Մաթեմատիկա

XXV, № 5, 1990

Математика

УДК 517.956

г. р. ОГАНЕСЯН

ВЕСОВАЯ ЗАДАЧА ДИРИХЛЕ ДЛЯ СИНГУЛЯРНОГО ЭЛЛИПТИЧЕСКОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

§ 1. Формулировка результата

 ${\sf P}_{\sf accmotpum}$ сингулярное при t=0 валиптическое дифференциальное уравнение второго порядка

$$(\partial_t^2 - A(t, x, D_x)) y(t, x) = 0, (t, x) \in]0, T[\times R^n,$$
 (1.1)

эдесь символ $a(t, x, \xi)$ дифференциального оператора второго порядка A предполагается положительным и стремящимся к бесконечности при $t \to +0$ (например, $A = d(t, x) - \Delta$, $d(+0, x) = \Delta = \Delta_x$ — оператор Лапласа).

Хорошо известно, что для сигнулярных валиптических уравнений задачу Дирихае надо ставить с весом (см., например, [1]—[6]).

Введем обозначения

$$\gamma(t, x, \xi) = a^{\frac{1}{4}} \binom{a^{-\frac{1}{4}}}{a_0(t, x)} a_0(t, x) = a(t, x, \xi)|_{\xi=0},$$

$$\psi(t, x) = \sqrt[4]{a_0(t, x)} \exp\left(\int_{T}^{t} \sqrt{a_0(t, x)} ds\right), <\xi > = \sqrt{1 + |\xi|^2}.$$
(1.1')

 $H' = H'(R_x^n)$ — пространство Соболева (s — вещественное число).

Настоящая работа посвящена конструктивному доказательству теоремы существования решения в пространствах Соболева весовой задачи Дирихле

$$\lim_{t\to 0} \mu(t, x) y(t, x) = \Phi_1(x), y(T, x) = \Phi_2(x), x \in \mathbb{R}^n$$
 (1.2)

для уравнения (1.1). Мы рассматриваем случай сильной (нефуксовой) сингулярности и допускаем неограниченные при $t \to 0$ решения.

Пусть

i).
$$a(t, x, \xi) \in C^{2}(]0, T], C^{\infty}(R^{2n})), \int_{0}^{T} \sqrt{a(s, \cdot)} ds = \infty,$$

ii).
$$0 \le c_1 \le \frac{a(t, x, \xi)}{<\xi>^3} \le c_2 a_0(t, x), \frac{a}{a_0} > c_3 > 0,$$

$$\lim_{t\to 0}\frac{a_0}{a}=1$$
 при фиксированных $(x,\xi)\in R^{2n}$,

iii). существует функция $p(t) \in C^1(]0, T]$ и постоянные δ , ρ , $C_{\alpha\beta}$ такие, что для всех мультииндексов z, $\beta \in Z^n_+$, $|\alpha| \le 2$ и $(t, x, \xi) \in [0, T] \times R^{2n}$ справедливы оценки

$$\frac{1}{a}\left|\frac{p}{p_t}\right|^k\left|\partial_t^k\partial_{\xi}^2\partial_x^3a\left(t,\,\cdot\right)\right|+\int\limits_0^t(\left|\partial_{\xi}^2\partial_{\xi_j}\partial_x^3a\left(s,\,\cdot\right)\right|+$$

$$+ t^{-\frac{1}{6}} |\sigma_{\xi}^{\alpha} \partial_{x}^{\beta} \gamma(s, \cdot)|) \frac{ds}{\sqrt{\alpha(s, \cdot)}} \leqslant C_{\alpha\beta} t^{\frac{1}{6}|\beta|} \leqslant \xi >^{-\frac{1}{6}|\alpha|}, k=0, 1, \delta > 0, 0 < \rho \leqslant 1,...$$

i|v). T- достаточно малое число (меньше единицы), $|p,p^{-1}a^{-\frac{1}{2}}| < c < \infty$.

Теорема. В условиях і)— і, v) весовая валача Дирихле (1.1), (1.2) при $\Phi_1 \in H^{\frac{3+2}{2}}$, $\Phi_2 \in H^{\frac{5+\frac{5}{2}}{2}}$ имеет решение $y \in C^2(]0, T]$, H^s , у довлетворяющее оценкам

$$\|\mu \, a_0^{-\frac{k}{2}} \, \partial_t^k \, y \, (t, \, \cdot)\|_{s-k} \leqslant c \, \left(\|\Phi_1\|_s + \|\Phi_2\|_{s+\frac{1}{2}}\right), \ k = 0, 1, 2, \tag{1.3}$$

с постоянной с, зависящей только от постоянных, фигурирующих s ii) — i|v).

Замечание 1.1. Однозначная разрешимость задачи (1.1, (1.2) в случае, когда α не зависит от x, доказана в [6].

Замечание 1.2. Вводя пространство B^s как пополнение пространства дважды непрерывно дифференцируемых отображений]0, T], в H^s , $s \geqslant 2$ по норме

$$\|y\| = \sup_{t \in [0,T]} \sum_{k=0}^{2} \|\mu(t,\cdot)a^{-\frac{k}{2}}(t,\cdot)\partial_{t}^{k}y(t,\cdot)\|_{s-k}$$

получим, что в условиях теоремы существует решение задачи (1.1) (1.2), принадлежащее B^s , если $\Phi_1 \in H^s$, $\Phi_2 \in H$

Пример 1.3. Пусть
$$A = d(t, x) - \Delta$$
, $d = p(t)[2 + xt^{\delta} \times (xt^{\delta})]$, $p(t) = t^{-\sigma}$, $\sigma > 2$, $\times (y) \in C_0^{\infty}(R)$, $0 \le x(y) \le 1$, $\times (y) \equiv 1$, $|y| < \frac{1}{2} \cdot \times (y) \equiv 0$, $|y| > 1$.

Легко проверить, что справедливы неравенства

$$a(t, x, \xi) = \xi^2 + d \geqslant \xi^2 + p(t), \quad \frac{\alpha}{a_0} = \frac{\xi^2}{d} + 1 \leqslant \xi^2 + 1,$$
$$\left| \frac{\alpha_t}{a} \right| \leqslant c \left| \frac{p_t}{p} \right|, \quad |a^{-1} \partial_x^{\beta} a| \leqslant |ct^{|\beta|}.$$

Проверяя остальные условия теоремы убеждаемся, что для этого примера-

§ 2. Построение решения

Решение уравнения (1.1) будем некать в виде

$$\mathbf{y}(t,x) = U(t) C_1(x) = \int e^{ix\xi} u(t,x,\xi) C_1(\xi) d\xi.$$

Подставляя это выражение в (1.1) и пользуясь формулой композиции ПДО получим

$$(\partial_t^2 - A) y = \int e^{ix\xi} (u_{tt} - au - \sum_{\epsilon > 0} \frac{1}{a!} \partial_{\xi}^{\epsilon} a (D_x^{\epsilon} u) \widetilde{C}_1(\xi) d\xi = 0,$$

откуда, полагая

$$u = \sum_{j=0}^{n} b_{j}(t, x, \xi), \ \gamma \equiv (a^{-\frac{1}{4}})_{ii} a^{+\frac{1}{4}} = \frac{5 a_{i}^{2}}{16 a^{2}} - \frac{a_{ii}}{4 a},$$

получаем следующие рекуррентные соотношения для функций :

$$(\partial_t^2 - a(t, x, \xi) - \gamma(t, x, \xi)) b_0(t, x, \xi) = 0.$$
 (2.1)

$$(\partial_t^2 - a - \gamma) b_j(t, x, \xi) = -\gamma b_{j-1} + \sum_{1 < |\alpha| < j} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a(D_x^{\alpha} b_{j-|\alpha|}), \quad (2.2)$$

Итак, общее решение уравнения (1.1) имеет вид

$$y(t, x) = U(t) C_1(x) + V(t) C_2(x),$$
 (2.3)

JAC

$$U(t) C_1(x) = \int e^{ix\xi} u(t, x, \xi) \widetilde{C}_1(\xi) d\xi, \quad V(t) C_2(x) =$$

$$= \int e^{ix\xi} v(t, x, \xi) \widetilde{C}_2(\xi) d\xi, \qquad (2.4)$$

$$= k_0(t, x, \xi) - b_0(t, x, \xi) \left(1 + \sum_{j=0}^{\infty} \frac{b_j}{b_0}\right), \ v(t, x, \xi) = k_0(t, x, \xi) \left(1 + \sum_{j=1}^{\infty} \frac{k_j}{k_0}\right).$$
 (2.5)

Точные решения уравнения (2.1) имеют вид

$$b_0(t, x, \xi) = a^{-\frac{1}{4}}(t, x, \xi) \exp \int_{\tau}^{t} \sqrt{a(s, x, \xi)} ds,$$
 (2.6)

$$p_0(t, x, \xi) = a^{-\frac{1}{\xi}}(t, x, \xi) \exp \int_{-1}^{T} \sqrt{a(s, x, \xi)} ds.$$
 (2.7)

Составленный из этих решений вронскиан равон

$$W(\rho_0, b_0) = \rho_0 b_{0t} - \rho_{0t} b_0 = 2. \tag{2.8}$$

Решение ρ_0 неудобно тем, что при $\xi \to \infty$ оно имеет эксполенциальный рост. Поэтому введем еще одно решение уравнения (2.1):

$$k_0(t, x, \xi) = \sigma(x, \xi) \rho_0(t, x, \xi), \ \sigma = \exp \int_0^T (\sqrt{a_0(s, \cdot)} - \sqrt{a(s, \cdot)}) ds, \ (2.9)$$

ограниченное при $t \to \infty$ и фиксированных $(t, x) \in]0, T] \times R^n$. Решение неоднородного уравнения

$$(\partial_t^2 - \alpha - \gamma) w(t, \cdot) = f(t)$$
 (2.10)

запишем в виде

$$w(t) = \int_{0}^{t} \frac{b_{0}(\tau, \cdot) \rho_{0}(t, \cdot)}{W(b_{0}, \rho_{0})} f(\tau) d\tau + \int_{t}^{T} \frac{b_{0}(t, \cdot) \rho_{0}(\tau, \cdot)}{W(b_{0}, \rho_{0})} f(\tau), d\tau,$$

HAM

$$\frac{w}{b_0}(t,\,\cdot\,) = \int\limits_0^t K(\tau,\,t,\,\cdot\,) \frac{f(\tau)}{b_0(\tau,\,\cdot\,)} d\tau + \int\limits_t^T K(\tau,\,\tau\,) \frac{f(\tau)}{b_0(\tau,\,\cdot\,)} d\tau, \quad (2.11)$$

$$\frac{w}{\rho_0}(t,\cdot) = \int_0^t K(\tau,\tau) \frac{f(\tau)}{\rho_0(\tau,\cdot)} d\tau + \int_t^T K_1(\tau,t) \frac{f(\tau)}{\rho_0(\tau,\cdot)} d\tau, \qquad (2.12)$$

ge npu t < t

$$K(\tau, t) = \frac{\rho_0(t, \cdot) b_0^*(\tau, \cdot)}{b_0(t, \cdot) W(b_0, \rho_0)} = -\frac{1}{2 V \overline{a(\tau, \cdot)}} \exp \left(2 \int_t^t V \overline{a(s, \cdot)} ds\right), (2.13)$$

м при $\tau > t$

$$K_{1}(\tau, t) = \frac{b_{0}(t, \cdot) \rho_{0}^{2}(\tau, \cdot)}{\rho_{0}(t, \cdot) \mathcal{W}(b_{0}, \rho_{0})} = -\frac{1}{2 \mathcal{V} a(\tau, \cdot)} \exp{(2 \int_{0}^{t} \sqrt{a(s, \cdot)} ds)}. \quad (2.14)$$

Из i), ii) следует, что при фиксированных $\xi \in \mathbb{R}^n$

$$\lim_{t \to 0} \mu \, b_0 = \lim_{t \to 0} \left\{ \sqrt{\frac{a_0}{a}} \exp \int_{s}^{t} (\sqrt{a(s, \cdot)} + \sqrt{a_0(s, \cdot)}) \, ds \right\} = 0,$$

$$\lim_{t \to 0} \mu k_0 = \lim_{t \to 0} \left\{ \sqrt{\frac{a_0}{a}} \exp \int_{s}^{t} (\sqrt{a_0(s, \cdot)} - \sqrt{a(s, \cdot)}) \, ds \right\} = 1,$$
(2.15)

откуда (применением теоремы Лебега о предельном переходе под внаком интеграла) следует, что решение краевой задачи (1.1), (1.4) имеет вид

$$y(t, x) = V(t) Q^{-1} \Phi_{i}(x) + U(t) U^{-1}(T) (\Phi_{i}(x) - V(T) Q^{-1} \Phi_{i}(x)), (2.16)$$

где $Q - \Pi AO$ с символом $\sum_{j=0}^{n} \frac{k_{j}}{k_{0}} (0, x, \xi)$, т. е.

$$Q\Phi(x) = \lim_{t \to 0} \mu \ V(t) \Phi(x) = \int e^{tx\xi} \sum_{j=0}^{\infty} \frac{k_j}{k_0} (0, x, \xi) \widetilde{\Phi}(\xi) \ d\xi. \tag{2.17}$$

§ 3. Вспомогательные оцения

Обозначим через Ψ_{ρ}^{m} множество всех собственных ΠAO с сим-

волами класса $S_{p,0}^m$ (см. [7], [8]).

Наша ближайшая цель показать, что операторы U(t), V(t), определяемые формулами (2.4), (2.5), являются ПДО класса Ψ_{ρ}^{m} . Введем удобное обозначение

$$\gamma_{\beta}^{(a)}(t, x, \xi) = \partial_{\xi}^{a} \partial_{x}^{\beta} \gamma(t, x, \xi).$$

Лемма 3.1. Справедливы формулы

$$\partial_{\xi}^{g} \ln g(\xi) = \sum_{r, j} \frac{g^{(f_{1})}(\xi)}{g(\xi)} \frac{g^{(f_{2})}(\xi)}{g(\xi)} \cdots \frac{g^{(f_{S})}(\xi)}{g(\xi)}, |\beta| \geqslant 1, \quad (3.1)$$

$$(\exp(-f(\xi))) \partial_{\xi}^{\theta} \exp f(\xi) = \sum p_{j} f^{(j_{i})}(\xi) \cdots f^{(j_{g})}(\xi), \qquad (3.2)$$

где β — мультииндекс, а суммирования ведутся по всем мультииндексам j_1, j_2, \dots, j_s таким, что $|j_1| + \dots + |j_s| = |\beta|, r_j, p_j - пос$ тоянные.

Докавательство проведем индукцией по β . При $(\beta) = 1$ формула (3.1) очевидна. Полагая (3.1) верным (предположением индукции) имеем

$$\partial_{\xi_k} \partial^{\beta} \ln g = \partial_{\xi_k} \sum_{i} r_j \frac{g^{(I_i)}}{g} \cdots \frac{g^{(I_g)}}{g} = -\sum_{i} r_j \frac{g_{\xi_k}}{g} \frac{g^{(I_i)}}{g} \cdots \frac{g^{(I_g)}}{g} + \sum_{i} r_j \frac{\partial_{\xi_k}}{g} \frac{g^{(I_i)}}{g} \cdots \frac{g^{(I_g)}}{g} + \cdots = \sum_{i} r_k \frac{g^{(k_i)}}{g} \cdots \frac{g^{(k_p)}}{g}.$$

где $|k_1| + |k_2| + |k_p| = 1 + |\beta|$. Формула (3.1) доказана. Докажем одномерный вариант ($\xi \in R$) формулы (3.2):

$$\exp(-f(\xi))) \partial_{\xi}^{n} \exp f(\xi) = \sum_{j=1}^{n} p_{j} f^{(j_{1})} f^{(j_{2})} \cdots f^{(j_{g})}, j_{1} + \cdots + j_{s} = n \quad (3.2')$$
 индукцией по n . При $n = 1$ формула $(3.2')$ оченидна: $(\exp(-f)) \partial_{\xi}$

$$\exp f = f'(\xi)$$
. Далее, полагая (3.2') верным, получаем

$$(\exp(-f)) \partial_{\xi}^{n+1} \exp f = (\exp(-f)) \partial_{\xi} [(\exp f) \sum p_{j} f^{(f_{i})} \cdots f^{(f_{g})}] =$$

$$= f'(\xi) \sum p_{j} f^{(f_{i})} \cdots f^{(f_{g})} + \sum f^{(k_{i})} \cdots f^{(k_{g})} = \sum p_{i} f^{(k_{i})} \cdots f^{(k_{g})},$$

rae $|k_1| + \cdots + |k_s| = 1$, $j_1 + \cdots + j_s = n$.

Многомерная формула (3.2) доказывается аналогично.

Лемма 3.2. Для того, чтобы выполнялись оценки

$$a^{-1}(t, x, \xi)|a_{i\beta}^{(a)}(t, x, \xi)| \leq C_{2\beta} T^{\delta, |\beta|} < \xi > 0^{-\beta, |\alpha|}$$
(3.8)

аля всех мультииндексов a, $\beta \in Z_x^n$ u $(i, x, \xi) \in]0, T] <math>\times R^{2n}$ необходимо и достаточно, чтобы

$$|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} (\ln \alpha)| \leqslant C_{\alpha^{\beta}}^{\gamma} T^{\gamma^{\beta}} < \xi > |\rho|^{|\alpha|}$$
(3.4)

ALR SCEX α , β , $|\alpha| + |\beta| > 0$ u $(t, x, t) \in]0, T] \times \mathbb{R}^{2n}$

Достаточность. Из (3.2) и (3.4) имеем

$$a^{-1}|a_{(\beta)}^{(\alpha)}| = |\sum p_{\alpha\beta} (\ln a)_{(\beta_1)}^{(\alpha_1)} \cdots (\ln a)_{(\beta_n)}^{(r_n)}| \leqslant C_{\alpha\beta} T^{\delta_{\beta}[\epsilon]} < \xi >^{-\beta_{\beta}[\epsilon]},$$
5. e. (3.3).

Необходимость докавываем индукцией по α , β . При $|\alpha| + |\beta| = 1$

(3.4) оченидно. Далее, полагая (3.4) верным (предположение видукции) из (3.1) имеем

$$\partial_{\xi_k}(\ln a)^{(\bullet)}_{(\beta)} = \sum_{r_{\gamma\beta}} \frac{a^{(\gamma_1)}_{(\beta_1)}}{a} \cdot \cdot \cdot \frac{a^{(\gamma_2)}_{(\beta_2)}}{a} \leqslant C_{\alpha\beta} T^{\delta_{\alpha\beta}} = \xi >^{-\rho (|\alpha|+1)}.$$

так как вдесь суммирование идет по всем ү и в таким, что

$$|\gamma_1|+\cdots+|\gamma_s|=1+|\alpha|, \ \beta_1+\cdots+|\beta_s|=|\beta|.$$

 λ е м м а 3.3. Пусть существуют положительные постоянные ρ , δ , C_{ab} такие, что для всех α , $\beta \in Z_+^a$, $(t, x, \xi) \in]0$, $T] \times R^{2n}$ выполнены неробенства

$$\frac{\left|a_{(\beta)}^{(a)}\right|}{a} + \int_{0}^{T} \frac{\partial \varepsilon_{\lambda} |a_{(\beta)}^{(a)}| + T^{-\delta} |\gamma_{(\beta)}^{(a)}|}{\sqrt{a}} (\tau, \cdot) d\tau < C_{\alpha\beta} T^{\delta, [\beta]} < \xi >^{-\rho, [\alpha]}.$$
 (3.5)

Тогда имеют место следующие неравенства:

$$\frac{|(b_0)^{(a)}_{(\beta)}|}{b_0}, \frac{|(p_0)^{(\beta)}_{(\beta)}|}{p_0}, \frac{|k_0(\beta)|}{k_0} < C_{a\beta} < \xi <^{p(1-|a|)} T^{3|\beta|}, \tag{3.6}$$

$$|K_{(\beta)}^{(\alpha)}(\tau, t)| \leqslant C_{\alpha\beta} \alpha^{-\frac{1}{2}}(\tau) T^{\delta |\beta|} \leqslant \xi >^{-\rho |\alpha|}, \tau \leqslant t,$$
(3.7)

$$|K_{1(\beta)}^{(a)}(\tau,t)| < C_{\alpha\beta} a^{-\frac{1}{2}}(\tau) T^{\delta(\beta)} < \xi >^{-\beta(\alpha)}, \ \tau \geqslant t,$$

$$\left| \left(\frac{b_{f}}{b_{0}} \right)_{(\beta)}^{(a)} \right|, \frac{|b_{f}^{(a)}|}{b_{0}}, \frac{|b_{f}^{(a)}|}{b_{0}}, \frac{|p_{f}^{(a)}|}{p_{0}}, \frac{|p_{f}^{(a)}|}{p_{0}}, \frac{|k_{0}f_{0}(\beta)|}{k_{0}} \leqslant C_{\alpha\beta} T^{\delta (|\beta|+f)} \leqslant >^{-+ \text{ fel}}. \quad (3.8)$$

Докажем вначале первую оцецку (3.6). Так как при $|z| \gg 1$ ввиду (3.5)

$$\int_{t}^{T} (V \overline{a(\tau, \cdot)}_{(\beta)}^{(a)}) d\tau = \int_{t}^{T} \left(\frac{a\xi_{k}}{V \overline{a}}\right)_{(\beta)}^{(a-1)} d\tau = \text{формула Лейбница})$$

$$= \int_{t}^{T} \sum_{\alpha} C_{\alpha, s} \frac{(a\xi_{k})_{(s)}^{(a)}}{2V \overline{a}} \cdot V \overline{a} (a^{-\frac{1}{2}})_{(\beta-s)}^{(a-1-s)} \leq$$

$$\leq C_{s\beta} \sum_{\alpha} T^{\delta/s'} < \xi >^{-\rho |\alpha|} T^{\delta |\beta-s|} < \xi >^{-\rho (|\alpha-\alpha|-1)} \leq$$

$$\leq C_{s\beta} T^{\delta/s'} < \xi >^{-\rho |\alpha|} T^{\delta |\beta-s|} < \xi >^{-\rho (|\alpha|-1)}, \tag{3.9}$$

то $\left(\text{так как ln } b_0 = \int_{\tau}^{t} \sqrt{a} \, d\tau - \frac{\ln a}{4} \right)$ получаем

$$b_{0}^{-1} b_{0}^{(a)}(\beta) = \sum_{s} p_{s\beta} \left(\int_{T}^{t} \sqrt{\alpha} d\tau - \frac{\ln \alpha}{4} \right)_{(\beta_{1})}^{(a_{1})} \cdots \left(\int_{T}^{t} \sqrt{\alpha} d\tau - \frac{\ln \alpha}{4} \right)_{(\beta_{2})}^{(a_{2})} \le C_{\alpha\beta} T^{\lambda |\beta|} (<\xi>^{\rho (1-|\alpha|)} + <\xi>^{-\rho |\beta|}) \le C_{\alpha\beta} T^{\lambda |\beta|} (\xi>^{-\rho |\alpha|}).$$

Остальные оценки (3.6) доказываются аналогично. Заметим только, что ввиду (3.2), (3.9) имеем

$$\frac{\sigma_{(\beta)}^{(\alpha)}}{\sigma} = \sum p_{\alpha\beta} \left(\int_{0}^{T} (V\overline{a_0} - V\overline{a}) d\tau \right)_{(\beta_1)}^{(\alpha_1)} \cdots \left(\int_{1}^{T} (V\overline{a_0} - 1)^{\overline{a}} d\tau \right)_{(\beta_3)}^{(\alpha_3)} \leqslant C_{\alpha\beta} I \qquad \langle \xi \rangle$$

а из формулы Лейбница

$$\frac{k_{0}^{(a)}}{k_{0}} = \frac{(\sigma \rho_{0})^{(a)}_{(\beta)}}{\sigma \rho_{0}} = \sum_{i} C_{\gamma s} \frac{\rho_{0}^{(\gamma)}_{(s)}}{\rho_{0}} \frac{\sigma_{i\beta-s}^{(a-\gamma)}}{\sigma}.$$

Для доказательства первого из неравенства (3.7) заметим, что

$$K(\tau, t) = \exp\left\{2\int_{t}^{\tau} \sqrt{a(s)} ds - \frac{1}{2}\ln a(\tau)\right\},$$

$$K_{(\beta)}^{(\alpha)}(\tau, t) = K(\tau, t) \sum_{s} \rho_{\alpha\beta} \left(2\int_{t}^{\tau} \sqrt{a} ds - \frac{\ln a}{2}\right)_{(\beta_{\beta})}^{(\alpha_{\beta})} \cdots$$

$$\cdots \left(2\left(\sqrt[\tau]{a} ds - \frac{\ln a}{2}\right)_{(\beta_{\beta})}^{(\alpha_{\beta})} \leqslant C_{\alpha\beta} a^{-\frac{1}{2}}(\tau) T^{\delta_{\beta\beta}} \leqslant \varepsilon^{-\rho_{\beta\beta}} \times \left(\int_{\tau}^{t} \sqrt{a} ds\right)^{|\alpha| + |\beta|} \exp\left(2\int_{t}^{\tau} \sqrt{a} ds\right) \leqslant \frac{C_{\alpha\beta}}{\sqrt{a(\tau)}} T^{\delta_{\beta\beta}} \leqslant \varepsilon^{-\rho_{\beta\beta}}.$$

Здесь мы воспользовались тем, что для всех k и $\tau \leqslant t \leqslant T$

$$\left(\int_{s}^{T} \sqrt{a(s)} ds\right)^{k} \exp\left(2\int_{s}^{s} \sqrt{a(s)} ds\right) \leq \text{const.}$$
 (3.10)

Аналогично доказывается второе неравенство (3.7). Далее нв (2.2), (2.11)

$$\left(\frac{b_{1}}{b_{0}}\right)_{(\beta)}^{(\alpha)} = \left[\left(\int_{0}^{t} K(\tau, t) + \int_{t}^{T} K(\tau, \tau)\right) \left(\frac{1}{b_{0}} \sum_{|p|} \sum_{-1} a^{(p)} D_{x}^{p} b_{s} - \gamma\right)_{(\beta)}^{(\alpha)} \right] \\
\leq \sum C_{\alpha, s} \int_{0}^{T} \left|K_{(s)}^{(\alpha)}(\tau, t) \left(\sum_{|p|=1} \frac{a^{p}}{b_{0}} D_{x}^{p} b_{0} - \gamma\right)_{(\beta-s)}^{(\alpha-\alpha)} d\tau \right] \\
\leq C_{\alpha\beta} T^{b(1+|\beta|)} < \xi >^{-p|\alpha|}.$$
(3.11)

Оценки

$$\left| \left(\frac{b_J}{b_0} \right)^{(\alpha)}_{(\beta)} \right| \leqslant C_{\alpha\beta} T^{\delta (J+1|\beta|)} \leqslant \xi >^{-\rho |\alpha|} \tag{3.12}$$

докажем индукцией по j. При j=1 вто уже доказанная оценка (3.11). Полагая (3.12) верным (предположение индукции) из (2.2), (2.11), (3.5) имеем

$$\left(\frac{\dot{b}_{j+1}}{b_{0}}\right)_{(\beta)}^{(a)} = \left[\left(\int_{0}^{t} K(\tau, t) + \int_{t}^{T} K(\tau, \tau) \right) \left(\sum_{1 < |\rho| < j+1} \frac{\alpha^{\rho}}{p! b_{0}} D_{x}^{\rho} \dot{b}_{j+1-|\rho|} - \frac{b_{j}}{b_{0}} \gamma \right) d\tau \right]_{(\beta)}^{(a)} \leqslant C_{\alpha\beta}' T^{\delta(j+1+|\beta|)} < \xi >^{-\rho (\alpha)},$$

что и требовалось доказать.

Остальные оценки (3.8) доказываются аналогично. Замечание 3.1. Из неравенств (3.8) следует, что

$$\sum_{j=0}^{\infty} \frac{b_j}{b_0}(t, x, \xi), \sum_{j=0}^{\infty} \frac{k_j}{k_0}(t, x, \xi) \in S_{\theta, 0}^0.$$
 (3.13)

Действительно, при T < 1 имеем

$$\left(\sum_{0}^{\infty} \frac{b_{j}}{b_{0}} \right)_{(\beta)}^{(\alpha)}, \left(\sum_{0}^{\infty} \frac{k_{j}}{k_{0}} \right)_{(\beta)}^{(\alpha)} \leq C_{\alpha\beta} < \xi >^{-\rho |\alpha|} \sum_{j=0}^{\infty} T^{\delta(j+|\beta|)} \leq$$

$$\leq C_{\alpha\beta}' < \xi >^{-\rho |\alpha|} T^{\delta |\beta|} (1 - T^{\delta})^{-1} \leq C_{\alpha\beta} T^{\delta |\beta|} < \xi >^{-\rho |\alpha|}.$$

Далее из (3.5) нетрудно вывести оценки

$$a^{\frac{1}{4}} (a^{-\frac{1}{4}})_{(\beta)}^{(a)}, \ a^{-\frac{1}{2}} (a^{\frac{1}{2}})_{(\beta)}^{(a)}, \left(\left(\frac{a_0}{a}\right)^{\frac{1}{4}}\right)_{(\beta)}^{(a)},$$

$$\left(\exp \int_{\frac{1}{4}}^{t} (\sqrt{a} + \sqrt{a_0} \ d\tau)_{(\beta)}^{(\alpha)}, \left(\exp \int_{0}^{t} (\sqrt{a_0} - \sqrt{a}) \ d\tau\right)_{(\beta)}^{(a)} \leqslant$$

$$\leqslant C_{\alpha\beta} T^{\delta |\beta|} < \xi >^{-\rho |\alpha|}. \tag{3.14}$$

 Λ емма 3.5. В условиях леммы 3.3 операторы $\psi U(t)$ и $\psi V(t)$ принадлежат классам Ψ_{ψ}^0 и имеют место оценки

$$\|\mu(t, \cdot) U(t) \Phi(\cdot)\|_{s}, \|\mu(t, \cdot) V(t) \Phi(\cdot)\|_{s} \leqslant c \|\Phi\|_{s}.$$
 (3.15)

Для доказательства этой леммы достаточно показать, что

$$\mu(t, x) u(t, x, \xi), \mu(t, x) v(t, x, \xi) \in S_{\rho, 0}^{0}.$$
 (3.16)

Первое из этих утверждений следует, с помощью (3.14), (3.13), из оценок

$$(\mu u)_{(\beta)}^{(\alpha)} = \left[\left(\frac{\alpha_0}{a} \right)^{\frac{1}{4}} \left(\exp \int_{T}^{t} (\sqrt{a} + \sqrt{\alpha_0}) d\tau \right) \sum_{\theta}^{\infty} \frac{b_j}{\alpha_0} \right]_{(\beta)}^{(\alpha)} =$$

$$=\sum C_{m\sigma s\rho}\left(\left(\frac{a_0}{a}\right)^{\frac{1}{4}}\right)_{(s)}^{(\sigma)}\left(\exp\int_{T}^{t}(\sqrt{a}+\sqrt{a_0})\,dz\right)_{(\rho)}^{(m)}\left(\sum_{0}^{\infty}\frac{b_j}{b_0}\right)_{(\beta-s-\rho)}^{(\alpha-\sigma-m)}\leqslant C_{\alpha\beta}\leqslant C_{\alpha\beta}\leqslant \sum_{0}^{-\rho+|\alpha|},$$

а второе доказывается аналогично.

Оценки (3.15) следуют из теоремы об L^2 -ограниченности операторов класса Ψ^0 (см. теорему 3.1 из [8]).

Замечание 3.6. Легко убедиться, что операторы U(t), V(T)

являются ПДО класса Ψ

Так как ΠAO класса Ψ^m является ограниченным оператором из H^{s+m} в H^s , то для придания смысла выражению (2.16) осталось по-казать обратимость операторов U(T), O с символами

$$u(T, x, \xi) = \sum_{j=0}^{\infty} h_j(T, x, \xi), \sum_{j=0}^{\infty} \frac{k_j}{k_0}(0, x, \xi).$$

Для этого воспользуемся следующим утверждением из [8] (теорема 3.5):

Предъожение 3.7. Для любых C>0, $\delta_1>0$ и s>0 можно указать такие N>0 и s>0, что если

$$|p(x,\xi)| \geqslant \delta_1 < \xi >^m, \tag{3.17}$$

$$|p_{(3)}^{(\alpha)}(x,\xi)| \leq \begin{cases} c < \xi >^{m-p |\alpha|}, & |\beta|, = 0, \\ \varepsilon < \xi >^{m-p |\alpha|}, & |\beta| \neq 0, \end{cases}$$
(3.18)

яля всех $|a+\beta| \leqslant N$, то оператор p(x,D) осуществляет изоморфизм между H^{s+m} и H^s .

Нетрудно проверить, что условия предложения 3.7 для $u(T, x, \xi)$ с $m = -\frac{1}{2}$ и $\sum_{j=0}^{\infty} \frac{k_j}{k_0} (0, x, \xi)$ с m = 0 выполнены.

Действительно, из условий ii), lii) имеем при

$$T^{\delta} < \min \left\{ 1, \frac{1 - \delta_{i}}{c} \right\} c_{i} < \xi >^{2} \alpha (T, x, \xi) < c_{2} < \xi >^{2},$$

$$c_{3} < \xi >^{-\frac{1}{2}} \le b_{0} (T, x, \xi) \le c_{4} < \xi >^{-\frac{1}{2}},$$

$$\sum_{j=0}^{n} \frac{k_{j}}{k_{0}} (t, x, \xi) = 1 + \sum_{j=1}^{n} \frac{k_{j}}{k_{0}} \ge 1 - c T^{\delta} \ge \delta_{i} > 0.$$

Отсюда и из замечания 3.6 получаем (3.17). Далее из (3.5), (3.13) при $|\beta| > 0$ имеем при малом T

$$\left(\sum_{j=0}^{n}b_{j}\left(T,x,\xi\right)\right)_{(\beta)}^{(\alpha)} = \sum_{j=0}^{n}C_{\gamma\sigma}\left(\alpha^{-\frac{1}{4}}\left(T,\cdot\right)\right)_{(\alpha)}^{(\gamma)}\left(\sum_{j=0}^{n}\frac{b_{j}}{b_{0}}\left(T,\cdot\right)\right)_{(\beta-\sigma)}^{(\alpha-\gamma)} \leqslant \left(C_{\alpha\beta}\alpha^{-\frac{1}{4}}\left(T,\cdot\right)T^{\frac{3}{2}|\beta|} \leqslant \xi \leqslant \xi \leqslant \xi \end{cases}^{-\frac{1}{2}-\rho|\alpha|},$$

$$(3.19)$$

т. е. (3.18) тоже выполнено.

Итак, из предложения 3.7 вытекает обратимость операторов $U\left(T\right)$, Q и справедливость неравенств

$$c_{1} \| \Phi \|_{s} \leqslant \| U(T) \Phi \|_{s} + \frac{1}{2} \leqslant c_{2} \| \Phi \|_{s},$$

$$c_{1} \| \Phi \|_{s} \leqslant \| Q \Phi \|_{s} \leqslant c_{4} \| \Phi \|_{s}.$$

$$(3.20)$$

Замечание 3.8. Из локальной обратимости вллиптических операторов (см., например, [7], предложение 1.4 главы 2) следует, что обратимость операторов U(T), Q имеет место и в том случае, когда область $]0, T] \times R^n$, в которой рассматривается уравнение (1.1), заменить на $]0, T] \times Q$, где Q— достаточно малая область из R^n , а начальные функции $\Phi_{1,2}$ брать из класса $C_c^{-}(Q)$.

Замечание 3.9. Из представления (2.16), неравенств (3.20) и $-\frac{1}{4}$ $V(T) \in \Psi_0$ вытекает неравенство (1.5) при k=0. Действительно

$$\|\mu y\|_{s} = \|\mu V(t) Q^{-1} \Phi_{1} + \mu U(t) U^{-1} (T) (\Phi_{2} - V(T) Q^{-1} \Phi_{1})\|_{s} \leq c (\|\Phi_{1}\|_{s} + \|\Phi_{2}\|_{s+\frac{1}{2}}).$$
(3.21)

§ 4. Вывод оденок (1.5) при k = 1, 2

Имеет место

. Лемма 4.1. В условиях i) — i/v для любых α , $\beta \in Z_+^n$ и $(t, x, \xi) \in [0, T] \times R^{2n}$ справедливы неравенства

$$|\partial_{t} K_{(\beta)}^{(\alpha)}(\tau, t)|, |\partial_{t} K_{1(\beta)}^{(\alpha)}(\tau, t)| \leq C_{\alpha\beta} \sqrt{\frac{\overline{\alpha(t)}}{\overline{\alpha(\tau)}}} T^{\delta(\beta)} \langle \xi \rangle^{-\rho [\alpha]}, \quad (4.1)$$

$$|\partial_{t} (\ln b_{0})_{(\beta)}^{(\alpha)}|, |\partial_{t} (\ln k_{0})_{(\beta)}^{(\alpha)}| \leqslant C_{\alpha\beta} \sqrt{\alpha(t)} T^{\delta |\beta|} < \xi >^{-\rho |\alpha|}, \tag{4.2}$$

$$\left| \left(\frac{\mu b_0}{V a_0} \right)_{(\beta)}^{(\alpha)} \right|, \left| \left(\frac{\mu k_0}{V a_0} \right)_{(\beta)}^{(\alpha)} \right| \leqslant C_{\alpha\beta} \frac{T^{\delta |\beta|} \langle \xi \rangle^{-\rho |\alpha|}}{\sqrt[4]{a(l) a_0(l)}}, \tag{4.3}$$

$$\left| \left| \partial_t \left(\frac{b_j}{b_0} \right)_{(\beta)}^{(\alpha)} \right|, \left| \partial_t \left(\frac{k_j}{k_0} \right)_{(\beta)}^{(\alpha)} \right| < C_{\alpha\beta} \sqrt{a(t)} T^{3(j+|\beta|)} < \xi >^{-\rho |\alpha|}, \tag{4.4}$$

 $j=1, 2, \cdots,$

$$\left| \left(\frac{\mu}{V a_0} \partial_t \sum_{0}^{\alpha} b_j \right)_{(\beta)}^{(\alpha)} \right|, \left| \left(\frac{\mu}{V a_0} \partial_t \sum_{0}^{\alpha} k_j \right)_{(\beta)}^{(\alpha)} \right| \leqslant C_{\alpha\beta} T^{\delta |\beta|} < \xi >^{1-\rho |\alpha|}, \quad (4.5)$$

$$\left| \left(\frac{a}{a_0} (i, \cdot) \right)_{(\beta)}^{(\alpha)} \right| \leqslant C_{\alpha\beta} T^{\delta |\beta|} < \xi >^{2-\rho |\alpha|}. \tag{4.6}$$

Доказательство. Первая из оценок (4.1) доказывается с помощью формауы (2.13) и неравенств (3.14):

$$\begin{array}{l} \partial_{t} K(\tau, t)_{(\beta)}^{(\alpha)} = \left(\sqrt{\frac{a(t)}{a(\tau)}} \exp 2 \int\limits_{t}^{\tau} \sqrt{a(s)} \, ds\right)_{(\epsilon)}^{(\alpha)} \leqslant \\ \leqslant C_{\alpha\beta} \sqrt{\frac{a(t)}{a(\tau)}} T^{\delta |\beta|} \leqslant \\ \end{array}$$

Вторая—из оценок (4.1) доказывается аналогично с помощью формулы (2.14). Оценки (4.2) вытекают из iii), i|v) и (3.14):

$$(\partial_t \ln b_{\theta})_{(\beta)}^{(\alpha)}, \ (\partial_t \ln k_0)_{(\beta)}^{(\alpha)} \leqslant \left| \left(\pm \sqrt{\alpha} - \frac{a_t}{4a} \right)_{(\beta)}^{(\alpha)} \right| \leqslant$$

$$\leqslant C_{\epsilon\beta} \left(\frac{|p_t|}{p} + \sqrt{\alpha} \right) T^{\delta|\beta|} \leqslant \varepsilon^{-\rho|\alpha|} \leqslant C_{\epsilon\beta} \sqrt{\alpha(t)} T^{\delta|\beta|} \leqslant \varepsilon^{-\rho|\alpha|}.$$

Неоавенства (4.3) доказываются с помощью формул

$$\frac{\mu b_{0}}{\sqrt[3]{a_{0}}} = \frac{\exp \int_{T}^{t} (\sqrt[3]{a} + \sqrt[3]{a_{0}}) d\tau}{\sqrt[3]{a_{0}}} \cdot \frac{\mu k_{0}}{\sqrt[3]{a_{0}}} = \frac{\exp \int_{0}^{t} (\sqrt[3]{a_{0}} - \sqrt[3]{a}) d\tau}{\sqrt[3]{a_{0}} (t)}$$

и неравенств (3.15).

Первое из неравенств (4.4) докажем индукцией по j. При j=1 применением формулы Лейбница и оценок (4.1) имеем

$$\partial_{t} \left(\frac{b_{1}}{b_{0}} \right)_{(\beta)}^{(\alpha)} = \sum C_{\sigma s} \int_{0}^{\delta} \partial_{t} K_{(\sigma)}^{(\sigma)} \left(\frac{1}{b_{0}} \sum_{|\rho|=1} a^{(\rho)} D_{x}^{\rho} b_{0} - \gamma \right)_{(\beta-s)}^{(\alpha-\sigma)} d\tau \leqslant$$

$$\leqslant C_{\alpha\beta}' \sum \langle \xi \rangle^{-\rho |\sigma|} T^{\delta|s|} | \overline{a(t)} \int_{0}^{t} \frac{d\tau}{\sqrt{\overline{a(\tau)}}} \left| \left(\sum_{|\rho|=1} \frac{a^{(\rho)}}{b_{0}} D_{x}^{\rho} b_{0} - \gamma \right)_{(\beta-s)}^{(\alpha-\sigma)} \right| \leqslant$$

$$\leqslant C_{\alpha\beta} | \overline{a(t)} T^{\delta(|\beta|+1)} \langle \xi \rangle^{-\rho |\alpha|}.$$

Полагая $(4.4)_1$ верным при j=1,...,m (предположение индукции) имеем из (2.2), (2.11) и формулы Лейбница

$$\partial_{t} \left(\frac{b_{m+1}}{b_{0}} \right)_{(\beta)}^{(\alpha)} = \sum_{0} C_{\epsilon s} \int_{0}^{t} K_{l(s)}^{(\sigma)} \left(\sum_{1 < |\rho| < m+1} \left(\frac{a^{(\rho)}}{\rho! \ b_{0}} D_{x}^{\rho} b_{m+1-|\rho|} - \frac{b_{m}}{b_{0}} \gamma \right)_{(\beta-s)}^{(\alpha-\alpha)} d\tau < C_{\alpha\beta} V \overline{a(t)} \sum_{i=1}^{\infty} \langle z_{i}^{(\sigma)} \rangle_{(\beta-s)}^{\rho} |\sigma| T^{\delta_{i}|s|} \times \\ \times \int_{0}^{t} \frac{d\tau}{V \overline{a(\tau)}} \left| \left(\sum_{i=1}^{\infty} \frac{a^{(\rho)}}{\rho! \ b_{0}} D_{x}^{\rho} b_{m+1|\rho|} - \frac{b_{m}}{b_{0}} \gamma \right)_{(\beta-s)}^{(\gamma-\sigma)} \right| \leq C_{\alpha\beta} V \overline{a(t)} \times \\ \times T^{\delta_{i}(m+1+|\beta_{i}|)} \langle z_{i}^{(\sigma)} \rangle_{(\beta-s)}^{\rho} |\sigma|.$$

Оценки (4.4) 2 докавываются аналогично.

Ив оценок (4.5) мы, как обычно, докажем только первую, используя неравенства (4.3), (4.4):

$$\left(\overline{V}\frac{\mu}{a_0}\partial_t\sum_{0}^{\infty}b_j\right)_{(\beta)}^{(\alpha)} = \left(\frac{\mu b_0}{Va_0}\partial_t\sum_{0}^{\infty}\frac{b_j}{b_0} + \frac{\mu b_{0t}}{b_0\sqrt{a_0}}\sum_{0}^{\infty}b_j\right)_{(\beta)}^{(\alpha)} =$$

$$=\sum C_{\sigma s}\left\{\left(\frac{\mu b_0}{V\overline{a_0}}\right)_{(\beta-s)}^{(\alpha-\sigma)}\left(\partial_t\sum_0^{\infty}\frac{b_f}{b_0}\right)_{(s)}^{(\sigma)}+\left(\frac{b_{0t}}{b_0}\right)_{(s)}^{(\sigma)}\left(\frac{\mu b_0}{V\overline{a_0}}\sum_0^{\infty}\frac{b_f}{b_0}\right)_{(\beta-s)}^{(\alpha-\sigma)}\right\} < < C_{\alpha\beta}T^{\delta,|\beta|} < \xi >^{-\rho|\alpha|} \cdot \sqrt[4]{\frac{a}{a_0}} \leqslant C_{\alpha\beta}T^{\delta,|\beta|} < \xi >^{\frac{1}{2}-\rho-\alpha|\alpha|}.$$

Наконец, неравенства (4.6) выводятся с помощью (3.2)

$$\left(\frac{\alpha}{a_0}\right)_{(\beta)}^{(\alpha)} = \frac{\alpha}{a_0} \sum_{\beta} p_{\alpha\beta} \left(\ln \alpha - \ln \alpha_0\right)_{(\beta_1)}^{(\alpha_1)} \cdots \left(\ln \alpha - \ln \alpha_0\right)_{(\beta_d)}^{(\alpha_d)} \leqslant C_{\alpha\beta} T^{\alpha\beta} \times \left(\sum_{\beta} 2^{-\beta} |\alpha|\right).$$

Из неравенств (4.6), определения класса Ψ_p^m и теоремы об ограниченности ПДО класса Ψ_p^m в пространствах Соболева (см., например, [8], теорема 3.1) вытекает

Следствие 4.2. В условиях i)—iIV) ПД операторы

$$\frac{\mu}{V\overline{a_0}}U_t(t), \frac{\mu}{V\overline{a_0}}V_t(t)$$

принадлежат классу $\Psi^{\frac{1}{2}}$ и имеют место оценки

$$\left\| \frac{\mu}{V a_0} U_t(t) \Phi \right\|, \left\| \frac{\mu}{V a_0} V_t(t) \Phi \right\|_{s} \leqslant c \left\| \Phi \right\|_{s+\frac{1}{2}}. \tag{4.8}$$

Перейдем к доказательству оценок (1.5) при k=1, 2. Дифференцируя соотношение (2.16) по t получим

$$y_t = V_t(t) Q^{-1} \Phi_1 + U_t(t) U^{-1}(T) (\Phi_2 - V(T) Q^{-1} \Phi_1),$$

откуда, применяя оценки (4.8) и (3.20) получаем неравенство (1.5) при k=1:

$$\left\|\frac{\mu}{\sqrt{a_0}}y_t\right\|_{s} \leq c\left(\left\|\Phi_1\right\|_{s+\frac{1}{2}} + \left\|\Phi_2\right\|_{s+1}\right).$$

Оценку (1.5) при k=2 выводим с помощью уравнения (1.1) и неравенств (4.6):

$$\begin{aligned} \left\| \frac{\mu}{a_0} \, y_{tt} \right\|_s &= \left\| \frac{\mu}{a_0} \, A y \right\|_s \leqslant \left\| \frac{\mu}{a_0} \, A \mu^{-1} \right\|_{-2} \cdot \left\| \mu y \right\|_{s+2} \leqslant \\ &\leqslant c \left\| \mu y \right\|_{s+2} \leqslant c \left(\left\| \Phi_1 \right\|_{s+2} + \left\| \Phi_2 \right\|_{s+\frac{5}{2}} \right). \end{aligned}$$

Итак, оценки (1.5), а с ними и теорема, доказаны.

Чтобы проиллюстрировать появление весовой функции µ в задаче Дирихле (1.2) решим сингулярную модельную задачу Дирихле в круге

$$D = \{ (x, y) \in \mathbb{R}^2, \ x^2 + y^2 < \mathbb{R} \}, \ r = \sqrt{x^2 + y^2},$$

$$u_{xx} + u_{yy} = q(r)u(x, y), \ (x, y) \in D, \ q(\mathbb{R} - 0) = \infty,$$

$$\lim_{r \to \mathbb{R} - 0} (\mu_0(r)u) = f(\varphi) \in \mathbb{C}^2[0, 2\pi],$$
(4.10)

где

$$y_0(r) = \sqrt[4]{q_0(r)} \exp \int_r^0 \sqrt{q_0(s)} ds, \ q_0 \equiv q(r) - \frac{1}{4r^2}$$
 (4.11)

Переходя к полярным координатам r, φ ($x = r \cos \varphi$, $y = r \sin \varphi$) уравнение (4.9) запишем в въде

$$u_{rr} + \frac{u_r}{r} + \frac{v_{\varphi\varphi}}{r^2} = q(r) u.$$
 (4.12)

Подставляя решения вида

$$u(r, \varphi) = M(r) B(\varphi)$$

в (4.12) (метод разделения переменных) получаем

$$\frac{r^2 M''(r)}{M(r)} + \frac{r M'(r)}{M(r)} - r^2 q(r) = -\frac{B''(\varphi)}{B(\varphi)} = \lambda = \text{const.}$$
 (4.13)

Уравнение $B''(\varphi) = iB(\varphi)$ имеет общее решение

$$B(\varphi) = a_a \sin \varphi \sqrt{\lambda} + b_a \cos \varphi \sqrt{\lambda},$$

тде из периодичности $B(\phi)$ с периодом $2 \times$ следует, что $\lambda = n^2$, $n \in \mathbb{Z}_+$. Уравнение

$$M''(r) + \frac{M'(r)}{r} = q_n(r) M(r), q_n \equiv n^2 + q(r) - \frac{1}{4r^2}$$
 (4.14)

 $-\frac{1}{2}$ заменой M(r)=r v(r) сводится к

$$v''(r) = q_n(r) v(r). \tag{4.15}$$

Общее решение втого уравнения имеет вид

$$v(r) = C_1 v_1(r) + C_2 v_2(r),$$
 (4.16)

где в условиях ВКБ-леммы (см. [9])

1).
$$q(r) > \frac{1}{4R^2}$$
, 2). $\int_0^R \sqrt{q(\rho)} d\rho = \infty$,

3).
$$q(r) \in C^2\{0, R[, \frac{q_n'(r)}{8q^{3/2}} - \frac{5(q_n')^2}{32q^{5/2}} \in L_1[\epsilon, R], \epsilon > 0,$$

MINCOM

$$(v_{1}(r) = (1 + \epsilon_{1}(r)) q_{n}^{-\frac{1}{4}}(r) \exp \left\{ \int_{0}^{\infty} V \overline{q_{n}} ds + \int_{0}^{\infty} (V \overline{q_{0}} - V \overline{q_{n}}) ds \right\},$$

$$(4.17)$$

$$v_{2}(r) = (1 + \epsilon_{2}(r)) q_{n}^{-\frac{1}{4}}(r) \exp \left(-\int_{0}^{\infty} V \overline{q_{n}(s)} ds \right),$$

$$\lim_{r \to R \to 0} \epsilon_{1, 2}(r) = 0,$$

яричем $v_1(r)$ стремится к бесконечности, а $v_2(r)$ стремится к нулю при $r \to R = 0$.

Итак

$$\lim_{r \to R \to 0} \mu_0 \, v = C_1 \, \lim_{r \to R \to 0} \left\{ \left(\frac{q_0}{q} \right)^{\frac{1}{4}} \exp \int_{R}^{r} (\sqrt{q} - \sqrt{q_0}) \, ds \right\} = C_1. \tag{4.18}$$

Решение $v_1(r)$ можно гладко продолжить вплоть до r=0 так, $-\frac{1}{2}$

чтобы $v_1(0) = 0$. Продолжая $v_2(r)$ до r = 0 получим, что r $v_1(r) \sim \ln r$ стремится к бесконечности при $r \to 0$, т. е. M(r) неограниченно при r = 0. Выбрасывая это сингулярное при r = 0 решение получим

$$u(t, x) = \frac{a_0 v_{10}}{2 \sqrt{r}} + \sum_{k=1}^{\infty} \frac{v_{1k}(r)}{\sqrt{r}} (a_k \cos k\varphi + b_k \sin k\varphi). \tag{4.19}$$

Из краевого условия (4.10) и (4.18) получаем

$$\lim_{r\to R\to 0} u_0 u = R^{-\frac{1}{2}} \left(\frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos k\varphi + b_k \sin k\varphi) \right) = f(\varphi), \qquad (4.20)$$

откуда коэффициенты Фурье a_k , b_k находятся обычным способом.

Институт математики

АН Армении

Поступнав 5. II. 1983

Գ. Ռ. ՀՈՎՀԱՆՆԻՍՑԱՆ. Կջռային Դիբիխլեի խնդբի մասին երկրորդ կարգի սինգուլյար էլիպաական ճավասարումների ճամար *(ամփոփում)*

Վեթնագրում նչված խնդիրների համար ապացուցվում է լուծման գոյությունը Սորոլեի տարածություններում։ Որպես կշռային ֆունկցիա օգտագործվում է ՎԿԲ-ի ասիմօպտոտիֆայի առաջին մոտարկումը։

G. R. OGANE SIAN. Weighted Dirichlet problems for the second order singular elliptic equations (summary)

In the paper the solvability in the Sobolev space of the weighted Dirichlet problem for a singular on the boundary elliptic second order equation is proved.

As the weight function the first approximation of the JWKB-asymptotic (Green-Liouville function) is used.

ЛИТЕРАТУРА

- 1. М. В. Келлыш. О некоторых случаях вырождения уравнений вълиштического тама на границе области, ДАН СССР, 77, № 2, 181—183.
- 2. А. В. Бинадзе. Уравнения смешанного тыпа, М., ВИНИТИ, 1959.
- 3. И. А. Киприянов. О краевых задачах для уравнений в частных производных с двфференциальным оператором Бесселя, ДАН СССР, 158, № 2, 1964, 275—278.
- С. А. Терсенов. Введение в теорию уравнений, вырождающихся на границе. Новосибирск, НГУ, 1973.
- С. Руткаускас. Задача типа Дирихле для валиптического уравнения с сингулярнестью во внутренией точке области, Сообщения АН ГССР, 121, № 1, 1986, 21—23.
- 6. Г. Р. Озанесян. О весовых задачах Коши и Дврихле для некоторых сингулярных на границе уравнений в частных производных, Изв. АН Армении, сер. матем., 23, № 1, 1988, 3—21.
- 7. Ф. Трев. Введение в теорию псевдодифференциальных операторов и интегральных операторов Фурье, М., Мир, 1984, т. І.
- В. В. Грушин. Псевдодедфференциальные операторы в Rⁿ с ограниченными символами, Функц. анализ и его прилож., 1970, 4, № 3, 37—50.
- 9. Ф. Хартман. Обыкновенные двффоренциальные уравнения, М., Мир, 1970.