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O. Introduction. The paper is devoted to the investigation of the՛ 
geometrical structure of the spectrum of operator-valued functional algeb
ras — a noncommutatlve analog of usual uniform algebras. The objects 
of such kind were first Introduced by Fell In [1] (so called maximal 
•C*- algebras of operator fields; detailed presentation of the theory see 
dn [2]). Non-lnvolutlve closed subalgebras of such {C*-algebras present 
certain Interest: Ja {number ‘ of papers (see e. g. [3]—[5]) are devoted to. 
generalizations of some results known for ^classical .(commutative) uni
form algebras.

In [6] the systematic Investigation of uniform algebras of operator 
fields of a specific- form was started, illustrating many difficulties inhe
rent in the general case.

Let T be a compactum (for simplicity everywhere supposed ir.etri- 
zable), A be a C*-algebra with identity, (called a fibre) and letC(T, A) 
be the C*-algebra of all continuous A-valued functions on T (from algeb
raic point of view C(T, A) is the tensor product C(T)®A). A unl- 
orm algebra ER is, by definition, a closed subalgebra of C (T, A) sepa
rating points and containing the constants.The notion of relative spe-■ 
drum SpAW (generalizing the maximal ideal space) is defined as the set՛ 
of all homomorphisms from ER into A which may be extended to a. 
conditional expectation of C(T, A) onto its subalgebra isomorphic to A.. 
In the important case of A-algebras (uniform algebras which are A-sub- 
modules of C (T՝, A)) with simple fibre, the relative spectrum coincides 
with the space of all A-linear homomorphisms. The presence of a spect
rum in the noncommutative case permits tojconslder also the other objects 
connected with it. Corresponding results for various classes of algebras 
are presented in [6].

In the paper we continue the investugation of noncommutative algeb- - 
ras in two directions. On the one hand, the new objects connected. 
with the geometrical structure of the spectrum are Introduced and inves
tigated; on the other hand, the class of fibre C*-algebras which permits. 
a detailed analysis of corresponding uniform algebras is extended 
essentially.

In the first two sections we Investigate the compactum Pn(£R) - 
(playing the role of “states“ on the algebra ER) , the extreme points of. 
which are characterized in terms of representing measures. In Section 3- 
we introduce the notion of reduced spectrum S/T,ER, adapted for uni—
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form algebras with arbitrary fibre and coincided with Spa SR for an al
gebra A with trivial center. Instead of algebras with simple fibre we- 
suggest for consideration the weakly’-transitive algebras, which permit to 
revise seme results. The important notion of peak point replaclng’the 
notion of pure- state for involutive algebras ‘does not fallow a literal 
generalization on the noncommutatlve case; the discussions of some pos
sibilities are placed in Section 5. The main result of the paper consists 
of “function-theoretic" description of the set of extreme points of Po( SR )j 
providing the existence of weak peak points of an A-algebra with weak- 
ly*-transitlve fibre (Section 6). Note, that in [3] Taylor had given a՛ 
description of peak points in terms of orthogonal operator-valued mea
sures, and in |4], [5] the Hoffman-Wenner theorem was proved In the 
factual assumption of the existence of peak points. In Section 7 the no
tion of Shilov boundary is Introduced and the ;maxlmum principle is- 
proved. The present paper may be considered as a continuation of [6],. 
the results of which are used constantly. A certain (very small) part of 
facts were announced In [7].

All the information, pertinent concepts and results, used without 
mentioning the source, can be found in the monographs [2], [8], [9].

1. The compactum Po(7, A). In this Section we Introduce andi 
investigate the space Po (T, A) — a subset of the space of all conditional 
expectations of the algebra C (T, A) onto its subalgebra A ), coinciding 
with it for the algebras with trivial .center. This space is compact for 
every fibre, which permits essentially extend the class of algebras under 
consideration. In the next Section the obtained results are generalized to 
arbitrary uniform subalgebras of C(T, A).

1

1 In contrast with [6], in this p a Pe rjfl?, make n d.fference between the algeb
ras A, C <T)՛ ®Dd their Homorp^j^^ejym'C(Z,. Af

Let T be a metrizable compactum (non single-point), A be ra uni
tal C*-algebra, and C(7', A) be the C*-algebra of all continuous map
pings from T into the algebra A. Let P{T, A) be the set of all condi
tional expectations from C (T, A) onto the subalgebra A equipped with 
the topology of pointwise convergence (the details see in [6], Sectlon’,2). 
This set is a closed convex subset of the space of all continuous A-li- 
near mappings of C (T, A) Into A. Denote by PV(T, A) the subset of 
those conditional expectations, the restrictions of which on C (T) are li
near functionals (1. e. p^P^^T, A) iff p (<?(7')) = Ce, e being the iden
tity of A).

Proposition 1.1. The sets Pt(T, A) and P(T, A) are coinci
ding iff algebra A is 'with trivial center.

Pro of. Let Z(Ar) be the center of an algebra N. Note at first, 
that C(T) s Z(C (T, A)) (see [6], Preposition 1.4), therefore for each 
p£P(7', A) we have p (C(T)) a Z(A) (cf. [6], the beginning of the proof 
uf Theorem 3.3). Hence, if the algebra A is with trivial center then 
/-’o(7', A)-=P(T, A). Conversely, let Z(A) =C(7) for a non single- 
point compact 7, and A be some L'ryscn fundic-1 on V, where 0<A(y) <<1. 
For x^C(T, A) put p(x) = x(ti)h 4֊x(/j) (1 — A), t^t2. Evidently, 
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p Is a conditional expectation and p£Pa(T, A) since its valus on C(T) 
are not constants (by the properties of A).

Thus, for the algebras with non-trivial center, P0(T, A) is a proper 
subset of P(T,A) which is, obviously, convex and closed in the topology 
of pointwise convergence; In addition T is Imbedded In PQ(T, /1) (iden
tifying the compact T with the set of atomic conditional expectations, 
Pi (x) = x(O, t (; T, x £ C(T, A)).

Proposition 1.2. The set Pt)(T,A) is a convex subcompactum 
of the space of all continuous A-linear mappings of C(T.A) into 
the algebra A.

Proof. Show, that P0(T, X) is homeomorphic to the state space of 
the algebra C(7), from which the result is following at once.

Clearly, every p^P^T, A) determines some state on C(7). name
ly the restriction of p on C(T). Here the different pit p.t from P0(T, >4) 
determine the different states (see the beginning of the proof of Theo
rem 3.3, [6]).

Conversely, each extreme point of the state space of C(7) is de
termined by some t from T and In turn determines a conditional expec
tation pt (zPQ(T, A). The finite convex combinations of such states are 
corresponding to some conditional expectations. from PU(T, A) (as this 
set is convex). The restriction mapping p-* p\ C (7) Is continuous hence 
t is extendable to the whole of the state space of C(T) (remind that 
C(T, A) is generated by its subalgebras A and C (7), see [6j, Proposi
tion 1.4).

Re.mark 1.3. Thus, (7, A) may be Identified with the state 
space of the algebra C(7), hence with the space M (7) of probability 
Borel measures on 7. That permits to define an A-valued integral on 7 
.for each .x £ C ( 7, A) with respect to the՜ measure p by the formula

p(*)rfp(O»M*f (1-1)

where p[k Is the conditional expectation from P0(T, A), corresponding 
.to the measure p In turn, every measure corresponding to some 
p£P0(7, A) will be called representing for/?

Proposition 1.4. The space P(T, A) is homeomorphic to the 
set of all continuous mappings of the maximal ideal space of Z (A) 
(the center of the algebra A) into Pu(7, A), equipped with the topo
logy of pointwise convergence.

Proof. Let p^P(T, A), and p0 be the restriction of p on C(T). 
Then (see the proof of Proposition 1.1) p0 maps C (7) into Z (A), hen- 

-ce it uniquely determines a continuous mapping of the compactum Y 
into the state §pace of C(7) (here we identify Z(A) with C (K) for so- 

,me compaotum Y). It follows from Remark 1.3 that this mapping is coin
ciding with the .mapping of Y into P0(T, A).

Now let .h’.Y Pu (T, A); show that this continuous mapping ge
nerates some conditional expectation from P(7, A). Two elementary facts 
from the theory of C*-algebras are necessary for this purpose. The proofs 



The boundaries of uniform algebras 425

we adduce for the completness (and on account of the absence of refe
rences).

Lemma 1.4.1. The restriction of any pure state of an arbitrary 
unital C*-algebra A on its center is also the pure state.

Proof. Let f be a pure state on A, q£P(A), and be the 
restriction of <p on Z(A) = C(Y). If <p0 is not a pure state then It is de
termined by some non-atomic measure n on Y. Let F be the support of
this measure and Fa be a closed subset of F such that 0<|i(F0)<[l
and let f be a continuous function on Y equal to 0 outside of Fo and
such [that | Thus 0< ®0 (/)<!• Then the functional on A

defined by the formula (a) = <p (af) is positive and is majorized by 
the state ® (the last statement is verified by follows: (tp — q>/) (a) = 
= <P (a — a/) = <p((e—/) a)>0). Therefore, X«p, which is impossible 
since <f>0/ and 4>0 have different supports.

Lemma 1.4.2. For each pure state <p of a unital C*-algebraA, 
<p (a/) = ® (a) ® (/), where a£A, f£Z(A).

Proof. Let ® (a) — 1 and let <pa be a functional on Z(A), defining 
by the formula <p0 (/) = <p(af). Show that <pa = <p|Z(.<4). Let y0£Y be 
such that ®(/)=/(y0) for eac^ /CC(X) (see Lemma 1.4.1),[then, if the
re exists f£C(Y) for which [<pa (f)=pf (y0), then the function g—f—f(y^) 
has (he property: <pfl (g) =/=0. On [the other jhand J'pa(g)|’= |<p (a£)|’< 
< <P (|g|2) <P. (<*«*) =0, since ® (|g|’)=|g|։;(yo)=O. Thus, for every f£ Z(A), 
<p (af) = <f (/). Her.ce fcr each a £.4, a f= 0, ® (af) = <p(a) <p (/). If 
<p(a) = 0, then <p ((1— a)f) = <p (1— a) <p (/), from which we obtain 
<p(a/) = 0.

Return to the proof. So, let h: Y -> Po (T, X) then, for every 
£ C(7) one can define the mapping aA: C(T) -* C(Y) by the formula 

anlf) (y) = h (y) (/) (note, that we identify everywhere C(K) with Z(A) 
and Po (T, A) with the state space of C(7՜)). Thus, a* is a linear map
ping from C(T) into A. Show that it can be extended to conditional 
expectation on C (T, A).

Let x = J] Oj/p x£C(T, i4), a^A, ftkC(Tj. Let us verify the 
inequality

IS«iaA(A)KlE VJ. (1.2)

In fact, if P(A) is the pure state space of A, then by Lemma 1.4.2 

I S “a (//)!’ = ? (a't aj) ? (“a <//)*) *P (% (W

Let <p(f) = f (y) for each f^C(T) (see Lemma 1.4.1), then 

lE O'“a(A)||1!= sup | S <p( ajaA (ft) (y)ajih(fl) (y))||< 
f€P(.4) i, j

< suP I S at h (y) (ft) a ■ h (y) (f} )H

= sup | X A(y) (a(/։)JJ< I V a/f.
>er i ,
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It follows from (1.2) first the possibility to define correctly an ope
rator ph on C0(T, A) (see Proposition 1.4, [6]), pA(£ a/a*(/<)
and, secondly, Its continuity on this set, which permits to extend it to 
an operator p/,‘-C(T, A) —A. This operator is an A-linear projector 
and It follows from (1.2) that Its norm is equal to 1. Then by the To
miyama theorem (see [9]), ph^P(T, A).

It is easy to show that the mapping h-*p,i is inverse to the map
ping which was constructed in the first part of the proof, hence we 
obtain the bijection of both the sets appearing In the statement. The 
continuity of all these mappings is obvious.

2. The compactum P0(3R). For a noncommutatlve uniform algebra 
SRcCfT', A) we Introduce the space (3D?), the object playing the key 
role in the further considerations. In a sense it replaces the state «space 

■concept for noninvolutlve algebra SR. The main result (Proposition 2.2) 
•characterizes the extreme points of P„ (SR) (Choquet boundary) in terms 
of representing measures.

Let SR be a uniform algebra, SRcrC(T, /1), and let 7% (SR) be the 
restriction of PQ (7, A) on SR. It follows from Proposition 1.2 that this 
set Is convex.

Remark 2.1. it is obvious by Remark 1.3, that every p £ P(, (SR) is 
corresponding to some measure M (7’), howevere to not a unique one. 
Each such a measure will also be called representing for p.

The following statement describes the extreme point set ext P,, (SR) 
•of the compact PU(SR).

Proposition 2.2. Let SR be a uniform algebra, SRcC(7, A). 
Then ext Po (SR) is a subset of T and is coinciding with the set of 
those t£ T, for -which pt has a unique representing, measure.

Proof. Show at first that each extreme point of P0(SR) Is corres
ponding to an atomic measure on T: Let n be a representing measure for 

ext Po№) which is not atomic. Then overcoming some technical 
difficulties one can show that there exist measures |i։ and m, such that 

jz = X[i1-I-(1 — X) p.2։ where O<X<1 and J xd\irf= | xd jaj, SR, hence 

p Is a convex combination of elements p։, p2 from P0(SR) (which are 
corresponding to p., and |i։).

The rest of the statement is an immediate consequence of the fact 
that SR is point separating.

Corollary 2.3. For a uniform algebra <JRczC(T, A), the space 
P0(SR) is the restriction of P(T,A) on SR iff the algebra is with tri
vial center.

Proof. If Z(A) = Ce then by Proposition 1.1, the statement is evident.
Conversely, let Z(^) = C(K), where Kis not single-point. Show 

that P(T, A)jSR P„ (SR). Let us suppose at first .that the maximal Idea] 
space of Z(A) is connected and let h be a L'ryson function on Y, 
0<A(y)<l, h.^C(Y) and tt, t2 be two different points of T. Put 
Pn (x)=x (tf)/hn+x(fJ)(l — hn), where x£C(T, A), n=l, 2, •••. It is ob
vious that all _p.t are distinct on SR and belong to P(T, A). If for each n,
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(SR), then In view of the compactness of this set, there exists 
a subsequence pr.k |SR which converges to some from P„(SR). Le 
x0£SR be such that x0(/,)=e, xu(tJ=0, then p„k (xu) - pt) (x0). Ont 
-the other hand A»a(x0) = A՞*; but this sequence may has not a limit.

Suppose now that Y is not connected, and let q{, q2 be two ortho
gonal projectors from Z (A), qi+q-^e, qtqt =0. Let SR/ = qi'HR, 
1= 1,’ 2, then it Is easy to check that SR/ are uniform algebras, SR< c 
cC(T. qtA). Let/^ext P„(SR(), ¥= G, then If we put p (x) =
= x(Z։)9։+x(/։)?։, for x£C(7՜, /1) then p is a conditional expectation 
from P(T, A). If /?|SR^PU(SR), then p(x) = j xd p for some Represen

ting measure on T. Hence p lx) =qt | xdp-f-?a | xd p=y։ x(*։) -+- 

+ ^։x(f։), fr°m which <?։ ( j xdp —x(/։)) = ^։(x(fa) — Jxrfp). It fol

lows from the orthogonality of qx and qt that [ q ped \>. = qix (ti), i = 1, 2,
J

that Is 1 ydp = y(h) for each j/^SR/. Therefore p Is a representing 

measure for p,X ext Pa (SRJ and for pt,^ ext P0(3Ra). This is impos
sible since Proposition 2.2, as tpp tt.

This fact generalizes Proposition 1 1.
3. The reduced spectrum of a uniform algebra. The objects which 

-were Introduced In the prevluos sections permit to revise the concept 
of the s ectrum of a noncommutatlve uniform algebra, suitable for an 
essentially larger class of algebras. The notion of reduced spectrum is 
coinciding with S/mSR for algebras with trivial center, and In particu
lar is homeomorphic to the compactum of maximal Ideals for the usual 
uniform algebras (i. e. when A = C). For a specific class of algebras 
•one can give an “inner“ definition of reduced spectrum (see Corol
lary 4.4, cf. Theorem 3.6, [6]).

Definition 3.1. The reduced spectrum of a uniform algebra 
SR from C(T, >1) will be called the set $pnA%X. of all homomorphisms 
of SR into the algebra A, extendable to conditional exportations 
from P0{T, /4), equipped with the topology of pointwise convergence.

Thus, Sp^SR = SpAW f) Pn (SR).
Proposition 3.2. The reduced spectrum of a uniform algebra 

8R is compact, moreover, SpnA C(T, A) coincides with T. If the algeb
ra A is with trivial center, then SpA SR = SpA SR.

Proof. The set SpA SR is the image of a continuous mapping 
(the restriction) of some closed subset of PU(T, A) which is compact 
(by Proposition 1,2). If Z (A) is trivial then it follows from Corollary 2.3 
that SpA SR coincides with SpA SR. At last, Remark 1.3 permits evidently 
to conclude that SffAC(T, A) — T.

Note that this result is a generalization of Theorem 3.3 and a re- 
ision of Corollary 3.5 from [6].
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4. Uniform algebras with weakly*-transitive fibre. In the paper 
[6] for uniform A-algebras with simple fibre there was established the 
coincidence of the relative spectrum with the set all A-linear ' homomor
phisms of SR Into A (Theorem 3.6, [6]). This Is not true for algebras 
with arbitrary« fibre. Receding a little from the main subject, let us 
show (corollary 4.4) in more general £case, Lthat continuous homomor
phisms can be extended to conditional expectations (in other words, that 
Po (SR) coincides with the set of all .A-llnear continuous homomorphisms 
of SR Into A).

Let <p be a state of a unital C*-algebra A, (A), and a be a uni
tary from A, u^U (A). Denote by the state on A defining by the 
formula <pu (a) = <p (u*au), a^A. It is easy to check that if is pure,, 
then <p„ is also pure, <p, yu£P(A}.

Definition 4.1. A state on d C*-algebra A is called total, 
If the set of finite convex combinations of the states <fu, w hen u runs: 
over U(A), is weakly'-dense in S(A), i. e. co j<pu, u(-U(A)| =S (A) 
A C*-algebra is called weakly'-transitive if it possess a titre total 
state.

Proposition 4.2. (1) Every weakly'-transitive algebra has 
trivial center.

(ii) AC*-algebra is simple iff each its pare state is total.
Proo'f. (1) Let A be a weakly’-transltive algebra, and <f> be a total 

pure state. Suppose Z(A) is not trivial. Then Z [A') = C(Y') for some 
non single-point compact Y. We have ? | Z (A) £P(Z(A)) (see Lemma 
1.4.1) from which we obtain <p (f)=f(yl)) for some y0 from Y and al 
/^C(K). It is evident, that for eacn .u^U(A) we have qu\Z(A) = 
= 4>|Z(j4), therefore the state ■■})££(/), the restriction of which coinci
des with the state <1» (/)=/(y,) on C(7՞), where y^yo, can not belongs- 
to co |®u, u^U(A)\.

(il) Let A be a simple unital C*-algebra, <f^P(A). Then every 
pure state ■)» is approximable (in the weakly*-topology) by the states 
of the form of ®j, (a) = <p (b'ab՛) (see 3.4.3 of [2]) and by the transi
tivity theorem (see 2.8.2, [2]) It is sufficient b being unitary.

Conversely, let the algebra A is such that every y from P(A) 1 
total and let / be an ideal of A, If=A. Then there exists a pure state 
<]», which annuls/. For each u£ U(A), annuls / too, therefore all sta
tes from co |<pu, «£(/0)] are zero on /, so /={0j.

Note, that the algebra B (//) of all bounded linear operators on an՛ 
infinite dimensional Hilbert space H is an example of weakly*-transitlve,. 
but not simple algebra.

Let SR be a uniform A-algebra, 7? (SR) be the set of. all A-llnear 
normalized mappings of SR into A which are identity preserving.

In contrast with the case of commutative uniform algebras, the set 
/?(SR) is not coinciding with the set of all restrictions of the space- 
P(T, A) on the algebra SR. We shall show that it is true, when the- 
fibre A is weakly*-transitive.
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Theorem 4.3. Let !R be a uniform A-algebra, SRcCfT, /1), 
■where A is weakly "'-transitive, then eabh maoping from /?(5R) can 
be extended to a conditional expectation on C(T, A).

Proof. Let p£:R(SR), « be a pure total state on A, then <?=p Is 
a functional on SR with norm 1, and =<>p(e) = 1. Therefore such a fun
ctional can be extended tj some state 4> on C(T, /1) such that its 
restriction on A is pure. We have then, by Theorem 1.5 of [6]

<t>(x) = | v(x{t))di>.(t) (4.1)

for a probability measure p, x^C(T, A). Denote by p the conditional 
expectation, corresponding to this measure (note that it follows from

Propositions 1.1 and 4.2(l)that Pu (T, A)=P(T, A)). Then 4>= <pop. This 
equality is easily checked for the elements of A and C (T) taking into 
account (1.1) and (4.1) then It is fulfilled on C0(7, A), and therefore 
on C(r, /1) (see Proposition 1.4 [6]).

Show, that />|SR=-p. It is sufficient to verify that Ker pczKer p |SR 
Really, by virtue of .4-llnearity of p, we have JR = Ker p A A, therefore 
if a-£ SR, then x = y + a, where y £ Ker p, a £ A and, consequently 

p (x) =p (y) + p(a) = a = p (x).

Thus, let x£ Ker/a then for each u£U(A) we have yu (p(xj) = 

= y(u* p (x) a) = <p (p(u* xu)) = <b(u*xu) = ©u (p(x)) = 0.
Hence as A is weakly*-transitive (see the beginning of the proof) 

we may conclude, that ■[» (p (x)) — 0 for every S(?l) and, consequent

ly p(x) = 0.
Corel 1 ary 4.4. The reduced spectrum of an A-algebra with 

weakly*'-transitive fibre coincides with the set of all nontrivial con
tinuous A-linear homomorphisms of SR into A.

Proof. Let a be a continuous A linear homomorphism of the al
gebra SR into A. Show, that Ha|=l. In just the same way as in the 
proof of Theorem 3.6, [6], suppose that and is such that 

but |«(x| = l. For y=«(x)*x we have: |y|< 1 and Ja(y)3 = L 
therefore e — a(y) is not invertible in A, which is contradictory to the 
invertibility of e — y.

Hence a^/?(SR) and, consequently, by the previous theorem, a can 
be extended to a conditional expectation on CfT՝, A).

5. Peak points. In this Section we Introduce and investigate some 
concepts of peak points. In contrast with the classical case, there exist 
several possibilities which are coinciding for algebras with trivial fibre. 
We choose as a basic the definition of a weak peak point which desc
ribes extreme points of P0(SR) (see Theorem 6.1) and which corres
ponds thus to the notion of a pure state (for involutive algebras).
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Definition 5.1. Lei be a uniform algebra, SRc C(T, A). A 
point Zo from T is called

(i) weak peak (for the algebra SR) if for every df>\ and each 
neighborhood U of t0, there exists x £ SR such that Jxj < d, x (tn) >0;

= l and also |x U)J< (2d)՜1 when t^U.
(11) norm peak, if there exists x£ SR such that x(t0) >0, |jx(*o)|=l'» 

and |x (0|< 1 when t =/= f0.
(Hi) peak, if there exists x£SR, such that x(t0) = e, |x(O|<l» 

when t f-10.
The set of peak points in the sense of (J) denote by 11/ (SR),. 

/ = 1, 2, 3. It is easy to check that these sets are connected by the fol
lowing relations: II3 (SR) s II, (SR) = n։ (SR).

These notions are essentially different; their characterizations and 
the relations between them are given In Proposition 5.2 (see also Co
rollaries 6.2 and 6.3). In [7] the question of existence of peak point has 
been formulated (In the sense of Definition 5.1 (111)) which in general 
has a negative answer. A description of peak point in terms of opera
tor-valued orthogonal measures (without discussions on the existence 
question) has been given In [3] (in the case of general uniform algeb 
ras of operator fields).

At the same time. Definition 5.1 (i) satisfies several natural requi
rements: for example it is concordant with the geometrical structure of 
the compactum P(I(SR) (Theorem 6.1) and it satisfies the norm maximum 
principle In the Gelfand representation (Theorem 7.2). Note here that 
besides the trivial examples of usual uniform algebras, these three defi
nitions are coincide for A-algebras (.with matrix fibre (it follows from 
Propositions 1.8 and 3.7 of [6]) and also-for invariant, algebras on com
pact Abelian groups (see Section 7 of [7] and the extensive paper which, 
will appear in the same journal).

P reposition 5.2. Let SR be a uniform algebra, DR c C(T, A) 
Q Then (i) the point t0 from T is a weak peak point iff for every

s > 0. and each neighborhood U of tn, there exists x £ SR, such that 
xj<d, x(/0)>0, l!x(/0)J = l and flx(OII<e when U\

(11) the point ta from T'is a norm peak point iff there exist a 
bounded sequence |xn]ccSR, a .positive number e<i, a state <p£S(A)- 
and a decreasing sequence of open neighborhoods Un of the point ta, 
n£/n=l^ol. such that xn(io)'^.O, Jx„(<?)|=l, <f(xn(tn)) = 1 and 

max |x„ (Z)|| < e, if t^l —Un, n = l, 2,- • •.
(iii ) the point f0 from T is a peak point iff the conditions of 

(ii) are satisfied for each y^S(A), i. e. if there exist a bounded 
sequence (x„]c:SR, a positive 8<՞! and a decreasing sequence of 
open neighborhoods Un of the point t0, nUu— (f0J such that xn(t0)=՛ 
=e, max jxrt (Z)[ < E> where t£T— Un, n = l, 2, •••.

Proof. (1) Sufficiency is clear. Let f0^ri։ (SR) and d, e, U 

are as in the conditions of (i). Let n be such that a >2՜՞, then, 
there exists, by Definition 5.1 (1), some y£3R for which 
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y (0) <>0, Jy(M=1- U)|<(2 ')՜’ when t^U. It Is easy to verify 
that the function x = yn has needed properties.

(11) Let <0^H։(SR), and a function y from SR satisfies the condi
tions of Definition 5.1 (II) and let \Un\ be any decreasing sequence of 
open sets, nf4='0|- Let also e be a positive number and <? be a sta
te, <p(;S(A), such that ? (y (t0)) = 1. By virtue of compactness of T—Un 
there exists some mn such that jy(^""C։ when t^U*. The -sequence 
x„ = y"’" Is desired.

The proof of sufficiency Is a modification of the proof of Theorem 
11.1 of [8]. Assume the conditions of (li) are satisfied. Let Af=sup JxJ, 
s„ = s՞1՜1 (1 — s) (4(1—sn+1)) ', where s = (2Af—1 —s ) (2(Af — e))-1, 
n=l, 2,---. It Is evident that s£]0, 1[ and s, is a sequence decreasing 
to 0. Let Fn — T--Un and choose a subsequence hn. n = 0, !,••• of the 
sequence x„ as follows. Let Ao = e, hl=xi and assume h0, ht, A։,> ■ ■, hn 
are already choosen. Put

Wn~ \t^T, max |A,(/)|>1 + e„), «= 1, 2-• ••

Then, since Wn we have Wn<=.Fmn for some mn. Denote by hn+ । 
he function xWjl. It is obvious that this function satisfies the condition 
max (OH < sn, where '

Put now x = (l—s) J]s"AM. Clearly, x^SR; show that this func- 
/1=0

tlon realizes a norm peak at the point /0. We have x(t^ >0, 

? (-«(U) = 1 and also fx(/0)j< (1 —s) s,I||An(/0)|]-l, from which 
. <-o

x (/0)|| = 1. Let t t0, then we have 1- Really, if

u then |A„<O]՝C1 for all n--0, !,•••, however t £ Fn for some 
fi=l

m and therefore JAm (4)|]<e <1, so |x(/)|<l.

If U Wn, then as the sets form an increasing sequence of 
n=l

■closed sets, there exists m, such that t £ +i— Wm, hence JA„ (Z)||
<1 4֊ em, when n = 0, I,---, m, ||Am +։(0l<Af, and [Art (01 < s when 
ji > tn + 1. Therefore

jx(0l <(1 — •s)|(1 + em)^ s՝՝+Afsm+l+s £ sn I < 1
I n=0 n=m+2 J

by virtue of the choosing of s and em, and finally we obtain thatl 
|x (01 < 1 when /=/=0. L e- 0€n2(SR).

(ill) The proof is the same (it is necessary only to check x (t0)=e).
6. Characterization of weak peak points. Here we prove the main 

Tesult of the paper: for the important class of uniform algebras (Including 
A-algebras with simple fibre) the weak peak points are extreme points 
of P0(SR)- This fact provides the existence of weax peak points. Using 
that the weak peak points are described in other terms, which comp- 

ilements Proposition 5.2.
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Theorem 6.1. Let SR be a uniform algebra, SRcC(7', A). 
Then each weak peak point Zs an extreme point of the compactum 
P0(SR). If SR Is an A-algebra with weakly*-transitive fibre then the 
converse statement is also true.

Proof. Let tQÇП,(SR) and assume that tfT ext P0(SR), then, by 
virtue of Proposition 2.2, ple has a nonatomic representing measure p. 
Let F be a closed ^subset of T not containing Zo, for which 

and let d be a number satisfying the Inequality
<1 + н(/?). By Proposition 5.2 (1), there exists x£SR, such that 
хЦ <d, Jx (Z0)J = 1, lx (t)|| < (F), when t F. Then

i=h,W|< [к(0Иии)+ JkWHnUXX/T + d(i-H^XL
F T-F

It follows from this that П1 (SR) cz ext Po (SR).
To prove the second part of the theorem we need of the following 

auxiliary facts, the first of which is well known.
Lemma 6.1.1. Let A be a C*-algebra with identity, a£A 

a = и + iv, where и and v are Hermitian and u<0. Then [expo«!.
Lemma 6.1.2. Let SR be a uniform A-algebra, SRgC (T, A)and 

let Z0Ç ext P0(SR), f^C(T), /(Z0) = l, O</(Z)<1, when t tv. Let 
a£.A, a>0 and let <p be a total state on A, such that ®֊(a) = jaj> 
Put

SR„ = |«ÇRe SR, u<af, <p (u (Zo)) >0).

Then sup <p (u (Zo)) = Ja||, when и £ SRe.
Proof. Let sup <p (U(Z0)) =c<|aj. Put ?z0 = ?°p/, on SR. It is 

«eSRo
clear, that Is a linear continuous normalized functional and 
ф/.(е)=1. _•

If af ÇReSR, then the statement is trivial. Let now af Re SR and 
let us extend on SR'= SR ф Caf (which is a closed subspace of 
C(T, A)) by the formula

ф/։(х + aa/) = <pZo(x) + ac.'
IIVerify that ф/„ is a normalized linear functional. Suppose the opposite, 
ф z։|] #= 1, then there exists x + a af£ SR', a =/=0, such that [x 4֊ aa/]| = 1, 
but |H(x -f-aa/i||> 1. Let 'j>t0(x + aaf) =reie, then [e՜10 (x ֊j-<iaf)\ •=! 
however ф/։(е_/9(х -|-aa/) = r > 1. Thus, we.may assume that ф?, (x 4- 
A-aaf) = r>l, where ||xaa/j = 1. As ф/„ is Hermitian (i. e. it takes 
real values on Hermitian elements of SR'), therefore the following linear 
functional on Re SR' Is uniquely defined: if v£ Re SR', then for some,.

'u^SR', v= Rei», put ф,о(т))=Ке ф/„ (d). Let Re (x + aaf) = w + $af,. 
and ₽ = Re a, then ф/„(® +$af) = r. In addition |® + (1аД<1, and sin
ce it is Hermitian, we obtain

e -(w+?af)^0. (6..1b
Granting this we have
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It, (e - (w 4- p af)) = 1 — r < 0. (6.2)
On the other hand:

(1) If p>0, then it follows from (6.1) that e — w (f0) — pa>0, 
whence

— iso — $af) = 1 — ? (w (f0)) — pc > 1 — <p (w (f0)) — ?|aj = 
= tf> (e — w (f„) — ?a) > ? (0) = 0,

which contradicts to (6.2).
(11) If p<0, then It follows from (6.1) that

P՜1 (« ֊ w) < af. (6.3)
Show that

?(?-*('«-®(/0))>0. • (6.4)

Indeed, (e — w) — 1—r + pc <pc < 0, whence (6.4).

It means together with (6.3) that p՜1 (e — w) £ SRa, hence <p (P-1x 
X (e — w (/0)) < c. On the other hand,

4> (p՜1 (e—w (t0)) = (P՜1 (e — w) =

= p-J|/u(e-w) = p-‘ (1 -r 4-pc)>₽-։ 3c = c.

This contradiction proves finally that ||r, || = 1.
This functional can be extended by Hahn—Banach theorem to a 

■normalized functional d>/u on C (T, A) which is, evidently, a state. Re
call, that the restriction ® is a pure state, and <5Zo(x) = ®(x(f0)) 
:forx£3R. Hence, by Theorem 1.5 [6], for some probability measure p. 
on T and for each x£SR we have:

?(x((0)l = | <P (x(O)rfP'(O-

The algebra SR is an A-bimodule, whence, for each u^U(A), 
<P„(x(Q)= f □„ (x(0)dF(f).

At last, since <p is total on A, then, for each state | on A we have 
I (* ((<>)) = | ty(x(t))d p(Z). Therefore ja is a representing measure for 

p^, and so it Is atomic (Proposition 2.2). Again, by Theorem 1.5, [6], 
lor each x£C(T, A) we obtain <t»z,(x) = n>(x (fu)). Therefore <t>/„ (af) = 
=<p(«r(^o))=/^o)?(«) = Ja||.

On the other hand, dhja/) ='H(a/) = c» which completes the proof 
•of the Lemma. ■

Return to the proof of the theorem. Let t0 £ ext Pn (%R), 1 and let
(/be, a neighborhood of the point t0. Assume at first that d < (e/2)1'2, and 
Jet f^C(T) such that/(f0) = l, 0</(f) <1 for f=£ f0, moreover,/(f)< 
< 1 — In 2da for t £ (/. By virtue of Lemma 6.1.2, for the total state tp, 
[putting a = e, we obtain sup ^(a(f0)) = l, hence, for each e>0, there

«exists « £ Re SR, such that ? (u f0))> 1 — e and u</.



1 

' J

434 V. Arzumanian and S. Grigorian

Show, that there exists also z/^3Rr, v > 0, for which
> 1 —a. Indeed, if u (t0) = a+ — a-, then a+ — a_ < e implies a+ < e. 
In addition,

?(«+)> ? («(U)> 1 -e-
Put v = a1'2ua1/2, v > 0, then, by virtue of being an A-module, 

v£ Re SR. In addition

v = a"2 ua'f < a12 fa™ + a*f^f,

and so li^SR,. Further

?(*(<»)) = ? «) > ? (a4)’ > (1 ֊ ₽)? > 1 - 2 8- (6.5}

Now, let y £ SR, Re y = v and let y — y — i Im y (tn). Put

x = exp y (jjexp v (Z0)J)՜1
and check that this function realizes a weak peak at the point /0.

It is obvious that x£SR, x(t0)>0, and ||x(/G] = l.
Further, since v(t)<^e, then Re (y (0 — e) < 0. By Lemma 6.1.1 r 

we have jexp (y (t) — e)J < 1, whence

k(<)|_ = e' - H|<e-.
(exp®(*0)| lexPa+l

where 1 — 2e by (6.5). Choosing e = 1/2 In d, we obtain [x]<d.

Let t^U. Since Re (y(t) — f(t)) <0, using Lemma 6.1.2, we have 

nyron_ iexpy(Q| exp/(Z) i- u 2a. _ pj 
|XW,“|exp^0)| " exp|a’l<C

Again, since |a.’|>l — Ind, we obtain |x (t)[ < (2 d) ։. Hence, the func
tion x realizes a weak peak at the point tn.

Now, Jet d Is arbitrary, d > 1 and let n be such, that d1 '։<(e/2)v% 
and let y be a function for .which fly]< 1 /n, y^0)>0, [y (Q| = 1, and 
|y (^)! < (2^՛ n)-1 when ££ CL Then evidently, the function x = y" is de
sired. The theorem is completely proved.

Corollary 6.2. A point t0 from T is a weak peak point of a 
uniform A-algebra with weakly*-transitive fibre iff for each d>l 
and every neighborhood U of the point f0, there exist x£3R and a 
state on the algebra A such that the function g (t) — tp (x (t)) has 
the properties: g (t) <d, g (t0) = 1, g (t) < (2d)՜1 if t^U.

Proof. Prove only sufficiency. Let /0 be a point satisfying the 
conditions of the corollary. Taking into consideration the previous theo
rem it is sufficient to verify that pt, £ ext PU(SR). Let us assume the 
contrary and let p be a corresponding nonatomic measure (see Proposi
tion 2.2). It is obvious that there exists a closed subset F, not contai
ning the point /0, and such that 0<|»(FXl. Let d be such that 
1 <d<(2— ji(F)) (2(1 ^-p.(f)))՜1 and let U be a neighborhood of the
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point f0, Ur\F=0. According to conditions, there exist a function 
xÇSR and a state « on A, such that the function g (ï) = » (x (t)) has 
the properties: g(t)<d, g(t^)=\, g (t)<^(2d)՜ when tffU. Then

l=j?(Q = (0)^(0 = [?(*(<)Xf(04- J<p(*(OMp(O<

p T—F

<(2dF1|x(F)+d։x(T֊F)<l.

This contradiction proves the corollary.
CoroI 1 ary 6.3. A point t0£T is a Weak peak point for a 

uniform A-algebra with weakly*-transitive fibre iff there exist a 
bounded sequence jx«) c SR, an e£]0, 1[, and a decreasing sequence 
of open neighborhoods \Un\, n Un= |£0). such that x„ (Q >0, Jx«(^0)|=l». 
and*[x„ । T — U„ J < e for n = 1, 2. • • •.

Proof. Let t0C n, (SR), Un be a sequence of neighborhoods,.
= Fix df>\ and for any n let a function x„(;SR satisfies- 

the properties: pc„|<rf, xn(fn)>0, k,, (f0)J==l, and !|xB (£)J< e for t^T— 
— Un (see Proposition 5.2 (i)).The sequence |xB) is desired. Conversely,, 
let (xB| be a sequence satisfying the conditions of the corollary. Assume, 
that p^ ext Pu (SO?) (we use again Theorem 6.1). Let I1 be a nonatomic 
representing measure (by Proposition 2.2) of the conditional expectation 
plt, and let M — sup fxn|. For each n, obviosly, we have

eji (T-i/„)+|x(ff0IX»<l.
Let n0 be such that n(Un„ — (to)X (1 —a) Al՜1. Then, for xBo we obtain» 

<
I = k(f„K 1՜ |x*0IW) + [k(^^(0 + f(I4I)< 

Un֊«.} rf-U

<Mp(Un- W) + «P- (T-Un) + MW)< L
Thls contradiction proves the corollary.
This result Is a supplement to Proposition 5.2. Thus, Corollary 6.3,. 

Proposition 5.2 (il) and Proposition 5.2 (ill) compose a sequence of 
gradually strengthening requirements.

• 7. Maximum principle. We introduce here the notion of Shilov 
boundary and for some classes of uniform algebras prove the maximum 
principle.

D efinltiojn 7.1. Let be a uniform algebra WRczC(7՜, A). The 
closure of the set of weak peak points will be called the Shilov 
boundary and will be denoted by J(SR).

Thus, d(SR) = TI։ (SR). It is clear, that for'uniform A-algebras with 
weakly*-transltive fibre the Shilov boundary coincides with the closure 
of the Choquet boundary՛ (see Section 2 and Theorem 6.1), <?(SR) = 
= exp P„ (SR).

Theorem 7.2. let 2)? be a uniform A-algebra, SR c C(T, Ay 
where the algebra A is weakly*-transitive, then, for every x(; SR,

[xj = max fx(0|-
/₽a(SR)
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Proof. This fad expressing the maximum principle is an evident 
■consequence of the following statement (which is in turn a generaliza
tion of a well known result of the theory of commutative uniform algeb
ras, see, for example, Proposition 6.3, [10]): if M is a fsubspace of 
C (Y), containing identity, where Y Is compact, then for every function 
/ of M, there exists y£ ext PU(M) (the Choquet boundary of the spa
ce M), such that |/(y)| = |/j|.

Proposition 7.3. Assume that the conditions of Theorem 7.2 
are satisfied and denote Fx=\t^ T, |x(f)j = i|x]|, then F-t\ II, (SR)./=0.

Pro off. Let <p be an arbitrary purestate on A and q, be a mapping 
of SR into C(t), defined by the formula: [(<?, x) (t) = ? (x (/)). Obviously 
qv is a linear continuous operator. If Mf = then Afv is a closed
linear subspace of C{T). Show, that ext P0(Af?) is contained in ext 
P0(SR). Really, let t0£ ext P0(AfF) and let p. be some representing mea
sure for pt0, i. e. for every x£SR,

X(to) = jx(0d|x(n, (7.1)

whence
<f>(x(/0)) = j<p(x(/))^(/).՜ (7.2)

This means that p. is a representing measure for the functional ft 
on M, given by the formula: //„(g) =g (to) for g^M-T, therefore n is 
nesessarly atomic (since tu Is from ext Pn{Mf)), hence, by Proposition 
2.2, we have t0£ ext P0(SR).

Note, that the previous arguments are true for every uniform algeb
ra. If SR is an A-algebra with weakly*-transitlve fibre, then the same 
reasons as in the proof of Lemma 6.1 (11} permit for any total state to 
deduce (7.1) from (7.2), 1. e. In this case separates points of T and 
ext Po (Af?) = ext P0(3R). This fact will not be used in the future.

Return to the proof. Let t0£Fx and let y = x(^0)*x, then y^SR, 
y(<o)>O, ly(/)|=Jyl and Jy (OJ<lyUo)Jwhen 1. e. Fy= Fx. Le 
<j> be a pure state on A for which <p (x (i0)*x (ta)) =jjx (2O)J2, then <p=y^ 
£M,> and ’satisfies the conditions; ?°y (/) =j?°yj, |?°y (01 < l?cy(^>) 
when t £FX, therefore FX = F,^. From the fact which was formulated 
before Proposition 7.3, it follows that Fx(] ext P() (M,) = 0. It remains 
to note that ext Pn (Afjcext P0(SR) and ext P„ (SR) = n։ (SR) (Theo
rem 6.1).

The maximum principle is true also in the orher, in some sense the 
•opposite (see Proposition 4.2) class of uniform algebras with commuta
tive fibre.

Proposition 7.4. Let SR be a uniform algebra, SRc C (T, A) 
where A is a commutative C*-algebra. Then for each x£SR.

M = max |x(0l- 
w (SR)

Proof. Let A = C(Y) for some compactum Y, then C(T, A) can be 

identified with C(T%Y). Denote by SR the uniform subalgebra of
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C(TA Y) isomorphing to SR (if x^SR, then x(t, y) = x(0 (y)).
Let /0£II։ (SR), then for every neighborhood of the point tQ there 

exists x^SR, such that j|x(t^j = l, and ||x(05< 1/2 lor t^ U (see Pro

position 5.2 (i)). Hence the function x achieves its maximum on the set 

ext P„ (SR) f) (Z7X Y) =f= 0 (we use again the very important fact 
mentioned in the beginning of the proof of Theorem 7.2). Since U 

is arbitrary we may conclude that ext P0(SR)co(SR) X Y, whence, for 
every x £ SR we obtain

tr|= sup |x(L y)| < max |x(f, y)J = max |x (f)|

U. (r. y) €3 (2)})X J' 'S'* (SR)

which completes the proof.
Corollary 7.5. Let SR be a uniform algebra (or A-algebra)^ 

SRcC(r, A), for which the maximum principle is fulfilled. Then the 
restriction SR։ of SR on the Shilov boundary J (SR) is also uniform 
algebra (correspondingly A-algebra), 8R։cC(<?(SR), A).

Proof. The non-trivial part of the proof is checking the comp
leteness of SR1։ which (as in the commutative case) is the easy conse
quence of the maximum principle.
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Վ. ԱՐՋՈՒՄԱՆՅԱՆ, II. ԴՐԻԳՈՐՅԱՆ. Օպերատորային դաշտերի հավասարաչափ հանրահաշիվ- ների եզրերը (ամփոփում)

Աշխատանքում ուսումնասիրվում է ոչ կոմուտատիվ հանրահաշիվն երի սպեկտրի երկրա- 
չափական կաոուցվածքը։ Որոշ դասի հավասարաչափ հանրահաշիվների «վիճակների» կոմ - 
պակտի Շոքեյի եզրը բնութագրվում կ ներկայացնող չափերի և թույլ պիկերի տերմիններով։ 
նույն դասերի հանրահաշիվների համար ապացուցված է մ աքս իմումի սկզբունքը։

В. АРЗУМАНЯН. С. ГРИГОРЯН, Границы равномерных алгебр операторных по
лей (резюме)

В работе изучается геометрическая структура спектра некоммутативной равно
мерной алгебры. Гранина Шоке компакта «состояний» алгебр определенного класса՛ 
характеризуется в терминах представляющих мер и точек слабого пика. Для алгебр- 
того же класса доказан принцип максимума. Библиографий 10.
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