Математика

А. А. ВАГАРШАКЯН

О ПРИНЦИПЕ МАКСИМУМА

Из хорошо известного принципа максимума следует, что если u(z) — субгармоническая в ограниченном открытом множестве Ω функция и

 $\overline{\lim}_{z \in \mathbb{R}} u(z) \leq 0 \tag{1}$

для любой граничной точки $\xi \in \partial \Omega$, то $u(z) \leqslant 0$ всюду в Ω .

В данной статье обсуждается следующий вопрос: можно ли, при дополнительных ограничениях на рост функции и (z) вблизи границы 2, ослабить условие (1) во всех граничных точках так, чтобы принцип максимума оставался верным?

Teopema 1. Пусть и (z) — гармоническая в единичном круге функция, удовлетворяющая условию

$$u(z) \leqslant \exp\left\{\exp\left\{\frac{A}{(1-|z|)^*}\right\}\right\}, |z| \leqslant 1, \tag{2}$$

где a, 0 < a < 1 — некоторое число. Если существует число $\varepsilon > 0$ такое, что для любой граничной точки ζ , $|\zeta| = 1$, имеет место нераванство

$$\lim_{r\to 1-0} \max \{u(r\xi); |\xi| = 1, |\xi-\xi| \leqslant s\} \leqslant 0,$$

то всюду в единичном круге $u(z) \le 0$.

Докавательство. Пусть $r = re^{tx}$ — некоторая точка единичного круга и $r < \rho < 1$. Тогда имеет место представление

$$u(z) + \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\rho^{2} - r^{2}}{|re^{tx} - \rho e^{tt}|^{2}} u^{-}(\rho e^{tt}) dt = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\rho^{2} - r^{2}}{|\rho e^{tt} - re^{tx}|^{2}} u^{+}(\rho e^{tt}) dt.$$

Следовательно

$$0 \leqslant u(z) + \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\rho^{2} - r^{2}}{|\rho e^{lt} - re^{lx}|^{2}} u^{-} (\rho e^{lt}) dt \leqslant u(z) + \frac{\rho + r}{\rho - r} \cdot \frac{1}{2\pi} \int_{0}^{2\pi} u^{-} (\rho e^{lt}) dt =$$

$$= u(z) + \frac{\rho + r}{\rho - r} \left(\frac{1}{2\pi} \int_{0}^{2\pi} u^{+} (\rho e^{lt}) dt - u(0) \right) \leqslant u(z) +$$

$$+ \frac{\rho + r}{\rho - r} \left(\exp\left\{ \exp\left\{ \frac{A}{(1 - \rho)^{\alpha}} \right\} \right\} - u(0) \right).$$

Выбирая $\rho = \frac{1+r}{2}$ получаем оценку типа (2) снизу для u(z). Окончательно приходим к выводу, что имеет место неравенство

$$|u(z)| \le \exp\left\{\exp\left\{\frac{A_1}{(1-|z|)^2}\right\}\right\} \cdot |z| < 1.$$

Гармоническую функцию u(z) можно представить в виде ряда

$$u(z) = \sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{inx}, z = re^{ix},$$

где коэффициенты ал допускают оценку

$$|a_n| < r^{-|n|} \max_{0 < x < 2\pi} |a| (re^{ix})|, \ 0 < r < 1.$$

Следовательно

$$\log|a_n| < |n| (1-r) + \exp\left\{\frac{A_1}{(1-r)^n}\right\}.$$

Выбирая число г равным

$$1 - \left(\frac{1}{A_1} \log \frac{|n|}{\log^{1/a} |n|}\right)^{-\frac{1}{a}}.$$

получаем оценку

$$\log |a_n| \leqslant B \frac{|n|}{\log^{1/a} |n|}, |n| > 2.$$

Фиксируем некоторое число $\delta > 0$. Пусть $\phi_{\delta}(x)$, — $\pi \ll x \ll \pi$ — неотридательная, бесконечно дифференцируемая функция с посителем в интеввале [— δ , δ],

$$\frac{1}{2\pi}\int_{-t}^{b}\varphi_{b}(x)\ dx=1$$

и ее коэффициенты Фурье Фа, и допускают оценку

$$|\widehat{\varphi}_{\delta, |n|} \leqslant C \exp\left\{-2B \frac{|n|}{\log^{1/2} |n|}\right\}, |n| > 1.$$

Такая функция существует, так как $0 < \alpha < 1$, см. [1]. Заметим, что для любого $\delta > 0$ сходится ряд

$$\sum_{n=-\infty} |a_n| |\widehat{\varphi}_{\delta, n}| < \infty.$$

Введем функцию

$$g_{i}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(ze^{-i\tau}) \varphi_{i}(x) dx.$$

Эта функция гармоническая в единичном круге и допускает непрерывное продолжение вплоть до границы единичного круга. Из условия теоремы и в силу принципа максимума, при достаточно малом $\delta > 0$ имеет место неравенство $g_{\delta}(z) < 0$, $z \in D$. Устремляя δ к нулю, получаем u(z) < 0, при $z \in D$.

Естественно возникает вопрос: можно ли ослабить условие (2) в теореме 1? Ответ на этот вопрос содержится в теореме 2.

T е о р е м в 2. Пусть $\varepsilon > 0$ — некоторое число. Существует аналитическая в правой полуплоскости функция f(z), которая допускает сценку

$$|f(z)| \le \exp\left\{\exp\left\{\frac{A}{(\operatorname{Re}z)^{1+\epsilon}}\right\}\right\}$$
, Re $z > 0$,

и для любого $y, -\infty < y < \infty$, имеет место неравенство $\lim_{x\to +0} \max |f(x+i(t+y))| \leq 1,$

однако f (z) — неограниченная функция.

Доказательство. Обозначим через 2 область

$$2 = \left\{ z; \ 0 < \operatorname{Re} \ z < 1, \ \left| \operatorname{Im} \ z - \sin \frac{1}{\left(\operatorname{Re} \ z \right)^{\sigma}} \right| < \delta \right\}.$$

где $0 < \sigma$, $0 < \delta < \frac{1}{4}$. Пусть $\varphi(z)$ конформно и однолистно отображает область Ω на полуполосу

$$\left\{z;\ 1<\operatorname{Re}z,\ |\operatorname{Im}z|<\frac{\pi}{2}\right\},$$

причем часть границы $\partial\Omega\cap\{z;\ \mathrm{Re}\ z=1\}$ обасти Ω переходит в отревок $\left\{1+iy,\ -\frac{\pi}{2}\leqslant y\leqslant \frac{\pi}{2}\right\}$.

В силу теоремы Варшавского, см. [2], стр. 233, имеем

Re
$$\varphi(x+iy) = C + \frac{\pi}{2\delta} \int_{x}^{1} \left(1 + \sigma^2 \frac{\cos^{11}(x^{-\theta})}{x^{2+2\sigma}}\right) dx + o(1), x \to +0.$$

Следовательно

$$\frac{C_1}{x^{1+2\sigma}} \leqslant \operatorname{Re} \varphi(x+iy) \leqslant \frac{C_2}{x^{1+2\sigma}}, x \to +0.$$

Введем функцию

$$f(z) = \frac{1}{2\pi i} \int_{\partial z_{\Omega}(\{z; \, \text{Re } z > 0\})} \frac{e^{e^{\frac{z}{2}}(\zeta)}}{(\zeta - z) \, \varphi^{2}(\zeta)} \, d\zeta,$$

где $z \in \overline{\Omega}$ в Re z > 0. Заметим, что для любого $0 < x_0 < 1$ функцию f(z) вне области $\overline{\Omega}$ можно представить в виде

$$f(z) = \frac{1}{2\pi i} \int_{\partial^2 x_0 \cap \{z; \operatorname{Re} z > 0\}}^{z} \frac{e^{\varphi(\zeta)}}{(\zeta - z) \varphi^2(\zeta)} d\zeta, \qquad (3)$$

где $\Omega_{x_0} = \{z; z \in \Omega, 0 < \text{Re } z < x_0\}$. Следовательно, f(z) — аналитическая функция в правой полуплоскости. Выбирая $2x_0 = \text{Re } z$ в формуле (3), получим

$$\begin{split} |f\left(z\right)| &\leqslant \frac{1}{2\pi} \int\limits_{\theta^{2}}^{s} \frac{|e^{e^{\frac{-\zeta(z)}{\zeta}}}|}{|\zeta-z|} \frac{|e^{e^{\frac{-\zeta(z)}{\zeta}}}|}{|\zeta-z|} \frac{d\zeta|}{|\varphi(\zeta)|^{2}} \frac{1}{d\zeta|} + \frac{1}{2\pi} \int\limits_{\theta^{2}_{x_{0}} \Pi\left\{z; \operatorname{Re} z = z_{0}\right\}}^{s} \frac{|e^{e^{\operatorname{Re} \varphi\left(\zeta\right)}}|}{|\zeta-z|} |d\zeta| \leqslant \\ &\leqslant \frac{1}{\pi \operatorname{Re} z} \int\limits_{\theta^{2}_{x_{0}} \Pi\left\{z; \theta < \operatorname{Re} z < z_{0}\right\}}^{s} \frac{|d\zeta|}{|\varphi(\zeta)|^{2}} + \frac{2\delta}{c_{1}\pi} (\operatorname{Re} z)^{1+4\pi} e^{\frac{\varepsilon}{(\operatorname{Re} z)^{1+2\pi}}} \leqslant \\ &\leqslant \exp\left\{\exp\left\{\frac{A}{(\operatorname{Re} z)^{1+2\pi}}\right\}\right\}, \end{split}$$

где 0 < Re z < 1. Теперь оценим f(z) на множестве

$$Q_0 = \left\{ z; \operatorname{Re} z > 0, \left| \operatorname{Im} z - \sin \frac{1}{(\operatorname{Re} z)^*} \right| \geqslant 2 \delta \right\}.$$

Имесы, при Im z > 0, неравенство

$$|f(z)| \leq \frac{27}{2\pi} \int_{\partial \Omega_{1}(z; \operatorname{Re} z)=0}^{1} \frac{1}{|\zeta - z_{1}| |z| |\zeta|} |d\zeta| \leq$$

$$\leq A \int_{0}^{1} \frac{x^{1+\sigma} dx}{\left[(\operatorname{Re} z - x)^{2} + (\operatorname{Im} z - \delta - \sin(x^{-\sigma}))^{2} \right]^{1/2}} \leq$$

$$\leq A \int_{0}^{1} \frac{x^{1+\sigma}}{\left[\operatorname{Re} z - x_{1}^{1} + (\operatorname{Re} z)^{1+\sigma} dx \right]} dx \leq M \leq \infty, \ 0 \leq \operatorname{Re} z \leq 1.$$

Пусть Δ — некоторая дуга, лежащая на единичной окружности: ∂D . Обозначим через Δ * новую дугу, которая получается из Δ в результате присоединения к ней с (обеих сторон дуг, длины которых равны длине дуги Δ .

 Λ еммв. Пусть Δ_k , $k=1, 2, \cdots -$ дуги, покрывающие единич ную окружность ∂D , причем кратность покрытия не превосходит 2. Тогда существуют функции $\varphi_1(z)$, $\varphi_2(z)$, \cdots , удовлетворяющие условиям

1. для любого $z \in \partial D$

$$\sum_{k=1}^{\infty} \varphi_k(z) \equiv 1;$$

- $2. \, \, \phi_k(z)$ неотрицательные, кусочно гладкие, непрерывные функции;
- 3. для всех $z \in \partial D$, кроме конечного числа точек, имеет место оценка

$$|\varphi_k'(z)| < \frac{65}{|\Delta_k|}$$

где $|\Delta_k|$ — длина дуги Δ_k ; 4. supp $\varphi_k \subset \Delta_k^*$. Докавательство. Не теряя общности можно предположить,

$$|\Delta_1| \gg |\Delta_2| \gg \cdots$$

в качестве γ_1 (e^{Lx}) выбираем функцию, которая непрерывна на ∂D , равна единице на Δ_1 , вне интервала Δ_1 тождественно обращается в нуль, а в двух смежных с Δ_1 интервалах, лежащих в Δ_1 , она линейная по x.

Предположим, что уже построены функции $\varphi_1(z), \dots, \varphi_{n-1}(z)$, удовлетворяющие условиям:

1. для любого $z \in \bigcup_{k=1}^{n-1} \Delta_k$

$$\sum_{k=1}^{n-1}\varphi_{k}\left(z\right)=1;$$

2. $\varphi_{k}(z)$ — неотрицательная, кусочно гладкая, непрерывная функция и

$$\sum_{k=1}^{n-1} \gamma_k(z) \leqslant 1,$$

при $z \in \partial D$.

3. для всех $2 \in \partial D$, кроме ковечного числа точек, имеет место оценка

$$|\varphi_{k}'(z)| \leqslant \frac{65}{|\Delta_{k}|};$$

4. supp $\varphi_k \subseteq \Delta_k$, $k = 1, 2, \dots, n-1$.

Пусть $z \in \partial D \setminus \Delta_n$. Обозначим через Δ_n (z) дугу ∂D , которая лежит между точкой z и интервалом Δ_n , причем имеет наименьшую длину. Сначала определим вспомогательную функцию ψ_n (z). На дуге Δ_n положим

$$\psi_n(z) = 1 - \sum_{k=1}^{n-1} \varphi_k(z), \ z \in \Delta_n.$$

Вне интервала Δ_n она определяется формулой

$$\psi_n\left(z\right) = \max\left\{c;\ c + rac{|z-\zeta|}{|\Delta_n|} \ll 1 - \sum_{k=1}^{n-1} \varphi_k\left(\zeta\right),\ \text{при }\zeta \in \Delta_n\left(z\right)
ight\},$$

где $z \in \partial D \setminus \Delta_n$. Наконец, положим

$$\varphi_n(z) = \max\{0, \psi_n(z)\}.$$

Заметим, что семейство функций $\varphi_1(z), \dots, \varphi_{n-1}(z)$ удовлетворяет условиям 1-4, с заменой n-1 на n. Действительно, первый и второй пункты этих условий непосредственно следует из определения функции $\varphi_n(z)$. Четвертый пункт следует из того, что производные функций $\psi_n(e^{ix})$ на каждом из смежных с Δ_n интервалах сохраняют

звак и по модулю не меньше, $\operatorname{qem} \frac{1}{|\Delta_n|}$

Теперь перейдем к оцение производной функции $\varphi_{\kappa}(e^{tx})$. Из вышеприведенной конструкции следует, что в каждой точке $z \in \partial D$ функция $\varphi_{\kappa}(z)$ или равна

$$1-\sum_{k=1}^{n-1}\mp_k(z)$$

или се производная по модулю равна $\frac{1}{|\Delta_n|}$ или 0. Пусть $z \in \Delta_n$. Для любого $\delta > 0$ количество тех интервалов Δ_j , длины которых удовлетворяют перавенствам $\delta = |\Delta_j| \le 2\delta$ и $z \in \Delta_j$, не превосходит 16, так как кратность покрытия ∂D семейством $|\Delta_k|_{k=1}$ не превосходит 2. Обозначим через $|\Delta_n| \le |\Delta_{n_k}| \le \cdots \le |\Delta_{n_k}|$ те интервалы, для которых $z \in \Delta_{n_k}$. Тогда вмеем

$$\left|\frac{d\varphi_{n}\left(e^{tx}\right)}{dx}\right| \leq \frac{1}{|\Delta_{n}|} + \sum_{k=1}^{n-1} \left|\frac{d\varphi_{k}\left(e^{tx}\right)}{dx}\right| \leq \frac{1}{|\Delta_{n}|} + \sum_{k=1}^{m} \frac{k}{|\Delta_{n_{k}}|} \leq \frac{1}{|\Delta_{n}|} + \sum_{l=1}^{m} \frac{k}{|\Delta_{n_{k}}|} \leq \frac{1}{|\Delta_{n}|} + \sum_{l=1}^{m} \frac{k}{|\Delta_{n_{k}}|} \leq \frac{65}{|\Delta_{n}|}.$$

T ворема 3. Пусть u(z) — гармоническия в единичном круге функция и сходится интеграл

$$\int_{0}^{1} \int_{0}^{2\pi} |u(re^{ix})| (1-r)^{-\alpha} dr dx < \infty,$$

где 0 < x < 1. Предположим, что C(r), 0 < r < 1 — положительна и монотонно возрастая, стремится к бесконечности при $r \to 1-0$.

Если для любой граничной точки СЕдD имеет место неравен-

cmso
$$\lim_{r\to 1-0} \max \{u(re^{tx}); |e^{tx}-\zeta| \leqslant C(r)(1-r)^{a/2}\} \leqslant 0,$$

mo $u(z) \leqslant 0$ всюду в D.

Доказательство. Пусть $\epsilon>0$ и $0< r_0<1$ — некоторые числа. Для любой граничной точки $\zeta\in\partial D$ существует число $r=r(\zeta,\epsilon)$ $r_0< r<1$ такое, что $u(re^{tx})\leqslant \epsilon$, при $e^{tx}\in\Delta_\zeta$, где

$$\Delta_{\zeta} = \left\{ e^{tx}; |e^{tx} - \zeta| \leqslant \frac{C(r)}{3} (1 - r)^{3/2} \right\}.$$

В силу леммы Л. Альфорса, см. [3], можно выделить интервалы

$$\Delta_{\zeta_1}, \Delta_{\zeta_2}, \ldots$$
 (4)

которые покрывают ∂D , причем кратность покрытия не превосходит двух. Пусть

$$\varphi_1(z), \varphi_2(z), \cdots$$

функции, соответствующие свойству (4), существование которых установлено в лемме.

Пусть z_0 — некоторая фиксированная точка в единичном круге. Введем функции

$$\psi_n(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1-|z|^2}{|e^{ix}-z|^2} \left(\frac{1-|z_0|^2}{|e^{ix}-z_0|^2} \, \varphi_n(e^{ix}) \, \right) dx, \quad z < 1.$$

Тогда имеем

$$u(z_{0}) = \lim_{r \to 1-0} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - |z_{0}|^{2}}{|e^{tt} - z_{0}|^{2}} u(re^{tt}) dt$$

$$= \lim_{r \to 1-0} \sum_{k=1}^{\infty} \frac{1}{2\pi} \int_{0}^{2\pi} \left[u(re^{tt}) - u(rr_{k}e^{tt}) \right] \frac{1 - |z_{0}|^{2}}{|e^{tt} - z_{0}|^{2}} \varphi_{k}(e^{tt}) dt + \lim_{r \to 1-0} \sum_{k=1}^{\infty} \frac{1}{2\pi} \int_{0}^{2\pi} u(rr_{k}e^{tt}) \varphi_{k}(e^{tt}) \frac{1 - |z_{0}|^{2}}{|e^{tt} - z_{0}|^{2}} dt = \lim_{r \to 1-0} \sum_{k=1}^{\infty} \frac{1}{2\pi} \int_{0}^{2\pi} \left[u(re^{tt}) - u(rr_{k}e^{tt}) \right] \frac{1 - |z_{0}|^{2}}{|e^{tt} - z_{0}|^{2}} \varphi_{k}(e^{tt}) dt + \sum_{k=1}^{\infty} \frac{1}{2\pi} \int_{0}^{2\pi} u(r_{k}e^{tt}) \varphi_{k}(e^{tt}) \frac{1 - |z_{0}|^{2}}{|e^{tt} - z_{0}|^{2}} dt,$$

где $r_k = r$ (ζ_k , ε). Мы знаем, что $u(r_k e^{tx}) < \varepsilon$, при $e^{tx} \in \Delta_{\zeta_k}$ и supp $\phi_k < \delta_{\zeta_k}$, поэтому

$$\sum_{k=1}^{n} \frac{1}{2\pi} \int_{0}^{2\pi} u(r_{k}e^{ix}) \varphi_{k}(e^{ix}) \frac{1 - |z_{0}|^{2}}{|e^{ix} - z_{0}|^{2}} dx \leq$$

$$\leq \varepsilon \sum_{k=1}^{n} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - |z_{0}|^{2}}{|e^{ix} - z_{0}|^{2}} \varphi_{k}(e^{ix}) dx \leq \varepsilon.$$

Теперь оценим интеграл

$$I_{k} = \frac{1}{2\pi} \int_{0}^{2\pi} \left[u \left(re^{it} \right) - u \left(rr_{k}e^{it} \right) \right] \frac{1 - |z_{0}|^{2}}{|e^{it} - z_{0}|^{2}} \varphi_{k} \left(e^{it} \right) dt =$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} u \left(re^{it} \right) \frac{1 - |z_{0}|^{2}}{|e^{it} - z_{0}|^{2}} \varphi_{k} \left(e^{it} \right) dt -$$

$$- \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - r_{k}^{2}}{e^{ix} - r_{k}e^{it}|^{2}} u \left(re^{ix} \right) dx \right) \frac{1 - |z_{0}|^{2}}{|e^{it} - z_{0}|^{2}} \varphi_{k} \left(e^{it} \right) =$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - |z_{0}|^{2}}{|e^{ix} - z_{0}|^{2}} u \left(re^{ix} \right) \varphi_{k} \left(e^{ix} \right) dx -$$

$$-\frac{1}{2\pi}\int_{0}^{2\pi}u\left(re^{tx}\right)\left(\frac{1}{2\pi}\int_{0}^{2\pi}\frac{(1-r_{k}^{2})\left(1-|z_{0}|^{2}\right)}{|e^{x}-r_{k}e^{tt}|^{2}|e^{tt}-z_{0}|^{2}}\,\,\tau_{k}\left(e^{tt}\right)\,dt\right)dx=$$

$$=\frac{1}{2\pi}\int_{0}^{2\pi}u\left(re^{tx}\right)\left[\psi_{k}\left(e^{tx}\right)-\psi_{k}\left(r_{k}e^{tx}\right)\right]dx.$$

Мы знаем, что supp $\varphi_k \subseteq \Delta_k = \Delta_{c_k} \, \mu \, |\varphi_k(z)| \leqslant 65 \, |\Delta_k|^{-1} = \frac{65}{|\Delta_{c_k}|} \cdot \, \Pi$ оэтому.

$$|\operatorname{grad} \psi_k(z)| \leq \frac{c}{|\Delta_k|}, |z| \leq 1.$$

Отсюда получаем

$$|\psi_k(e^{ix}) - \psi_k(r_k e^{ix})| \leqslant c \frac{1-r_k}{|\Delta_k|}$$

Тогда функция $g_k(x) = \psi_k(e^{lx}) - \psi_k(r_k e^{lx})$ допускает оценки

$$|g_k(x) - g_k(|y)| < |\psi_k(e^{tx}) - \psi_k(r_k e^{tx})| + |\psi_k(e^{ty}) - \psi(r_k e^{ty})| < 2c \frac{1 - r_k}{|\Delta_k|}.$$

С другой стороны, имеем

$$|g_{k}(x) - g_{k}(y) \leqslant |\psi_{k}(e^{tx}) - \psi_{k}(e^{ty})| + |\psi_{k}(r_{k}e^{tx}) - \psi_{k}(r_{k}e^{ty})| \leqslant 2c \frac{|x-y|}{|\Delta_{k}|}.$$

Следовательно

$$|g_k(x)-g_k(y)|\leqslant 2c\min\left\{\frac{1-r_k}{|\Delta_k|},\;\frac{|x-y|}{|\Delta_k|}\right\}\leqslant 2c\frac{(1-r_k)^\alpha}{|\Delta_k|}|x-y|^{1-\alpha}.$$

Окончательно получаем

$$u(z_0) \leqslant \varepsilon + \sum_{k=1}^{\infty} \frac{1}{2\pi} \int_{0}^{2\pi} u(re^{lx}) g_k(e^{lx}) dx.$$

Из условия теоремы следует, что число $r,\ 0 < r < 1$, можно выбрать настолько близким к единице, что

$$\sup_{x} |g_{k}(x)| + \sup_{x,y} \frac{|g_{k}(x) - g_{k}(y)|}{|x - y|^{1 - \varepsilon}} \leqslant \varepsilon |\Delta_{k}|.$$

Повтому для функции $g(x) = \sum_{i=1}^{n} g_{k}(x)$ имеем

$$\sup |g(x)| + \sup \frac{|g(x) - g(y)|}{|x - y|^{1-\epsilon}} \le 4 \pi \epsilon.$$

Введем обозначения

$$u(re^{ix}) = \sum_{n=-\infty}^{\infty} u_n r^{|n|} e^{inx}, \ g(re^{ix}) = \sum_{n=-\infty}^{\infty} g_k r^{|n|} e^{inx},$$

где g_k — коэффициенты Фурье функции g(x). Заметим, что

$$\frac{1}{2\pi}\int_{0}^{2\pi}u\left(\rho e^{tx}\right)\frac{\partial g\left(\rho e^{tx}\right)}{\partial\rho}dx=\sum_{n=-\infty}^{\infty}|n|u_{n}g_{-n}\rho^{2|n|-1},$$

Откуда следует

$$\frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} u\left(pe^{ix}\right) \frac{\partial g\left(pe^{ix}\right)}{\partial p} dp dx = \sum_{n \neq 0} u_{n} g_{-n} r^{|n|} =$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} u\left(re^{ix}\right) g\left(e^{ix}\right) dx - u\left(0\right) g_{0}.$$

Следовательно

$$u(z_0) \leqslant \varepsilon + 4\pi\varepsilon + 4\pi |u(0)| z + 4\pi\varepsilon \int_0^1 \int_0^{2\pi} |u(re^{ix})| (1-r)^{-\alpha} dr dx.$$

В силу произвольности $\varepsilon>0$ имеем $u(z_0)\leqslant 0$.

Институт математики АН Республики Армении

Поступила 12. XII.1990

Ա. Ա. վԱՂԱՐՇԱԿՑԱՆ. Մաքսիմումի սկզբունքի մասին (ամփոփում)

Հագվածում ապացուցվում են նոր տիպի Թևորևմներ, որոնցում ընդքանրացվում է մաջախմումի սկզբունջը։

A. A. VAGARSHAKIAN. On the principle of maximum (summary)

New theorems generalizing the principle of maximum are prooved in the paper

ЛИТЕРАТУРА

- С. Мандельбройт. Примыкающие ряды, регуляризация последовательностей, применения, ИИА, М., 1955.
- 2. М. А. Евграфов. Аналитические функции, Изд. "Наука", М., 1968.
- 3. Н. С. Ландкоф. Основы современной теории потенциала, Изд. "Наука". М., 1966.