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O. Introduction. Let T be a compact Hausdorff space (everywhe­
re assumed metrizable), let A be a unital C*-algebra, and let C ( T, A) 
be the algebra of all continuous Л-valied functions on T-. By a uniform, 
algebra we mean a closed subalgebra M of C ( T, A) which separates 
the points of T and contains all constants (definition in a more gene­
ral case see in [5], [6], and [13] — [15]). Some properties of such non- 
commutative algebras were investigated in [2] — [4]. The present paper, 
which is an immediate continuation of the just quoted papers, is devo­
ted to the iniform algebras on compact Abelian groups invariant with 
respect to all group shifts. The rich structure of such algebras permits 
to revise some early obtained results. The main restrictions as usually 
are the following: the algebra M is an A-algebra (i. e. supposed that 
M is a submodule of the Л-module C ( T, Л); the algebra A (the fibre) 
is weakly*-transitive (i. e. it obtains a pure state which is weakly to­
tal in the state space of A, see [4]).

Preliminary results of general nature are collected in Sections 
1 and 2: we consider the Gelfand—Naimark—Segal (GNS) construction 
for conditional expectations which uses the notion of Hilbert C*-module, 
a realization for the case of Abelian groups, and a property of the 
ideal set of weakly*-transitive algebras. The structure and properties 
of invariant uniform algabras on Abelian groups are investigated in 
Sections 3—5 (in the centre of attention are orthogonal decompositions, 
the notion of spectrum, peak points, and maximality).

A small part of the results were announced in [2]. All general 
concepts and facts, used without mentioning the source can be found in 
the monographs [5], [7], [12].

Notations (for details see [3], [4].
The algebras A and C ( T) we identify with their isomorphic ima­

ges in C(T, A): thus, an element a£A denotes also the function 
a (f) — a for all r£ T, and analogously, an element / ^С(Г) denotes 
also the function /(/)=/(<) 1, where t £ T, and 1 is the identity of A 
(and of C(T, A) too).

The set of all conditional expectations of the aigebra C(T,A) 
onto the subalgebra A we denote by P(T,A).

Let 5 be the dual group of a compact Abelian group T and let 
7’ be a natural representation of S in C{T), then obviously 7i+/=f,T(z 
(we use ou T multiplicative, and on S additive notations of group 
operation-).
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Denote by SpAM the compact set of all continuous >4-linear ho­
momorphisms from an 4-algebra M to the weakly*-transitive fibre A 
(see Definition 3.1 of [3] and Corollary 4.4 of [4]).

Denote by 5(4» and P(A) the state space and the set of pure 
states of a C*-algebra A.

1. Preliminaries. In this Section we consider general questions 
connected with the notion of Hilbert C*-module; the definition (see 
e. g. [10] [11]) we adduce in a convenient form.

Let A be a C*-algebra with identity 1, and let L be a linear 
space which is a right 4-module and on which one determine a map 
L X L -* A (4-product) with the following properties:

1. (x 4- y, z) = (x, x) I- (y, z)
2. (xa, y) = (x, y) a
3- (x, y) =(y, x)
4. (x, x) > 0
5. If (x, x) = 0, then x = 0.
Here x, y, z are from L, a £A.
The space L with the norm

x|2
is a normed space, which is called Hilbert A-module if L is complet in 
this norm.

A standard example of Hilbert 4-module is a Is (4)-completion
of .4 in the norm determined by the product

■ie$
(x, y)= £ ysXs,

stS
where 5 is a set, x, y^L, x = (x,), x, £A.

Another important example of Hilbert /1-module, which is a gene­
ralization of GNS-construction arises in the following way.

Let A, B be U*-algebras with common identity, AcB.
Lemma 1.1. Let p be a conditional expectation, p: B-*A, then 

the formula
(x, y) = p(y*x) ■ (1.1)

determines an A-product on B satisfying the conditions 1—4, and
6. (1, 1) = 1
7. (xz, y) = (z, x*y).
Conversely, every A-product on B satisfying the conditions 

1—4, 6, 7 is generated by a unique conditional expectation. The con­
dition 5 is equivalent to the exactness of the corresponding conditional 
expectation.

Proof. The first part of Lemma is an immediate consequence of 
the properties of conditional expectations (see e. g. S. 2, [3]). Conver­
sely, let there exists on B an 4-product satisfying the conditions 1—4,
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'6, 7. It is easy to check that the map pB — A, p(b) = (b, 1) is a 
conditional expectation (a unique one) which generates the given 
4-product by the formula (1.1). The last part of the statement is 
evident.

Thus, let p be a conditional expectation, p:B-+'A‘, then the set 
Np = \x£B. p(x*x) = 0} is a left ideal in B, and simultaneously, an 
4-bimodule (a consequence of the inequality Ip (y*x)]3 C|yV jp(x*x)| 
see (iii), Proposition 2,2, [3]. The linear space B[NP is a right 4-mo- 
dule with an 4-product determined by p (Lemma 1.1); its completion 
£’(5, A, p) is, evidently a Hilbert 4-module.

By analogy with usual GNS-construction one can indicate a stan­
dard (left) 4-representation of the algebra B in £’(B, A, p) related 
with the starting conditional expectation and another facts which are, 
however, out of bounds of purposes of our paper.

Let T be a compact space, and let C(T, A) be the 4-bimodule 
of all continuous functions on T with values in a C*-algebra A. For a 
conditional expectation p^_P(T, A) the Hilbert 4-module L*(C(T, A}, 
A. p) will be denoted by £’(7՞, 4, p).

Let T be a compact Abelian group, and let the map kr, where 
r £ T, kr• T— C(T, A), is defined by the formula

(krx)(t)<=x(rt). (1.2)
We call a conditional expectation Pok.P{T, 4) T-invariant iff^ 

p^-kr - po for every T.
Proposition 1.2. There exists and is unique on C(1 , A) an exac 

invariant conditional expectation (i. c. e.).
Proof. Let a be the probability Haar measure on T, and let »obe 

the corresponding functional on C(7՜). Then (see the proof of Proposi 
tion 1.4, [4]) there exists a conditional expectation p0 on C(T, 4) such 
that the restriction of p0 on C(T) coincides with <pa. Obviously, p0 is 
an i. c. e.

Let p be an i. c. e. from P(T, 4), and let s be a character on T. 
Then, for every t £ T we have.

P (■/) = ₽(£' 7J)=V (f)p(l') U-3)
from which we obtain that if s is not a neutral character, then p (}J) — 0. 
Consequently, the restriction of p on C(T) is a ^-invariant state, 
hence, by the uniqueness of the Haar measure we obtain the uniqueness 
of po (we use again Proposition 1.4, [4]). Verify now the exactness of 
p0. Let x^C(T, A), po(x*x) = O, and let q be any pure state on 4. 
Then <P = cop0 is a state on C(T, A) the restriction of which on 4 
coincides with <p. We have for some probability measure p on T

*(x) = <p (x (/)) dv- (0
V

(by Theorem 1.5, [3])- It is evident that the functional <t> is invariant 
with respect to group shifts, hence p coincides with the Haar measure a. 
Further, as
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J v (x*x (<)) da (0 — 0 (x*x) - T (/». (x*x)) = 0

we obtain that y(x’x(f)) = 0 for each t. Since f is arbitrary then, fi­
nally, x = 0. ,

Thus, L*{T, 4. p0) is a completion of C(T, A) in the norm of 
the Hilbert 4-module, corresponding to p». The 1. c. e. just obtaine 
can be defined, with necessary justifications, as J xda for x^C (T, A), 

see Remark 1.3, [4].
The following result clarifies the structure of the Hilbert 4-mo­

dule L։ (T, A, p0).
Proposition 1.3. Let S be the group of characters of a group T 

let p0 be an i.c.e. Then the Hilbert modules L* (T, A, po) and ls(A')r 
are isomorphic.

Proof. By an isomorphism we mean an 4-linear bijection which 
preserves the 4-product.

Evidently, it sufficient to indicate an “4-basis“ in L? (T, A, p0) 
corresponding to the standard basis in Zs(4). The set I* = {l', 
is the required one. More precisely, every element x from D (T, A, p0) 
have a unique orthogonal expansion of the form

x=£<M'. d-4)
where a3£A, and the convergence of the series is understood in 
the norm of L* ( T, A, p0).

Remark 1.4. Let x £ C( T, 4), then the “coeficients“ a, in the 
expansion (1.4) are determined by the formula

as = po (1.5)
Remark 1.5. Roughly speaking, 1? (T, A, p0) is a “tensor product“ 

of Li(T,a) and 4, just as ls(A) = P&) 4, therefore Proposition 2.2 is 
just a reformulation of the classical result concerning an isomorphism 
of Hilbert spaces of the same dimension.

2. Ideals in weakly*-transitive algebras. We represent here an 
important property of the ideal set in weakly*-transitive algebras, ne­
cessary in the sequel.

Lemma 2.1. Every two closed two-sided non-zero ideals in a 
weakly*-transitive algebra have a non-zero interseclion.

Proof. Note, at first, that if and /2 are closed two-sided non­
zero ideals with zero intersection in a C#-algebra 4, then each pure 
state on 4 annuls one of these ideals. Indeed, let H, be a Hilbert spa­
ce corresponding to by GNS-construction, and let Hu H2 be inva­
riant and, obviously, mutually orthogonal subspaces of H, generated by 
the ideals 7։, Ia. Since the GNS-representation is irreducible, one of 
the subspaces H or Ht must be zero, which means that f annuls the 
corresponding ideal.

Now, let 4 be weakly’-transitive, and let ? be a total state. 
Then <p does not annul any non-zero ideal: otherwise, a state which is



Invariant alfabraa 337

non-zero on this ideal can not be approximated by convex combinations 
of the unitary shifts of f, see [4[.

3. Structure of invariant uniform algebras. Let T be a compact 
Abelian group, let M be an invariant (with respect to group shifts) 
>4-algebra, McC(T, A), and let p0 be the i. c. e., defined by Propo­
sition 1.3.

Lemma 3.1. Let A be a C*-algebra with trivial centre, and let. 
x(C (T, A). Then x < M iff a*f* £ M for all s(S in the expansion (1.4)

Proof. We use the following easily checking general fact (“Fubinl 
theorem*).

F) Let r։, 7, be compact spaces, let w be a state on C(7, A) 
and let p£.P(T3, A). Define on C(7tX Tt, A) the operators

«» :C(7’։X T։. 4) ->C(7։)cC(r։, A), 
p:C(TtXT3, A)֊+C(T> A) 

by the formulas:

(<»)•= G))» (2.1)

= p(y(Ju )). (2.2)
where y(C(T()( Tit A), Then

p.fa) = uj. p (2.3)

(i. e. po<»(y) = ((“ op(1/)) 1).
Now, let x £ M, x~2aJi,։ where the convergence of the series 

is understood in ths norm of L*(T, A, p0). Check that as V belongs J to 
M for each It is sufficient to show that for every functional on
C(T, A) which annuls M, one have 'p (as y") = 0. Evidently, for each 

the function y, defined by the formula.
y(t, r) = TJ(r)x(/r) (2.4)

belongs to C(TxT, A), moreover

Po =
Indeed, by the formulas (2.2), (1.1) and (1.5) we have

Po(y) (O = Po(l՜’kt x) = 7*(f)p0(7-*x) = a,r’(f).
Therefore, by (2.3) and (2.4),

Po(y) = Po- ?(y) = 0

since 1» (y) (r) = (r) <p (krx) = 0 (note, that by invariantness of M, we
have £fx£M for all r.

Conversely, let x £ C (T, A) and let as fs £ M for all s in the 
expansion x~So,t'. Show, that x£M. Let a functional 'p be annuling 

M , but ‘p(x)=£0. Then, the non-zero function f(t) = <p (kt x) belongs 
to C ( T), therefore there exists a character s £ 5 such that p0 (l-,/)=/=0-

If y is a function from C(7X T, A), defined by the formula 

(2.4), then • po(y) = ty(a։>ii) = f), i. e. asis^ M. On the other hand,
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Po'♦(ÿ) = P#(ï"*/)¥'0, which is a contradiction with (2.3). and thus- 
the proof is complete.

Denote for all s £ 5 .„ ... . ՛
A, (M) = A,' = {*£ A, a,Y Ç M).

Obviously, At is a closed two-sided (consequently selfadjoint} 
ideal in A. Let Sm be the set of those s(;S, for which By
Lemma 3.1, s£<Sm iff there exists x£M, such that (x, 7,)=A0.$ In ge­
neral, 7s** — {•jJ, is not a subset of M- However, if 7 Æ er Mr
then M is decomposable, i. e. it is generated by the algebra A and by 
a uniform subalgebra of C(7^ (see Propositions 1.8 and 3.7 of (3|). Chow,, 
that the same is true for the case of an algebra with simple fibre.

Lemma 3.2. Let A be simple C*-algebra, and let M be a Uniform 
invariant A-algebra on a compact Abelian group T. Then M is de­
composable.

Proof. By simlicity of A, for every s£-Sm the ideal As coincides 
with A, therefore 7' belongs to M. Let M be a minimal closed subal­
gebra of C(T) generated by 7Sm. By Lemma 3.1 and by the expansion 
(1.4), this algebra is separating, and consequently is uniform. Evident­
ly, the algebras M and A together generate the algebra M.

Corollary 3.3. In conditions of the Lemma, the algebra M coin­
cides with C(T, A) iff SpA^il coincides with T.

Note, that in contradistinction to the commutative theory, Sm is 
not a subsemigroup of S; however, this property is satisfied for a large 
class of algebras. The following statement contains in particular, an 
extension of one of the results of Arens and Singer, [1].

Theorem 3.4. Let A be a weakly*-transitive algebra with identi­
ty, and let M be a uniform T-invariant ^.-algebra or a compact Abe 
Han group T with the dual group S. Then

(i) Sm is a subsemigroup of S;
(ii) there exists a natural homeomorphism of SpA M with the 

compact space (in the standard topology) of all homomorphisms of Sm 
to the unit circle.

Proof, (i) Let s, uÇSm then A։ ՝[■’, X«7“cM, therefore >4JZlu7''t‘ucM. 
Evidently, AjtAuC As+a. On the other hand, = At 0 Au (see [5], 
1.9 12) is a non-zero ideal, by Lemma 2.1. Consequently, s -|-uÇ5m.

(ii) Let M be a uniform algebra in C(T’), generated by 7 5m, and 
let M be a uniform ^4-aIgebra in C(T, A), generated by M and A 
(decomposable, by definition). Then, by Proposition 3.7, [3] (which 
was proved for a simple fibre; however, it is true in weakly*-transitive 
case by Corollary 4.4. [4]), the maximal ideal space of M coincides 
with SpA M , and, by Arens—Singer theorem, it is homeomorphic to the 
compact set of all homomorphisms of the semigroup Sm to the unit 
circle. It remains to check only that SpA M' coincides with SpAM.. 
Clearly, that each p Ç SpA M determines some p' £ SpA M ( the restriction: 
P Pl^). Show that the map ' is a monomorphism. Let
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£Sp M', Pi¥։p։»then there exists s£5M for which p, (?*) = Pi (7»), 
therefore, for some a£At we obtain

pi (erf) - P\ («H*) = aPi (1) = aPi (/) = Pi («A
Finally, show that every homomorphism q^SpAM has an extension on 
M'. Let q' be a conditional expectation from P(T, /1), such that 
q'\M = q (see Corollary 4.4, [4]). For every s£5m and a£As we have

q (ai') = q' (ay') *= aq' (iJ), 
and moreover, it is clear, that the value q'(t*), which is scalar, does 
not depend on the choice of extension (see Propositions 1.1, and 4.2 (i) 
[4]). Thus, q' is well defined on 7Sm, and consequently on M' too. It 
remains to verify that the restriction of q' on is a character. Let, 
u, s£5m' = 5m. a^/LnA, a > 0, then 07“ 07' = a‘՝[s*u =£0 and so 
a’g'Cl“) q՛ I՜!՛1) = aV (1“+ ) therefore, as above, q՛ (i“4՛*) = q՛ (7*).

4. Maximality. Let T be a compact space, let M be a uniform 
algebra from C(T, A), where A is a unital C*-algebra. A uniform 
algebra M is called maximal, if C(T, A) is the only uniform algebra 
containing M.

Let M be an invariant uniform algebra on a compact Abelian 
group T. Denote by 5m(/) for each closed two-sided ideal Ie A the 
following set

5m(/) = (s £ 5m, As= l\.
Even in the case when 5m is a semigroup (see e. g. Theorem 3.4) 

5m(/) could not be a subsemigroup of 5m- However. 5m (-<4) is always 
a semigroup.

Lemma 4.1. Let I be a two-sided closed ideal in weakly*-transi- 
tive algebra A, and lei M։ be a uniform T-invariant A-algebra, ge­

nerated by (At(M) + where s£5m- Then
As (M,) : At 4՜1.

Proof. Note first, that As (M) 4֊ I is also a two-sided closed ideal 
(see [5[). Further, we have = M 4՜ M', where M' denotes a closed 
subalgebra generated by 1^’, when s runs over all 5m. Indeed, M4-M' 
forms a dense subalgebra in M։, since M' is an ideal in M. Introduce 
for every s^5m,= 5m a linear operator by the formula:
Pt(x) = p0(x 7՜'), where p0 is the i. c. e. (see Proposition 1.2). Using 
Lemma 3.1 and Remark 1.4 we obtain at last

A,(M։)=p,(M։) = /r;(M)4-/.
The following results are evident. t
Corollary 4.2. Let 1 be a two-sided closed ideal in A, Such tha 

for some s£Sm, Ate J, and let M, be a uniform T-invariant A-algeb՜ 
ra generated by M and Iy՝r. Then As = I.

Corollary 4.3. Let sl։ s։ £ 5m. Sj, and As,^ At, A. Then, if M 
it a uniform T-invariant A-algebra generated by M and (At,+As,) 7,։ 

•one have At, (M։) = .4J։ (M).
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The following result presents a description of maxima n 
uniform algebras and, in particular, it extends one o t e resu 
Hoffman and Singer, |9]. . . , ,

Theorem 4.4. Let M be a uniform T-invariant maximal A-algeb-. 
ra with weakly*-ti ansitive fibre. Then M is a Diric et a ge ra 
ReM- ReC(T, A)), and the semigroup S*(A) defines on S an 
Archimedian order, in addition:

i) If 5m ^5 then Sm=5m(/1) (hence M is decomposable). In 
this case the algebra A is simple and

SpA(M)= rx [0, l]/rx |0|.

(ii ) If Sm = 5, then there exists a maximal two-sided ideal I of 
A, such that 5m(/) U |0| =—5m M). /n this case SpA(M) = T.

Proof, (t) If 5m =/= 5m G4), then using Lemma 4.1 and the fact that 
5m is a semigroup we can construct an algebra M,, for which M CC M, 

and so we obtain a contradiction with the maximality of M. Thus, 
5m = 5m (-4). The algebra A has an identity, hence the algebra 
M is generated by the algebras A and M, where M »is a uniform su­
balgebra of C(T) generated by (i. e. M is decomposable). Since M 
is maximal in C(T, A), M is maximal in C(T). By the Hoffman—Sin­
ger theorem (see [9]), 5m defines on 5 an Archimedian ordier.

It remains to prove the simplicity of A. Let I be a non-trivial
two-sided closed ideal of A. Put for
>4j (MJ = A, for sÇ5m; using Lemma 4.1, construct a 
for which M Ma and obtain a contradiction with the

The last statement of (i) can be obtained from 
of [3] (SpAtA = SpM) and the corresponding result 
uniform algebras, [7], [9].՜

s Ç 5 — 5m and 
new algebra M։, 
maximality of M.

Proposition 3.7 
for commutative

(ii) Let 5m = 5. Note, that 5m(A) 5, because otherwise we
obtain M=C(7, A). By Corollaries 4.2 and 4.3 and by the maximality 
of the algebra M, we have an existence of a two-sided closed ideal 1, 
such that for every s£5m — 5M(J), At — 1.

Note, that 5m(4) is a maximal subsemigroup of 5(if S' is such 
that 5m(j4)^5'; then putting j4j(M/) = >1 for all s£5z, we can obtain, 

by Lemma 4.1, a new algebra M', M CM'; this contradicts with the 

maximality of M).
Further, 5m (-4) does not contain any subgroup of 5. Indeed, let 

S' be a maximal subgroup of 5, which is contained in 5M(/1). Consider 
a subgroup To of T, T0=[t£T, T‘(fl=l, sÇ5'}. Let M denotes a 
uniform subalgebra of C(T) generated by 5M(/4J. Then, as it follows 
from Theorem 2.2 of [7], the restriction of M on T„ does not coincide 
with C(T0). Therefore, there exists a charcter s0 of the group 70, 
which impossible to approximate on To by linear combinations of cha­
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racters from 5m (.4). Show, that the restrictions of M on To is not 
dense in C( A). It is sufficient to verify, that 7*-can not be appro­
ximated on by the finite lihear combinations of the elements of M 
of t e form £ a, 7'. Let <p be a state on A, which annuls /, then

E arV/.(r.,A)>

max!?(7J’(f)l-?( 0,7'(0 4֊ £ a]'W)l =
rtr. rtSM (X) (X)

= max|-1,'(0— £ <p(aJl'U)| = 'er, je$M

։X)

Therefore M| Tu --h C(T0, A), and consequently, for each t^T, M| TQt^= 
*C(T9t, A).

Let t be such that Tnt=fc TQ, then there exists a function x£ 
^C{T, >1) for which x| TQ = 7'» and x| Tot =0. Denote by M' a uni­
form algebra generated by M and x. It is easy to check, that MCM'C 

*tb 
cC(T, A) which is a contradiction with the maximality of ,M.

Thus, 5m (4) does not contain any subgroup of 5. Then by maxi­
mality of M we obtain that 5m (-4) defines on 5 an Archimedian order 
(see e. g. [8|). By the way, we have [0| II 5m (/) = — 5m (A).

The statement concerning the spectrum of the algebra M is a tri­
vial consequence of Theorem 3.4 (ii).

Since 5m (4) defines an Archimedian order on 5, in both cases (i) 
and (ii), the algebra M։ generated by 5m (4) and A is, obviously, a 
Dirichlet algebra (M։ + Mi is dense in C (T, >4), however /?e(M։+Mj) = 
= /?eM!<= 7?eM)..

5. Peak points. In [4] we consider different concepts of peak 
point. They coincide in the case of invariant uniform algebras. This 
fact is an immediate consequence of the following result.

Theorem 5.1. Let M be an invariant A-algebra on a compact 
Abelian group t. Then every point of T is a peak point for M.

Proof. By invariantness of M, it is sufficient to verify that there 
exists x^ M, sijh tilt x(1) = 1, Jx(f)J < t, when f¥=l, 1 being a 
neutral element of T.

By Lemma 3-1, the linear combinations of elements of the form 
07*, where a^4J։ s£5m are dense in՜ M. Since At is a two-sided clo­
sed ideal of A (and, consequently a C*-algebra), then, clearly, the li­
near combinations of the same form with a£A+ are dense in M too.

Let t0£T, t=f=l. Show, that for each state ® on the algebra A, 
there exist and s£5m, such that <p (a) =f= 0, 7* (f0)=/=l. Indeed,
et qT be a corresponding conditional expectation of the algebra 

C(T, A), onto C(T), qv^Q(T, A), see Proposition 2.6, [3], 
(qfx) (f) = <?(x(f)).
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By Corollary 2.7 of the 'same paper, there exists 2 (; M, such that 
(<7?z) (1) =1, and z) (t0) = 0. Therefore, there exists ar' in M, for 
which 9(a)7'(r0)=/=<p(a)7'(l) = <p(a), and so <p(a)=/=0,

Further, by the weak compactness of the state space SG4), there 
exist a։, an kA, and s։< s,(;5m, such ihat for each
<p£S(4), we have (a*) =/= 0, 7** (t0) 1 for some coup.e (a*, s*).

We denote by y the element from M defined by the formula 

y= 1 + (S |a*|)՜’ S at(yrt — !)•
Obviously, y(l) = l. Since y is a normal element of C {T, A), and ta­
king into account the relations

|f‘(0-l|։ = 2(l-/?ei,*(0)<4, k — 1, 2,---, 
we have, for each 7՞,

MOI։ = sup |<p(v(0)la< vesM)
1 + 2 (S la*!)՜1 Z <P (at) (Re l'* (-') ֊ 1) + 

(X Mr’ (Z «P (a*)| Re 7'* (/) ֊ 1/)’ <

1 + 2(1 lad)՜' X ? (“*) (Re lk (0-1)4֊
( S M)֊2S <P (a*) x ? (a*)| Re(/) ֊ 1|։ =

14- 2 (S la*!)՜' S ? (a*) (Re f * (t) - 1) 4֊

2 ( S laj)՜1 S <P (a*) (1 ֊ Re (0) = 1-
Besides, it is easy to check that when f = i'o> we have a strong 

inequality: jy(f0)j<l. Indeed, the equality is possible only when 
7** (fo) = (^0) for those k, m = 1, 2,- ■ n, for which <f> (a*), and 
4>(am)¥=0; then we have y** (t0) = 1 for all k, what contradicts to the 
choice of an; s։,•••, s„.

Now, let Un be a countable system of neighbourhoods of the 
neutral element, fl Un = |1}. Then, by compactness of the sets Fn=>T—Un, 
there exists a system of elements xn of M with the properties: x„(l)=l, 

xn|—-1, |xn(t)|<l. when tkFf Therefore, the element

x= f 2-nxn 
1

realizes the peak at 'identity.
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Վ. Ա. ԱՐՋՈԻՄԱՆՅԱՆ, Ս. Ա. ԳՐհԳՈՐՑԱՆ. Օպերատորային ւյաշտերի ինւիարիանտ ճանրա- 
ՏաշիվՏեր կոմպակտ արելյան խմթհրի վրա (ամփոփոմ).

Աշխատանքը նւԱւրվա» է կոմպակտ արեԱան խմբերի վյ,ա որոշված Շ.'-արմեքային ան­
ընդհատ ֆոձկցիաների «շ կոմոսոատիվ հավասարաչափ հանրահաչիվներխն, որոնք ինվա­
րիանտ են տեզաչարծերի նկատմամբ, Ոական պայմաններին րավարարող հանրահաշիվ- 
ների համար ստացված են Արենսի, Լինդերի, Հոֆմանի հայտնի թեորեմների անալսգԼեր
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էմասնավորապես նվիրվաե Հարաբերական Սպեկտրին, մարսիմ ալւսթ/ան հարցերին, պիկի 
կետերի 4սէս։ք1յանր)< . ա Հա - ՜.

В. А. АРЗУМАНЯН, С. А. ГРИГОРЯН. Инвариантные алгебры аоператорных по­
лей на компактных абелевых группах (резюме). Հ

Работа посвящена некоммутативным равномерным алгебрам С*-зиачных непрерыв­
ных функции яа компактной абелевой группе, ян вариантным относительно сдвкгоа. При 
естественных условиях на алгебру получены аналоги некоторых известных результатов 
Аренса, Зиая-ера, Гоффмана -из теория равномерных алгебр (в. частности, описание 
относительного спектра, вопросы максимальности, существование точек пика).
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