Մաթեմատիկա

XXIV, № 2, 1989

Математика

КРАТКИЕ СООБЩЕНИЯ

УДК 517.547

Н. В. ГРИГОРЯН

О СХОДИМОСТИ ПОСЛЕДОВАТЕЛЬНОСТЕЙ В ПРОСТРАНСТВАХ М. М. ДЖРБАШЯНА

1 (а). В работе [1] доказана следующая Теорема І. Пусть $|f_k(z)|_1^{\infty} \subset H_p$ (1 $), <math>\sup_{k>1} |\|f_k\|_p\| < +\infty$

 $+ \infty$ и $\{f_k(\theta)\}_1^\infty$ $(f_k(\theta)) \equiv f_k(e^{i\theta})$ сходится на множестве $E \subset [0, 2\pi]$ положительной меры. Тогда $\{f_k(z)\}_1^\infty$ слабо сходится в H_ρ (в смысле слабой сходимости последовательности элементов банахова пространства H_ρ).

 H_p — это пространство Харди функций f(z), голоморфных в кру-

те D:|z| < 1 и таких, что

$$||f||_{\rho} = \sup_{0 < r < 1} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{\rho} d\theta \right\} < + \infty.$$

Напомним (см., напр., [2]), что $f(z) \in H_p$, то почти всюду на окружности |z|=1 существуют некасательные граничные значения $f(e^{it}) = \hat{f}(\theta)$, причем

$$\|f\|_{\rho} = \left\{\frac{1}{2\pi} \int\limits_{0}^{2\pi} |\widehat{f}(\theta)|^{\rho} d\theta\right\}^{1/\rho}.$$

Цель настоящей заметки—доказать теоремы типа теоремы 1 для последовательностей функций из пространств $H_{\rho}(\alpha)$ М. М. Джрбашяна.

(6) $H_p(a)$ $(p \ge 0, a > -1)$ — это пространство функций f(z), го-ломорфных в D и удовлетворяющих условию

$$||f||_{p, \alpha} = \left\{ \frac{\alpha + 1}{\pi} \int_{0}^{2\pi} \int_{0}^{1} (1 - r^{2})^{\alpha} |f(re^{i\theta})|^{p} r dr d\theta \right\}^{1/p} < + \infty.$$
 (1)

Пространства $H_{\rho}(\alpha)$ были введены М. М. Джрбашяном в его работе [3] 1945 года. Им был установлен ряд важных свойств этих пространств. Одно из них следующее [3, 4]: если $f(z) \in H_{\rho}(\alpha)$ ($p \geqslant 1$, $\alpha > -1$), то

$$f(z) = \frac{\alpha + 1}{\pi} \int_{0}^{2\pi} \int_{0}^{1} (1 - r^2)^{\alpha} \frac{f(re^{i\theta})}{(1 - z re^{i\theta})^{\alpha + 1}} r dr d\theta, \ z \in D.$$
 (2)

Отсюда вытекает оценка

$$|f(z)| \leq |f|_{p, \alpha} (1-|z|)^{-(\alpha+2)}, z \in D,$$
 (3).

и повтому $H_p(a)$ ($p \gg 1$, a > -1) с нормой $f_{p,a}$ —банахово простравство.

Заметим, что $H_{\rho} \subset H_{\rho}(\alpha)$ ($\rho > 0$, $\alpha > -1$). Кроме того, справед-

Теорема II [4]. Если 0 , то голоморфная в <math>D функция f(z) принадлежит H_p тогда и только тогда, когда интегралы (1) равномерно ограничены при $a \to -1$.

Замечание І. Если функция f(z) голоморфна в D, то прв. всех $p \in (0, +\infty)$ существует предел (конечный или бесконечный)

$$\lim_{\alpha \to -1} \|f\|_{p, \alpha} = \sup_{0 < r < 1} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta \right\}^{1/p}.$$

Замечание. II. Последовательность $\{f_k(z)\}_1^\infty$ голоморфных в D-функций лежит в $H_p(0 и сходится в этом пространстве: тогда и только тогда, когда выполнены следующие условия:$

(i)
$$\lim_{n\to\infty} \|f_k\|_{p,\alpha} < +\infty$$
 $(k=1, 2, \cdots);$

- (ii) для любого $\epsilon>0$ существует $N_{\epsilon}>0$ такое, что $\lim_{\epsilon\to -1}\|f_n-f_m\|_{p,\;\epsilon}<\epsilon\;(n,\;m\geqslant N_{\epsilon}).$
- (в) Последовательность $\{z_j\}_1^\infty \subset D$ будем называть множеством единственности для $H_\rho(a)$, если не существует отличной от тождественного нуля функции из $H_\rho(a)$, обращающейся в нуль на этой последовательности.

Пусть числа $z_j(z_j \neq 0)$ пронумерованы в порядке неубывания модулей, n(t) — количество этих чисел из круга $|z| \leq t$ и

$$N(r) = \int_{0}^{r} \frac{n(t)}{t} dt.$$

Теорема III [4]. Если p > 0, a > -1 и

$$\int_{0}^{1} (1-r^{2})^{a} e^{pN(r)} dr = +\infty,$$

то $\{z_i\}_1^\infty$ — множество единственности для $H_p(x)$.

Отметим, что в работе [4] установлены также другие достаточные условия, при которых $\{z_i\}_i^n$ —множество единственности для $H_\rho(\alpha)$.

2. Приведем основной результат заметки.

Теорема 1. Пусть $p \geqslant 1$, a > -1, $\{f_k(z)\}_{i=1}^{\infty} \subset H_p(a)$ и $\{z_i\}_{i=1}^{\infty}$ — множество единственности для $H_p(a)$. Если существуют пределы

$$\lim_{k \to +\infty} f_k(z_j) = c_j (j = 1, 2, \cdots) \tag{4}$$

и равномерно относительно $k(k=1, 2, \cdots)$

$$\lim_{\theta \to +\theta} \int_{0}^{2\pi} \int_{1-h}^{1} (1-r^2)^a |f_k(re^{i\theta})|^p r dr d\theta = 0,$$
 (5)

-то последовательность $\{f_k(z)\}_1^\infty$ сходится в $H_p(a)$.

Доказательство. В силу (5) для любого s>0 существует не вависящее от $k(k=1, 2, \cdots)$ число $s\in (0, 1)$ такое, что

$$\int_{1-\hat{a}}^{1} \int_{0}^{2\pi} (1-r^2)^a |f_k(re^{i\theta})|^p \, rd \, \theta \, dr < \epsilon \, (k \gg 1). \tag{6}$$

Отсюда, в частности, имеем

$$\int_{1-\delta/2}^{1-\delta/4} \int_{0}^{2\pi} \int_{1-\delta/2}^{2\pi} (1-r^2)^{\alpha} |f_k(re^{i\theta})| r d\theta dr < \varepsilon (k \geqslant 1).$$

Значит, при каждом $k \geqslant 1$ можно найти $r_k \in \left(1 - \frac{\delta}{2}, 1 - \frac{\delta}{4}\right)$ такое,

TTO

$$\int\limits_{0}^{2\pi} (1-r_{k}^{2})|^{a}f_{k}\left(r_{k}e^{i\theta}\right)|^{p}r_{k}d\theta < \epsilon\left(4/\delta\right)(k \geqslant 1).$$

.Поскольку эти неравенства можно переписать в виде

$$\int_{0}^{2\pi} |f_{k}(r_{k} e^{i\theta})|^{p} d\theta < 4\epsilon/\{\delta r_{k} (1-r_{k}^{2})^{a}\} (k > 1),$$

то существует не зависящее от k число C>0 такое, что

$$\int_{0}^{2\pi} |f_{k}(r_{k}e^{i\theta})|^{p} d\theta \leqslant C(k \gg 1).$$

Из формулы Коши

$$f_k(z) = \frac{1}{2\pi i} \int_{|z|=r}^{r} \frac{f_k(\zeta)}{\zeta - z} d\zeta \ (|z| \leqslant 1 - \delta),$$

пользуясь неравенством Гёльдера и оценкой (7), получим $\max \{|f_k(z)|: |z| \leqslant 1-\delta \} \leqslant c, \ (k \gg 1).$

где $C_1 > 0$ не зависит от k. Отсюда и из (6) следует оценка

$$\frac{\pi}{z+1} \|f_k\|_{p, \alpha}^p = \left\{ \int_0^{2\pi} \int_0^{1-\delta} + \int_0^{2\pi} \int_{1-\delta}^{1} (1-r^2)^{\alpha} |f_k(re^{i\theta})|^p \, rd \, r \, d\theta \leq \right.$$

$$\leq C_1^p \int_0^{2\pi} \int_0^{1-\delta} (1-r^2)^{\alpha} \, rd \, r \, d\theta + \epsilon \leq \frac{\pi}{\alpha+1} C_1^p + \epsilon,$$

TAK TTO

$$\sup_{k>0} ||f_k|_{p,\alpha}| \equiv M < +\infty. \tag{9}$$

Пусть теперь $\{f_{k_n}(z)\}_1^n$ — произвольная подпоследовательность последовательности $[f_k(z)]_1^n$. Из (9) и (3) вытекает, что функции $f_{k_n}(z)$ равномерно ограничены внутри D. Следовательно, по теореме Монтеля из $\{f_{k_n}(z)\}_1^n$ можно извлечь равномерно сходящуюся внутри D подпоследовательность $\{f_{k_n}(z)\}_1^n$.

Предположим, что $\epsilon > 0$ произвольно, а число $\delta \in (0, 1)$ выбрано так, что выполняются оценки (6). Выберем также не зависящее от j и m число N > 0 таким образом, чтобы

$$|f_{k_{n_j}}(z) - f_{k_{n_m}}(z)| < \varepsilon (j, m > N; |z| \le 1 - \delta)$$

$$(10)$$

Посредством выкладок, аналогичных (8), с использованием (6) и (10), получим

$$||f_{k_{n_{j}}} - f_{k_{n_{m}}}||_{p, \alpha}^{p} < (\epsilon^{p-1} + 2(\alpha + 1)/\pi) \ (j, m \geqslant N),$$

так что последовательность $\{f_{k_{R_{\rho}}}(z)\}_{1}^{\infty}$ сходится в $H_{\rho}(\alpha)$.

Таким образом, из условия (5) следует, что последовательность $\{f_k(z)\}_1^\infty$ компактна в $H_\rho(a)$.

Чтобы завершить доказательство теоремы остается заметить, что если $\{f_{k_n}(z)\}_1^\infty$ и $\{\bar{f}_{k_n}(z)\}_1^\infty$ — две подпоследовательности последовательности $\{f_k(z)\}_1^\infty$, сходящиеся в $H_p(\alpha)$ к функциям f(z) и $\bar{f}(z)$ соответственно, то $f(z) = \bar{f}(z)$, $z \in D$ (это следует из (4) и того, что $\{z_j\}_1^\infty$ — множество единственности для $H_p(\alpha)$).

Следствие 1. Если последовательность $\{f_k(z)\}_1^{\infty} \subset H_p(p \gg 1)$ слабо сходится в H_p , то она сходится в $H_p(a)$ при всех a > -1.

Действительно, если последовательность $\{f_k(z)\}_{i=1}^{\infty}$ слабо сходится в H_p , то $\sup_{k \in N} \|f_k\|_p < + \infty$ и эта последовательность поточечно сходится в D. Кроме того

$$\int_{1-\delta}^{1} \int_{0}^{2\pi} (1-r^{2})^{\alpha} |f_{k}(re^{i\theta})|^{\rho} r d\theta dr \leq \left\{ \int_{1-\delta}^{1} (1-r^{2})^{\alpha} r dr \right\} \cdot 2\pi \sup_{k \in \mathbb{N}} |f_{k}|_{\rho}^{\rho} =$$

$$= \left[\delta (2-\delta) \right]^{2+1} \frac{\pi}{\alpha+1} \sup_{k \in \mathbb{N}} |f_{k}|_{\rho}^{\rho}.$$

Значит для последовательности $\{f_k(z)\}_1^{\infty}$ выполнены условия теоремы 1 при всех $\alpha > -1$, так что она сходится в $H_p(\alpha)$.

Обратное утверждение, вообще говоря, неверно, так как существуют последовательности $\{f_k(z)\}_1^n \subset H_p$, для которых $\lim_{k\to +\infty} \|f_k\|_p$, $\alpha=0$ при всех $\alpha>-1$ и, вместа с тем, $\lim_{k\to +\infty} \|f_k\|_p=+\infty$.

Докажем более общее

Предложение. Пусть $\{f_k(z)\}_1^m \subset H_p(1 \leqslant p < +\infty)$ — проиввольная последоватальность. Тогда существует последовательность $\{F_k(z)\}_1^m \subset H_p$, удовлетворяющая условиям

(i)
$$|F_k|_p = |f_k|_p (k = 1, 2, \cdots),$$

(ii) npu scex
$$\alpha > -1$$
 $\lim_{k \to +\infty} |F_k|_{\rho, \alpha} = 0$.

 \mathcal{A} оказательство. Пусть $\{\alpha_k\}_1^\infty$ — убывающая последовательность действительных чисел, причем $\lim_{k\to\infty} \alpha_k = -1$, и пусть

$$M_{f_k}(r) = \int_0^2 |f_k(re^{i\theta})|^p d\theta \ (0 \leqslant r < 1; \ k = 1, \ 2, \cdots). \tag{11}$$

Поскольку при $k = 1, 2, \cdots; m = 1, 2, \cdots; 0 \leqslant r < 1$

$$M_{f_k}(r) r^{mp} \leqslant M_{f_k}(r) \leqslant 2\pi |f_k|_p^p$$

и при фиксированном $k \lim_{m \to +\infty} M_{f_k}(r) r^{mp} = 0$, то в силу теоремы Лебега о мажорированной сходимости

$$\lim_{m \to +\infty} \int_{0}^{1} (1-r^{2})^{a_{k}} [M_{I_{k}}(r) r^{mp}] r dr = 0 \ (k=1, 2, \cdots).$$

Повтому при фиксированном $k=1, 2, \cdots$ существует число m>0, такое, что

$$\int_{0}^{1} (1-r^{2})^{\epsilon_{k}} \left[M_{f_{k}}(r) \, r^{m_{k} p} \right] r \, dr < 1/k. \tag{12}$$

Убедимся в том, что функции $F_k(z) \equiv z^{m_k} f_k(z)$, $k = 1, 2, \dots$ удовлетворяют условиям (i) и (ii).

Равенства $|F_k|_p = |f_k|_p (k = 1, 2, \cdots)$ очевидны.

Пусть $\alpha > -1$ — фиксированное число. Поскольку $\alpha_{k} \downarrow -1$, то

$$-1 < \alpha_k < \alpha$$
 при $k > k$ (α). (13)

Повтому при $k \geqslant k$ (a) из (13), (11) и (12) получим

$$\int_{0}^{2\pi} \int_{0}^{1} (1-r^{2})^{a} |F_{k}(re^{i\theta})|^{p} r dr d\theta \leqslant \int_{0}^{2\pi} \int_{0}^{1} (1-r^{2})^{a_{k}} |F_{k}(re^{i\theta})|^{p} r dr d\theta =$$

$$= \int_{0}^{1} (1-r^{2})^{a_{k}} M_{f_{k}}(r) r^{a_{k}p+1} dr < 1/k,$$

откуда следует (ii).

Следствне. 2. Последовательность $|f_k(z)|^\infty$ голоморфных в D функций лежит в H_p (p>1) и слабо сходится в H_p тогда и только тогда, когда

$$\sup_{k\geq 1} \lim_{\alpha \to -1} |f_k|_{\rho_1,\alpha}| < +\infty, \tag{14}$$

 $|f_k(z)|_1^\infty$ сходится в $H_p(a)$ при некотором a > -1. (15)

Доказательство. Если последовательность $\{f_k(z)\}_1^{\infty}$ лежит в H_p и слабо сходится в этом пространстве, то в силу следствия 1 имеем (15). Кроме того, $\sup_{z > 1} \|f_{M_p}\| < + \infty$, так что с учетом замечания I верна оценка (14).

Обратно, пусть последовательность $\{f_k(z)\}_1^\infty$ голоморфных в D

функций удовлетворяет условиям (14) и (15).

Из (14), с учетом замечания I, получаем: $\{f_k(z)\}^{\infty} \subset H_p$ и $\sup_{z > 1} \|f_{k}\|_p\}^{\infty} < -+\infty$. Поскольку H_p — рефлексивное пространство (см., напр., [1]), то из ограниченности последовательности норм $\{\|f_k\|_p\}$ в силу теоремы Банаха—Алаоглу вытекает слабая компактность последовательности $\{f_k(z)\}^{\infty}_1$ в H_p .

Пусть $\{f_{k_n}(z)\}_1^{\infty}$ и $|f_{k_n}(z)|_1^{\infty}$ —две подпоследовательности последовательности $\{f_k(z)\}_1^{\infty}$, слабо сходящиеся в $H_p(a)$ к функциям f(z) и $\tilde{f}(z)$ соответственно. Поскольку $H_p \subset H_p(a)$, то $H_p(a) \subset H_p$, повтому последовательности $\{f_{k_n}(z)\}_1^{\infty}$ и $\{f_{k_n}(z)\}$ сходятся также слабо в $H_p(a)$ к функциям f(z) и $\tilde{f}(z)$ соответственно. Отсюда и из (15) заключаем, что $f(z) \equiv \tilde{f}(z)$. Следовательно, последовательность $\{f_k(z)\}_1^{\infty}$ слабосходится в H_p .

В заключение заметим, что сопоставив замечание II и следствие

2, можем утверждать следующее.

Если $\{f_k(z)\}_1^{\mathfrak D}$ — ограниченная в $H_{\rho}(\rho > 1)$ последовательность функций, то ее слабая сходимость в H_{ρ} равносильна сходимости в $H_{\rho}(a)$ при a > -1, а её сходимость в H_{ρ} равносильна сходимости в $H_{\rho}(a)$, равномерной по a > -1.

Институт математики АН Армянской ССР

Поступна 13. XI. 1987

ЛИТЕРАТУРА

1. J. Retnerman. Eine Funktionalanalytische Methode zur Formulierung von Konverge nzsätzen der Funktionentheorie, Mathematika, vol. 12 (35), 2, CLUJ, 1970.

2. P. L. Duren. Theory of HP-spaces, Academic Press, New York, 1970.

3, М. М. Джрбашян. О представимости некоторых классов мероморфных функций в единичном фруге, ДАН Арм.ССР, 3, № 1, 1945.

4. М. М. Джобашян. К проблеме представимости аналитических функций, Сообщения института математики и механики АН Арм.ССР, вып. 2, 1948.