eta) d\eta \in M,$$

где интегрирование производится по лучу $[t,\infty) \mid\mid L_o$, является требуемым решением. Аналогично поступаем и в случае $L_1=\{z|z=\lambda t,\ \arg t=\alpha\}$. Лемма 1.1 доказана.

Рассмотрим теперь систему

$$\frac{\partial u(t)}{\partial t} - A u(t) = f(t), \quad t \in \Pi_{\alpha}, \tag{1.3}$$

где A - постоянная квадратная матрица порядка n и u(t), $f(t) \in M$. Используя жорданову форму матрицы A и Лемму 1.1 легко установить разрешимость системы (1.3) и подсчитать число линейно независимых решений однородной системы.

II. В произвольной точке $\xi \neq 0$ корни уравнения (3) будем нумеровать так, чтобы $\lambda_1(\xi),\dots,\lambda_r(\xi)\in \Pi_\alpha^*$ и

 $\lambda_{r+1}(\xi), \ldots, \lambda_m(\xi) \in C\Pi_a^*$. Очевидно

$$|\lambda_j(\xi)| \le c_o(1+|\xi|^2)^{m_o}, \quad j=1,\ldots,m.$$
 (1.4)

Пусть Го обозначает границу угла П.

Лемма 1.2. В случие а) справедлива оценка

$$\operatorname{dist}(\lambda_{j}(\xi), \Gamma_{o}) \ge c(1 + |\xi|^{2})^{s_{o}}, \quad \xi \in \mathbb{R}^{n}. \tag{1.5}$$

a a cayuac b)

$$dist(\lambda_{j}(\xi), \Gamma_{o}) \ge c|\xi|^{s_{1}}(1+|\xi|^{2})^{s_{2}}, \quad \xi \in \mathbb{R}^{n} \setminus \{O\}, \tag{1.6}$$

 $j=r+1,\ldots,m.$

Доказательство. Начнем со случая а). Введем множество

$$E_1 = \{(x, y, \xi, \ldots) | \ x = 1 + |\xi|^2, \ y = |\lambda - \lambda_j(\xi)|^2, \ P_m(\xi, \lambda_j(\xi)) = 0,$$
 $j = r + 1, \ldots, m, \ \lambda = i \rho$ или $\lambda = \rho e^{i\alpha}, \ \rho \geq 0\}.$

которое очевилно является полуалгебраическим и рассмотрим полуалгебраическую функцию одной переменной \boldsymbol{x} :

$$f(x) = \inf\{y | (x, y, \xi, \ldots) \in E_1\}.$$

Поскольку при больших x функция f(x) принимает только конечные положительные значения, то имеем представление [1]

$$f(x) = A x^{a} (1 + o(1)), \quad x \to +\infty, \quad A > 0.$$

Это означает, что $y \ge \frac{1}{2} x^a$ при $x \gg 1$, следовательно неравенство (1.5) имеет место при $|\xi| \gg 1$. Воспользовавшись непрерывностью корня $\lambda_j(\xi)$, легко получаем оценку (1.5) для ограниченных $|\xi|$.

В случае регулярной системы (2) введем множества

$$E_2 = \{(x, y, \xi, \ldots) | x | \xi|^2 = 1, \quad y = |\lambda - \lambda_j(\xi)|^2, \quad P_m(\xi, \lambda_j(\xi)) = 0,$$
$$j = r + 1, \ldots, m, \quad \lambda = i\rho \quad \text{or} \quad \lambda = \rho e^{i\alpha}, \quad \rho \ge 0\}$$

и установим неравсиство (1.6) в окрестности точки $\xi=0$. Остальные ξ рассматривались выше. Лемма 1.2 доказана.

Помма 1.3. Элементы $p_+^+(\xi)$ матрицы $P^+(\xi)$ принадлежат $C^\infty(R^n)$ в случае a), a в случае b) принадлежат $C^\infty(R^n \setminus \{0\})$ и удовлетворяют, соответственно, оценкам :

a)
$$\left|\frac{\partial^k}{\partial \xi^k} p_{ij}^+(\xi)\right| \le c_k (1+|\xi|)^{m_k}, \quad \xi \in \mathbb{R}^n,$$
 (1.7)

b)
$$\left| \frac{\partial^k}{\partial \xi^k} p_{ij}^+(\xi) \right| \le c_k |\xi|^{n_k} (1 + |\xi|)^{p_k}, \quad \xi \ne 0, \quad n_k \ge 0.$$
 (1.8)

Доказательство. Гладкость элементов матрицы $P^+(\xi)$ следует из формулы (5) и из того, что множества $\{\lambda_1(\xi),\dots,\lambda_r(\xi)\},\{\lambda_{r+1}(\xi),\dots,\lambda_m(\xi)\}$ разъединены для любых $\xi \in R^n$ в случае а) и для $\forall \xi \in R^n \setminus \{O\}$ в случае b). Введем полиномы :

$$Q(\xi,\lambda) = \prod_{j=1}^{r} (\lambda - \lambda_j(\xi)) = \lambda^r + \sum_{k=1}^{r} q_k(\xi) \lambda^{m-k};$$

$$R(\xi,\lambda) = \prod_{j=r+1}^{m} (\lambda - \lambda_j(\xi)) = \lambda^{m-r} + \sum_{k=1}^{r} r_k(\xi) \lambda^{m-r-k}.$$
(1.9)

Имесм

$$R(\xi,\lambda) + R_1(\xi,\lambda)(\lambda - \lambda_1(\xi)) = R(\xi,\lambda_1(\xi)), \tag{1.10}$$

где $R_1(\xi,\lambda)$ - некоторый полином от λ . Применяя (1.10), получим

$$P^{+}(\xi) = \frac{1}{2\pi i} \int_{\gamma^{+}(\xi)} \frac{a(\xi,\lambda)}{P_{m}(\xi,\lambda)} d\lambda =$$

$$= \frac{1}{2\pi i R(\xi,\lambda_{1}(\xi))} \times \int_{\gamma^{+}(\xi)} a(\xi,\lambda) \frac{R(\xi,\lambda) + R_{1}(\xi,\lambda)(\lambda - \lambda_{1}(\xi))}{R(\xi,\lambda)(\lambda - \lambda_{1}(\xi)) \cdots (\lambda - \lambda_{r}(\xi))} d\lambda =$$

$$= \frac{1}{2\pi i R(\xi,\lambda_{1}(\xi))} \int_{\gamma^{+}(\xi)} \frac{a(\xi,\lambda)}{Q(\xi,\lambda)} d\lambda +$$

$$+ \frac{1}{2\pi i R(\xi,\lambda_{1}(\xi))} \int_{\gamma^{+}(\xi)} a(\xi,\lambda) \frac{R_{1}(\xi,\lambda)}{R(\xi,\lambda)(\lambda - \lambda_{2}(\xi)) \cdots (\lambda - \lambda_{r}(\xi))} d\lambda =$$

$$= \frac{1}{2\pi i R(\xi,\lambda_{1}(\xi))} \int_{\gamma^{+}(\xi)} \frac{a(\xi,\lambda)R_{1}(\xi,\lambda)}{R(\xi,\lambda)(\lambda - \lambda_{2}(\xi)) \cdots (\lambda - \lambda_{r}(\xi))} d\lambda,$$

$$a(\xi,\lambda) = (\lambda E_{m} - A(\xi))^{-1} P_{m}(\xi,\lambda)$$

Преобразовывая интеграл (1.11) таким же образом, получим

$$P^{+}(\xi) = \frac{1}{2\pi i \omega(\xi)} \int_{\gamma^{+}(\xi)} \frac{a(\xi, \lambda) r(\xi, \lambda)}{R(\xi, \lambda)} d\lambda, \qquad (1.12)$$

где $r(\xi,\lambda)$ - вполне определенный полином от λ с коэффициентами, имеющими степенной рост, а

$$\omega(\xi) = \prod_{j=1}^{r} R(\xi, \lambda_j(\xi)). \tag{1.13}$$

Используя Лемму 1.2 для оценки функции $\omega(\xi)$ и вычисляя интеграл в (1.12) по теоремс о вычетах в точке $\lambda=\infty$, легко получим оценки (1.7), (1.8) при k=0. Производные оцениваются аналогично. Лемма 1.3 доказана.

Введем матрины-функции

$$V^{-}(\xi, t) = e^{A(\xi)t} P^{-}(\xi), \quad V^{+}(\xi) = e^{A(\xi)t} P^{+}(\xi), \quad t \in \Pi_{u},$$

$$P^{-}(\xi) = E_{m} - P^{+}(\xi) = \frac{1}{2\pi i} \int_{\gamma^{-}(\xi)} (\lambda E_{m} - A(\xi))^{-1} d\lambda, \quad (1.14)$$

где замкнутый контур $\gamma^-(\xi)$ окружает только те корни уравнения (3), которые принадлежат Π^*_α . Из представления $V^-(\xi,t)=e^{P^-(\xi)A(\xi)t}P^-(\xi)$, оценок (1.7), (1.8) и того, что все характеристические корни матрицы $P^-(\xi)A(\xi)$ принадлежат области Π^*_α , непосредственно следует

Пемма 1.4. Матрица-функция $V^-(\xi,t)$ удовлетворяет, соответственно, в случаях a) и b) оценкам :

a)
$$\left| \frac{\partial^k V^-(\xi,t)}{\partial \xi^k} \right| \le c_k (1+|\xi|^2)^{m_k} (1+|t|)^{n_k},$$
 (1.15)

b)
$$\left|\frac{\partial^{k} V^{-}(\xi,t)}{\partial \xi^{k}}\right| \leq c_{k} |\xi|^{-p_{k}} (1+|\xi|^{2})^{q_{k}} (1+|t|)^{r_{k}}, \quad p_{k} \geq 0.$$
 (1.16)

Обозначим через S и S', соответственно, пространство Шварца и ему сопряженное. Включение $M(R^n \times \Pi_\alpha) \subset S'(R^n)$ при каждом фиксированном $t \in \Pi_\alpha$ и очевидно имеет место оценка

$$|\langle u(x,t), \varphi(x) \rangle| \leq c||\varphi||_{p(\gamma)}(1+|t|)^{\beta}, \quad \varphi \in S,$$
 (1.17)

где $||\cdot||_{p(\gamma)}$ - p-ая полунорма в $S(R^n)$.

()бозначим через $u(\xi,t)$ или $F[u(x,t)](\xi,t)$ преобразование Фурье в x функции $u(x,t)\in M(R^n\times\Pi_\alpha)$, рассматривая ее как обобщенную функцию. Образ Фурье системы (2) имеет вид

$$\frac{\partial \tilde{u}(\xi,t)}{\partial t} = A(\xi)u(\xi,t), \quad t \in \Pi_{\alpha}. \tag{1.18}$$

Произвольное решение системы (1.18) задастся формулой

$$u(\xi, t) = e^{\Lambda(\xi)t} u(\xi, 0), \quad t \in \Pi_{\alpha}.$$
 (1.19)

Нас интересуют только те решения, которые удовлетворяют оценке (1.17). Имеет место

Помма 1.5. Пусть $u(\xi,t)$, определенная формулой (1.19), удовлетворяет оценка $\kappa c(1.17)$. Тогда

$$P^{+}(\xi)u(\xi,0) = 0$$
 s R^{n} , (1.20)

в случас а) и

$$P^{+}(\xi)u(\xi,0) = 0 \quad \sigma \quad R^{n} \setminus \{O\},$$
 (1.21)

в случас в).

Доказательство. Доказательства формул (1.20), (1.21) идентичны, (они носят локальный характер). Поэтому докажем только формулу (1.20). Перепишем (1.19) в виде

$$u(\xi,t) = V^{-}(\xi,t)P^{-}(\xi)u(\xi,0) + V^{+}(\xi,t)P^{+}(\xi)u(\xi,0), \quad t \in \Pi_{\alpha}.$$
 (1.22)

В силу Леммы 1.4 первое слагаемое в (1.22) удовлетворяет неравенству (1.17). В произвольный точке $\xi_o \in R^n$ пусть $\mathrm{Re}\lambda_{r+j}(\xi_o) > 0$, $j = 1, \ldots, k$ (k зависит от ξ_o) и $\mathrm{Re}\lambda_{r+j}(\xi_o) \leq 0$, $j = k+1, \ldots, m-r$. Очевидно существуют числа $\delta > 0$ и $\varepsilon_o > 0$ такие, что

$$\operatorname{Re} \lambda_{r+j}(\xi) > \varepsilon_o, \quad j = 1, \quad k, \quad |\xi - \xi_o| < \delta, \tag{1.23}$$

$$\operatorname{Re} \lambda_{r+j}(\xi) < \frac{\varepsilon_o}{2}, \quad \operatorname{Re} \left(e^{i\alpha} \lambda_{r+j}(\xi) \right) > \varepsilon_o, \quad j = k+1, \dots, m-r, \quad |\xi - \xi_o| < \delta.$$

$$\tag{1.24}$$

Матрицу $P^{+}(\xi)$ представим в виде

$$P^{+}(\xi) = P_{1}^{+}(\xi) + P_{2}^{+}(\xi),$$

гле $P_1^+(\xi)$ и $P_2^+(\xi)$ соответствуют корням $\lambda_{r+1}(\xi_o), \ldots, \lambda_{r+k}(\xi_o)$ и $\lambda_{r+k+1}(\xi_o), \ldots, \lambda_m(\xi_o)$, соответственно.

Имеют место следующие оценки:

$$|e^{-A(\xi)t}I_1^{j+}(\xi)| \le c e^{-\epsilon_o t}, \quad \arg t = 0, \quad |\xi - \xi_o| < \delta,$$

$$|e^{A(\xi)t}P_2^{+}(\xi)| \le c e^{\frac{\epsilon_o t}{2}t}, \quad \arg t = 0, \quad |\xi - \xi_o| < \delta,$$

$$|e^{-A(\xi)t}I_2^{j+}(\xi)| \le c e^{-\epsilon_o |t|}, \quad \arg t = \alpha, \quad |\xi - \xi_o| < \delta.$$

$$(1.25)$$

При $\arg t = 0$ и $|\xi - \xi_o| < \delta$ перепишем (1.22) в виде

$$u(\xi,t) = V^{-}(\xi,t)P^{-}(\xi)u(\xi,0) + e^{\Lambda(\xi)t}P_{1}^{+}(\xi)u(\xi,0) + e^{\Lambda(\xi)t}P_{2}^{+}(\xi)u(\xi,0). \tag{1.26}$$

Из (1.25) имеем

$$|< P_1^+(\xi)u(\xi,0), \varphi(\xi)>|\leq c(1+t)^{\beta}e^{-\frac{\epsilon_{\beta}}{2}t}||\varphi||_{p} \quad \forall \varphi \in C_o^{\infty}(|\xi-\xi_o|<\delta).$$

() т с юда при $t \to +\infty$ получаем

$$P_1^+(\xi)u(\xi,0) = 0, \quad |\xi - \xi_o| < \delta.$$
 (1.27)

Принимая во внимание аналитичность по $t \in \Pi_{\alpha}$ и (1.27), получаем

$$u(\xi,t) = V^{-}(\xi,t)P^{-}(\xi)u(\xi,0) + e^{\Lambda(\xi)t}P_{2}^{+}(\xi)u(\xi,0). \tag{1.28}$$

Рассматривая (1.28) при $\arg t = \alpha$, $|\xi - \xi_o| < \delta$ имеем

$$P_2^+(\xi)u(\xi,0) = 0, \quad |\xi - \xi_o| < \delta.$$
 (1.29)

Соотношение (1.20)следует из (1.27), (1.29). Лемма 1.5 доказана.

В силу Леммы 1.5 из (1.22) следует

$$u(\xi,t) = V^{-}(\xi,t)P^{-}(\xi)u(\xi,0) = V^{-}(\xi,t)u(\xi,0). \tag{1.30}$$

111. Пусть система (2) строго регулярна и имеет место условие (6). Рассмотрим алгебраическую систему уравнений

$$P^{+}(\xi)v_{j}(\xi)=0, \quad B(\xi)v_{j}(\xi)=e_{j}, \quad e_{j}=(0,\ldots,0,1,0,\ldots,0), \quad (1.31)$$

Помма 1.6. Система (1.31) имеет сдинственное решение, которос принадлежит $C^\infty(R^n)$ и удовлетворяет оценко

$$\left|\frac{\partial^k}{\partial \xi^k} v_j(\xi)\right| \le c_k (1 + |\xi|^2)^{m_k}. \tag{1.32}$$

Доказательство. Единственность очевидна. Заметим, что

$$P^{+}(\xi) = \frac{\mu(\xi, \lambda_{1}(\xi), \dots, \lambda_{m}(\xi))}{\omega(\xi)}$$
(1.33)

где элементы $\mu(\cdots)$ - полиномы от сноих аргументов, а $\omega(\xi)$ определена формулой (1.13) (см. доказательство Леммы 1.3). Пусть l - число миноров $\alpha_k(\xi)$ порядка m матрицы в (6). Ноложим

$$\alpha(\xi) = \sum_{k=1}^{l} |\alpha_k(\xi)|^2.$$
 (1.34)

В силу (6), $\alpha(\xi) > 0$, $\xi \in \mathbb{R}^n$. Используя представление (1.33), оценку функции $\omega(\xi)$ по Лемме 1.2 и теорему Зайденберга-Тарского, легко показать, что [2]

$$\alpha(\xi) > c(1+|\xi|^2)^s, \quad c > 0, \quad s \in R.$$
 (1.35)

Очевидно, что наибольший по модулю минор $\alpha_{k_a}(\xi)$ (порядка m) удовлетворяет неравенству (1.35) с некоторой постоянной c, не зависящей от ξ . Заметим также, что [3]

$$\operatorname{rank} P^{+}(\xi) = m - r \quad \forall \xi \in \mathbb{R}^{n}, \tag{1.36}$$

и поэтому система (1.31) эквивалентна системе

$$A_{k_o}(\xi)v_j(\xi) = b_j, \quad b_j = (0, \dots, 0, e_j),$$
 (1.37)

где $\det A_{k_o}(\xi) = \alpha_{k_o}(\xi) \neq 0$ в некоторой окрестности ξ . Из (1.37) следует, что $v_j(\xi) = A_{k_o}^{-1}(\xi)b_j \in C^\infty$ и удовлетворяет оценке (1.32) при k = 0. Для оценки производных $v_j(\xi)$ дифференцируем (1.31) по ξ_k , получим

$$P^{+}(\xi)\frac{\partial v_{j}}{\partial \xi_{k}} = -\frac{\partial P^{+}}{\partial \xi_{k}}v_{j}, \quad B(\xi)\frac{\partial v_{j}}{\partial \xi_{k}} = -\frac{\partial B}{\partial \xi_{k}}v_{j}.$$

Учитывая, что правая часть системы удовлетворяет неравенству (1.32), аналогично проверяется перавенство (1.32) для — Лемма 1.6 доказана.

Замечание 1.1. Если предположим, что условие (6) нарушается в единственной точке $\xi=0$, то, поступая аналогично, получим оценку

$$\left|\frac{\partial^k}{\partial \xi^k} u_j(\xi)\right| \le c_k |\xi|^{m_k} (1+|\xi|^2)^{n_k}, \quad m_k \le 0. \tag{1.38}$$

Пусть теперь система (2) регудярна (напомним, что $\rho(\xi) = r$, $\xi \neq 0$, $\rho(0) > r$). Очевидно условие (6) не выполнено в точке $\xi = 0$, так как ганк $P^+(0) = m - \rho(0) < m - r$. Условие (6) все еще предполагается для точек $\xi \neq 0$. Тогда ясно, что оценка (1.32) для решения системы (1.31) в этом случае принимает вид (1.38).

IV. Введем матрицу-функцию

$$P_n^+(\xi) = \frac{1}{2\pi i} \int_{\gamma_n(\xi)} (\lambda E_m - A(\xi))^{-1} d\lambda, \quad |\xi| < \delta, \tag{1.39}$$

где замкнутый контур $\gamma_o(\xi)$ содержит те и только те корни характеристического уравнения (3), которые при $\xi=0$ принадлежат области $C\Pi_o^*$, $\delta>0$ достаточно мало. Очевидно, что

$$P_o^+(\xi) \in C^\infty(|\xi| < \delta)$$
 и $\operatorname{rank} P_o^+(\xi) = m - \rho(0)$,
$$\operatorname{rank}(P^+(\xi) - P_o^+(\xi)) = \rho(0) - r \operatorname{при} |\xi| < \delta.$$

Справедлива [4]

Лемма 1.7. Имеет место следующая формула:

$$\operatorname{rank}\left(\begin{array}{c} P_o^+(\xi) \\ B(\xi) \end{array}\right) = m - \rho(0) + r, \quad 0 < |\xi| < \delta. \tag{1.40}$$

Доказательство. При $0 < |\xi| < \delta$ имеем

$$m = \operatorname{rank} \begin{pmatrix} P^{+}(\xi) \\ P^{+}_{o}(\xi) \\ \mathcal{B}(\xi) \end{pmatrix} = \operatorname{rank} \begin{pmatrix} P^{+}(\xi) - P^{+}_{o}(\xi) \\ P^{+}_{o}(\xi) \\ \mathcal{B}(\xi) \end{pmatrix} \leq \operatorname{rank} (P^{+}(\xi) - P^{+}_{o}(\xi)) + \operatorname{rank} \begin{pmatrix} P^{+}_{o}(\xi) \\ \mathcal{B}(\xi) \end{pmatrix},$$

следовательно

$$\operatorname{rank}\left(\begin{array}{c} P_o^+(\xi) \\ B(\xi) \end{array}\right) \ge m - \rho(0) + r.$$

Заметим, что

$$\operatorname{rank}\left(\begin{array}{c} P_o^+(\xi) \\ B(\xi) \end{array}\right) \leq \operatorname{rank} P_o^+(\xi) + \operatorname{rank} B(\xi) \leq m - \rho(0) + r,$$

поэтому формула (1.40) верна. Лемма 1.7 доказана.

Рассмотрим теперь систему

$$P^{+}(\xi)v(\xi) = 0, \quad H(\xi)v(\xi) = \alpha(\xi),$$
 (1.41)

где $\alpha(\xi)$ - заданный функционал , сосредоточенный в точке $\xi=0$. Из условия (6) (напомним, что (6) предполагается для любых $\xi\neq 0$, а система (2) - строго регулярна) следует, что решение системы (1.41) сосредоточено в точке $\xi=0$. Покажем существование решения системы (1.41). В некоторой окрестности точки $\xi=0$ система (1.41) эквивалентна системе (см. (1.37))

$$C(\xi)v(\xi) = \beta(\xi), \tag{1.42}$$

где $\beta(\xi) = (0, \alpha(\xi))$ - m-мерный вектор-функционал, сосредоточенный в точке $\xi = 0$ и $\det C(\xi) \neq 0$ для любых $\xi \neq 0$.

Предположим вначале, что n=1. Тогда согласно [5] имеем представление

$$C(\xi) = R(\xi)D(\xi)C_o(\xi), \tag{1.43}$$

где $R(\xi)$ - рациональная матрица с $\det R(\xi)=1$, $\det C_o(\xi)\neq 0$ для $|\xi|<\varepsilon$, $C_o(\xi)\in C^\infty(|\xi|<\varepsilon)$ а $D(\xi)=\{\delta_j^l\xi^k\}$ - диагональная матрица $(\delta_j^l$ - символ Кронеккера).

Вводя обозначения $G_o(\xi)v(\xi)=w(\xi),\quad \beta_1(\xi)=R^{-1}(\xi)\beta(\xi),$ сведем систему (1.42) к разрешимой системе

$$\xi^{k_j} w_i(\xi) = \beta_{1i}(\xi), \quad (w_1, \dots, w_m) = w, \quad (\beta_{11}(\xi), \dots, \beta_{1m}(\xi)) = \beta_1(\xi). \quad (1.44)$$

Однородная ($\alpha(\xi) \equiv 0$) система (1.41) имеет $k_1 + \cdots + k_m \geq 1$ линейно независимых решений.

Пусть теперь $n \geq 2$, $\xi = (\xi_1, \xi')$, $\xi' = (\xi_2, \dots, \xi_n)$. Представим функционал $\beta(\xi)$ из (1.12) следующим образом :

$$\beta(\xi) = \sum_{j_2 < \nu_2, \dots, j_n < \nu_n} a_{j_2, \dots, j_n}(\xi_1) \delta^{(j_2)}(\xi_2) \otimes \dots \otimes \delta^{(j_n)}(\xi_n), \qquad (1.15)$$

где $\delta^{(j)}$ обозначает производную порядка j функционала Дирака $\delta(\cdot)$. Решение (1.42) будем искать в виде (1.45)

$$v(\xi) = \sum_{j_2 < \nu_2, \dots, j_n < \nu_1, \dots, j_n (\xi_1) \delta^{(j_2)}(\xi_2) \otimes \dots \otimes \delta^{(j_n)}(\xi_n)} c_{j_1, \dots, j_n (\xi_1) \delta^{(j_2)}(\xi_2)} \otimes \dots \otimes \delta^{(j_n)}(\xi_n)$$
 (1.46)

с неизвестными $c_{j_2,\ldots,j_n}(\xi_1)$.

Подставляя $v(\xi)$ из (1.46) в (1.42) и используя линейную независимость системы функционалов $\{b^{(j_2)}(\xi_2)\otimes\cdots\otimes b^{(j_n)}(\xi_n)\}_{i=1}^n$ получим систему для определения вектор функционалов $c_{\nu_2,\dots,\nu_n}(\xi_1)$:

$$C(\xi_1,0,\ldots,0)c_{\nu_1,\ldots,\nu_n}(\xi_1)=a_{\nu_2,\ldots,\nu_n}(\xi_1),$$

которая исследована выше. Остальные функционалы $c_{j_2,\dots,j_n}(\xi_1)$ находятся аналогичным образом. Следовательно, система (1.41) имеет решение для любых $\alpha(\xi)$.

Рассмотрим теперь однородную ($\beta(\xi) \equiv 0$) систему (1.42) при n=2. Решение будем искать в виде

$$v(\xi_1, \xi_2) = \sum_{j \le v_2} c_j(\xi_1) \delta^{(j)}(\xi_2), \qquad (1.47)$$

подставляя которое в (1.42), получим

$$C(\xi_1,0)c_{\nu_2}(\xi_1)=0, \quad C(\xi_1,0)c_j(\xi_1)+B_j(c_{j+1}(\xi_1),\ldots,c_{\nu_2}(\xi_1))=0, \quad j\leq \nu_2-1,$$

где $B_j(\cdots)$ - вполне определенные линейные выражения. Очевидно, что эта система допускает ненулевое решение $(c_{\nu_2}(\xi_1) \neq 0)$ и так как целое ν_2 можно взять произвольным, то заключаем, что при n=2 однородная система (1.42) имеет бесконечно много линейно независимых решений. Если $n\geq 3$, то решение однородной системы (1.42) ищем в виде

$$v(\xi_1,\xi_2,\ldots,\xi_n)=\sum_{j_2\leq\nu_2}c_j(\xi_1)\delta^{(j_2)}(\xi_2)\otimes\delta(\xi_3)\otimes\cdots\otimes\delta(\xi_n).$$

Окончательно, получаем следующий результат

Пемма 1.8. Пусть система (2) строго регулярна и условие (6) выполнено за исключением конечного числа точек. Тогда система (1.41) всегда разрешима. ()днородная система (1.41) имеет конечное число линейно независимых решений при n=1 и бесконечно много линейно независимых решений при $n\geq 2$.

Замечание 1.2. Альтернатива получения разрешимости системы (1.41) основывается на подготовительной теореме Мальгранжа. Обозначим $\Delta(\xi) = \det C(\xi)$. Имеем $\Delta(\xi) \in C^{\infty}(|\xi| < \varepsilon)$ и поскольку $\Delta(\xi_1, 0)$ - аналитична относительно ξ_1 можно найти патуральное j такое, что $\Delta(0) = \ldots = \frac{\partial^{j-1}\Delta(0)}{\partial \xi_1^{j-1}} = 0$, однако $\frac{\partial^j \Delta(0)}{\partial \xi_1^j} \neq 0$. Согласно уномянутой теореме имеем представление [1]

$$\Delta(\xi_1, \xi') = a(\xi_1, \xi')(\xi_1^j + a_{j-1}(\xi')\xi_1^{j-1} + \dots + a_o(\xi')), \tag{1.48}$$

где $a_j \in C^\infty(|\xi'|<\varepsilon)$, $a(\xi_1,\xi')\in C^\infty(|\xi|<\varepsilon)$ и $a(0,0)\neq 0$, $a_j(0)=0$. Представим функционал $\beta(\xi)$ в виде

$$\beta(\xi) = \sum a_{j_1,\ldots,j_n}(\xi_1)\delta^{(j_1)}(\xi_1)\otimes\cdots\otimes\delta^{(j_n)}(\xi_n).$$

Пусть $C_1(\xi_1,\xi')$ - матрица, транспонированная к матрице, составленной из алгебраических дополнений элементов матрицы $C(\xi)$, а $k_o > 1$ - целое. Тогда функционал

$$\langle v(\xi_{1}, \xi'), \varphi(\xi_{1}, \xi') \rangle = \sum_{j_{1} \leq \nu_{1}, \dots, j_{n} \leq \nu_{n}} a_{j_{1}, \dots, j_{n}} \langle \delta^{(j_{1}+k_{n})}(\xi_{1}) \rangle$$

$$\langle \delta^{(j_{2})}(\xi_{2}) \otimes \dots \otimes \delta^{(j_{n})}(\xi_{n}), \frac{\xi_{1}^{k_{n}} C_{1}(\xi_{1}, \xi') \varphi(\xi_{1}, \xi')}{a(\xi_{1}, \xi')(\xi_{1}^{j} + a_{j-1}(\xi')\xi_{1}^{j-1} + \dots + a_{n}(\xi'))} >>,$$

$$\forall \varphi \in C_{o}^{\infty}(|\xi| < \varepsilon)$$

является решением системы (1.41).

Предположим теперь, что система (2) регулярна ($\rho(0) > r$), и рассмотрим следующую алгебраическую систему:

$$P_{\sigma}^{+}(\xi)v(\xi) = 0, \quad B(\xi)v(\xi) = \alpha(\xi), \quad |\xi| < \delta,$$
 (1.49)

где $P^+(\xi)$ определена формулой (1.39), а $\alpha(\xi)$ - функционал, сосредоточенный в точке $\xi=0$. Пусть n=1, тогда система (1.49) эквивалентна системе

$$C_o(\xi)v(\xi) = \beta(\xi), \tag{1.50}$$

иле $C_o(\xi) \in C^\infty(|\xi| < \varepsilon)$ - матрица размерности $(m-\rho(0)+r) \times m$ такая, что $\mathrm{rank}C_o(\xi) = m-\rho(0)+r$ при $\xi \neq 0$, а $\beta(\xi) = (0,\alpha(\xi))$. Так как элементы матрицы $C_o(\xi)$ аналитические функции от ξ , то существует постоянная матрица C_1 размерности $(\rho(0)-r) \times m$ такая, что

$$\operatorname{rank}\begin{pmatrix} C_o(\xi) \\ C_1 \end{pmatrix} = m, \quad 0 < |\xi| < \delta.$$

Система

$$C_1 v(\xi) = 0$$
, $C_o(\xi) v(\xi) = \beta(\xi)$

имеет решение (см.(1.42)). Следовательно, система (1.50) также разрешима. Как и выше, случай n ≥ 2 сводится к случаю n = 1. Таким образом, справедлива Лемма 1.9. Пусть система (2) регулярна и имеет место условие (6) за исключением консчного числа точек. Тогда система (1.49) имеет решение и однородная система (1.49) имеет бескопечно много липейно независимых решений.

В предположении, что условие (6) нарушено в единственной точке $\xi = 0$ рассмотрим следующую вспомогательную задачу:

Задача В. Найти решение $u(x,t) \in M$ системы

$$\frac{\partial u}{\partial t} = A(i\frac{\partial}{\partial x})u + \sum_{|j| \le \nu_o} a_j(t)x^j, \quad j = (j_1, \dots, j_n), \quad x^j = x_1^{j_1} \cdots x_n^{j_n}, \quad (1.51)$$

удовлетворяющее граничному условию

$$B(i\frac{\partial}{\partial x})u(x,0) = \sum_{|j| \le \nu_o} b_j x^j, \qquad (1.52)$$

гле $a_j(t) \in M, b_j \in R^r$.

Заметим сначала, что система (1.51) имеет решение

$$u_o(x,t) = \sum_{|j| \leq \nu_o} c_j(t) x^j.$$

Иействительно, подставляя $u_o(x,t)$ в (1.51) и воспользовавшись линейной независимостью полиномов $\{x^j, |j| \leq \nu_o\}$, получим для $c_j(t)$ систему в виде (1.3) для $c_j(t)$, которая разрешима. Это означает, что правую часть системы (1.51) считаем равной нулю.

Пусть вначале система (2) строго регулярна. Пусть также $v(\xi)$ - решение системы (1.41) с $\alpha(\xi) = F[\sum_{|j| \le v_a} b_j x^j](\xi)$. Тогда можно проверить, что прообраз Фурье функционала $\hat{u}(\xi,t) = V^-(\xi,t)v(\xi)$, гле $V^-(\xi,t)$ определен формулой (1.14), ость искомое решение задачи В.

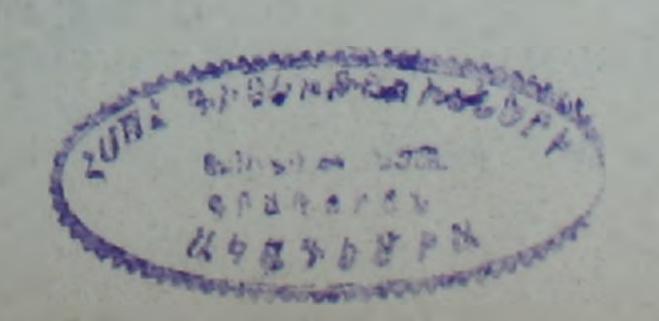
Теперь предположим, что система (2) регулярна, и пусть $v(\xi)$ - решение системы (1.49) с $\alpha(\xi) = F[\sum_{|j| \le \nu_o} b_j x^j](\xi)$, а $P_o^-(\xi) = (E_m - P_o^+(\xi)) \in C^\infty(|\xi| < \delta)$. Прообраз Фурье функционала

$$u(\xi,t) = e^{A(\xi)t} P_{\sigma}^{-}(\xi) v(\xi) = e^{P_{\sigma}^{-}(0)A(0)t} \sum_{j \leq v_{\sigma}} t^{j} \alpha_{j}(\xi), \quad t \in \Pi_{\alpha},$$

где $\alpha_j(\xi)$ - вполне определенные функционалы, сосредоточенные в точке $\xi=0$, будет решением задачи В. Так как все собственные значения матрицы $P_o^-(0)A(0)$ принадлежат области Π_a^* , то прообраз $u(\xi,t)$ принадлежит классу M.

Таким образом, доказана

Исмма 1.10. Задача В всегда разрешима.



§2. ИССЛЕДОВАНИЕ ЗАДАЧИ А

Вначале предположим, что система (2) строго регулярна и что условие (6) имеет место для любых $\xi \in R^n$. Покажем, что прообраз Фурьс u(x,t) функционала

$$u(\xi,t) = \sum_{j=1}^{r} V^{-}(\xi,t)v_{j}(\xi)f_{j}(\xi), \qquad (2.1)$$

где $v_j(\xi)$ обозначает решение системы (1.31), является решением задачи А. Выбирем $k_o(l)\gg 1$ таким образом, чтобы для любых натуральных l

$$\left|\frac{\partial^q}{\partial t^q} \left(\frac{\partial^k}{\partial \xi^k} \frac{V^-(\xi, t) v_j(\xi)}{(1+|\xi|^2)^{k_o}} \right) \right| \le c \frac{(1+|t|)^s}{(1+|\xi|)^{n+1}} \quad \forall |k| \le l; \quad q = 0, 1.$$

Очевидно, что обратное пресбразование Фурье

$$K_j(x,t) = F_{\xi}^{-1} \left[\frac{V^{-}(\xi,t)v_j(\xi)}{(1+|\xi|^2)^{k_o}} \right] (x,t)$$

удовлетворяет оценке

$$\left| \frac{\partial^q}{\partial t^q} K_j(x,t) \right| \le c \frac{(1+|t|)^s}{(1+|x|)^l}, \quad q=0, 1.$$

Применяя неравенство Питре $(1+|x-\tau|)^{-|\eta|} \leq (1+|x|)^{\eta}(1+|\tau|)^{-\eta}$ легко показать, что

$$M\ni u(x,t)=\sum_{j=1}^r K_j(x,t)*(1-\Delta_x)^{k_0}f_j(x), \quad \Delta_x=\sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}.$$

Заметим также, что если $f_j \in M_\gamma$, то $u \in M_\gamma$.

Случаи, когда система (2) строго регулярна и условие (6) нарушено или система (2) регулярна, будут рассмотрены одновременно. Отметим вновь, что условие (6) не выполняется только в точке $\xi=0$. Заметим также, что уравнение $\Delta_x u(x,t)=f(x,t)$ разрешимо в M. При n=1 это очевидно. Заменяя f на $\frac{\partial^{\nu_1} f(x,t)}{\partial x_1^{\nu_1}}, \nu_1\gg 1$, случай $n\geq 2$ сводим к случаю n=1 и так далее.

Для заданного f(x) заменим граничное условие (1) на следующее

$$B(i\frac{\partial}{\partial x})u(x,0) = \Delta_x^{\nu} f(x), \qquad (2.2)$$

Заметим, что если доказать разрешимость задачи (2), (2.2), то разрешимость задачи (2), (4) сведстся к рассмотрению задачи В (см. (1.51), (1.52)). Действительно, пусть $u_o(x,t)$ - решение задачи (2), (2.2) и $u_1(x,t) \in M$ такое, что $\Delta_x^\mu u_1 = u_o$. Подставляя $u_o(x,t)$ в (2), (2.2), получим

$$\Delta_x^{\nu} \left(\frac{\partial u_1}{\partial t} - A(i \frac{\partial}{\partial x}) u_1 \right) = 0, \quad \Delta_x^{\nu} B(i \frac{\partial}{\partial x}) u_1(x, 0) = \Delta_x^{\nu} f(x)$$

или

$$\frac{\partial u_1}{\partial t} - A(i\frac{\partial}{\partial x})u_1 = \sum_{|j| \leq 2\nu} a_j(t)x^j,$$

$$B(i\frac{\partial}{\partial x})u_1(x,0) = f(x) + \sum_{|j| \leq 2\nu} b_j x^j,$$

где $a_j(t) \in M$ и $b_j \in R^r$ вполне определены.

Теперь, если u(x,t) - решение задачи (2), (4), то замена $w=u_1-u$ приведет к задаче В для w. Таким образом, мы ограничимся исследованием задачи (2), (2.2). Формула (2.1) в этом случае примет вид

$$u(\xi,t) = \sum_{j=1}^{\tau} V^{-}(\xi,t) v_{j}(\xi) |\xi|^{2\nu} f_{j}(\xi), \quad \xi \neq 0,$$

гле $V^-(\xi,t), v_j(\xi)$ удовлетворяют неравенствам (1.16), (1.38), соответственно. Выбором ν можем добиться любой, наперед заданной гладкости в R^n векторфункций $V^-(\xi,t)v_j(\xi)|\xi|^{2\nu}$, а затем как и выше показать, что прообраз Фурье $u(\xi,t)$ принадлежит классу M и является решением задачи (2), (2.2). Таким образом, разрешимость задачи Λ при выполнении условия (6) доказана для любого $\xi \neq 0$.

Рассмотрим теперь однородную ($f \equiv 0$) задачу Λ .

Пусть система (2) строго регулярна и условие (6) выполняется за исключением конечного числа точек. Тогда в силу Леммы 1.8 одпородная задача Λ имеет только конечное число линейно независимых решений при n=1 и бесконечно много линейно-пезависимых решений при $n\geq 2$.

В случае же регулярной системы (2) $(\rho(0) > r)$ однородная задача A имеет бескопечно много линейно-независимых решений при любых $n \ge 1$ (следует из Пеммы 1.9).

Таким образом, Теорема 1, сформулированная во введении, доказана.

В заключение, рассмотрим несколько простых примеров.

1. В $R \times R^+$ рассмотрим оператор Гельмгольца (эллиптический)

$$\Delta u + k^2 u = 0, \quad \Delta = \frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial x^2}, \quad k \in R \setminus \{O\}$$
 (2.3)

с характеристическими корнями $\lambda_1(\xi) = \sqrt{\xi^2 - k^2}$, $\lambda_2(\xi) = -\sqrt{\xi^2 - k^2}$. Это уравнение не является α -регулярным для любых $\alpha \in R$ (определение см. [6]). Однако легко видеть, что в $R \times \Pi_{\alpha}$, $0 < \alpha \leq \frac{\pi}{2}$, уравнение (2.3) регулярно с порядком регулярности r = 1. Исключительными точками являются $\xi = \pm k$. В соответствии с полученными результатами, для уравнения (2.3) ставится задача Дирихле

$$u(x,0)=f(x).$$

2. Для уравнения Клейна-Гордона

$$(\diamondsuit + m_o^2)u = 0, \quad \diamondsuit = \frac{\partial^2}{\partial t^2} - a^2 \Delta, \quad m_o \neq 0,$$
 (2.4)

имеем $\lambda_{1,2}(\xi) = \pm i\omega(\xi)$, $\omega(\xi) = \sqrt{a^2|\xi|^2 + m_a^2}$.

Уравнение (2.4) - α регулярно для любых $\alpha \geq 0$ с r=2 и задача Коши корректна. Рассмотрим уравнение (2.4) в $R^n \times \Pi_\alpha$, $0 < \alpha < \pi$. Ясно. что уравнение (2.4) теперь строго регулярно с порядком регулярности r=1 и задача Дирихле (2.3) корректна.

3. Наконец, рассмотрим систему

$$\frac{\partial u}{\partial t} = A \frac{\partial u}{\partial x}, \quad (x, t) \in R \times \Pi_{\alpha}, \quad 0 < \alpha < \pi, \tag{2.5}$$

где А - постоянная квадратная матрица порядка 2п.

Предположим, что собственные значения A действительны. Пусть n из них неположительны. Система (2.5) является регулярной с порядком регулярности r=n ($\xi=0$ одна изолированная точка). Соответствующая матрица $P^+(\xi)$ имеет вид

$$P^{+}(\xi) = \frac{1}{2\pi i} \int_{\gamma^{+}(\xi)} (\lambda E_{2n} - i\xi A)^{-1} d\lambda,$$

и, очевидно, кусочно-постоянна

$$P^+(\xi) = \begin{cases} P_1, & \text{при } \xi > 0 \\ P_2, & \text{при } \xi < 0, \end{cases}$$

где P_j - постоянные матрицы и rank $P_j = n$.

Пусть C_j - постоянные матрины размерности $n \times 2n$ такие, что

$$\operatorname{rank}\begin{pmatrix} P_j \\ C_j \end{pmatrix} = 2n.$$

Среди матриц $B_{\tau} = \tau C_1 + (1-\tau)C_2, \quad 0 \le \tau \le 1$, существует B_{τ_o} , для которой

$$\operatorname{rank}\left(\frac{P_{j}}{B_{\tau_{n}}}\right)=2n, \quad j=1, \ 2.$$

Для системы (2.5) можно поставить граничную задачу

$$B_{\tau_n} u(x,0) = f(x).$$
 (2.6)

Эта задача корректна, так как

rank
$$\binom{P^+(\xi)}{B_{\tau_n}} = 2n$$
, для $\xi \neq 0$,

т.е. условие (6) нарушается лишь в точке $\xi=0$.

ABSTRACT. Let M be the class of vector functions $u(x,t) \in C^{\infty}(\mathbb{R}^n \times \Pi_n)$ analytic in $t \in \Pi_{\alpha} = \{t | 0 < \arg t < \alpha < \pi\}$ and having polynomial growth in (x,t). Let $A(\xi)$, $\xi \in \mathbb{R}^n$ be a square matrix of order m with polynomial elements. For the system

$$\frac{\partial u}{\partial t} = \Lambda(i\frac{\partial}{\partial x})u, \quad u \in M, \quad (x,t) \in \mathbb{R}^n \times \Pi_\alpha \tag{1}$$

we define the strictly regular and regular cases. Let r denote the order of regularity of (1) and $B(\xi)$ let be a polynomial matrix of dimension $r \times m$. We impose the boundary condition:

$$B(i\frac{\partial}{\partial x})u(x,0) = f(x), \quad f(x) \in M, \tag{2}$$

For strictly regular case a condition of correctness of problem (1), (2) is obtained. For regular case an analogous condition guarantees the existence of solution.

The homogeneous $(f \equiv 0)$ problem is studied too.

ЛИТЕРАТУРА

- 1. Л. Хермандер, Анализ Линейных Дифференциальных Операторов с Частными Производными, том 2, М., Мир, 1986.
- 2. А. Л. Павлов, "Об общих краевых задачах для дифференциальных уравнений с постоянными коэффициентами в полупространстве", Мат. сборник, том 103 (145), №3 (7), стр. 367-391, 1977.
- 3. Ю. Л. Далецкий, М. Г. Крейн, Устойчивость Решения Дифференциальных Уравнений в Банаховом Пространстве, М., Паука, 1970.
- 4. Н. Е. Товмасян, "Краевые задачи для нерегулярных систем дифференциальных уравнений на полуплоскости в классе обобщенных функций и функций полиномиального роста, Мат. сборник, том 131 (173), №2 (10), стр. 185-212, 1986.
- 5. 3. Пресдорф, Некоторые Классы Сингулярных Уравнений, М., Мир, 1979.
- 6. А. И. Комеч, "Линейные дифференциальные уравнения в частных производных с постоянными коэффициентами", Современные проблемы математики. Фундаментальные исследования, том 31, Москва, 1988.

27 Мая 1992

Армянский государственный инженерный университет