Մարեմատիկա

XVIII, No 5, 1983

Математика

УДК 519.218

м. г. аветисян

ВЕКТОРНЫЕ ГАУССОВСКИЕ ГИББСОВСКИЕ СЛУЧАЙНЫЕ ПОЛЯ

1. В в е д е н и е. Марковские гауссовские случайные поля были рассмотрены еще в работе Розанова [4] (см. также работу Чея [7]). В статье Добрушина [1] был подробно изучен общий класс гиббсовских полей с квадратичным потенциалом, включающий гауссовские гиббсовские поля и в частности марковские гиббсовские поля. Эти исследования были продолжены в статье Кюнша [11]. Во всех цитируемых работах рассматривались случайные поля со скалярными значениями. Цель настоящей статьи — распространить эти результаты на векторный случай. В статье устанавливается, что при некоторых дополнительных условиях стационарное векторное гауссовское случайное поле со значениями в R^n на у-мерной целочисленной решетке Z^* с матрицей спектральных плотиостей $f(k) = \{f_{ji}(k)\}$ $j, l = 1, \cdots, n$ и вектором средних значений $h = (h_1, \cdots, h_n)$ можно трактовать как гиббсовское поле с парным квадратичным потенциалом

$$U(x_{l}, x_{s}) = (U(t-s) x_{l}, x_{s})^{*}, x_{l}, x_{s} \in \mathbb{R}^{n} t, s \in \mathbb{Z}^{*},$$
 (1.1)

где матрицы $U\left(t\right)$ —это ковффициенты Фурье матричной функции $f_{(k)}^{-1}$ и линейно-квадратичным одночастичным потенциалом

$$U(x_t) = \frac{1}{2} (U(0) x_t, x_t) + \left(h, \sum_{t \in Z'} l'(t) x_t\right), x_t \in R^n, t \in Z'. \quad (1.2)$$

При этом совокупность всех гиббсовских полей с таким потенциалом совпадает с совокупностью сверток однородного векторного гауссовского поля со спектральной плотностью f(k) и средним значением 0 и случайных полей, все реализации которых a_t , $t \in \mathbb{Z}^*$ удовлетворяют функциональным уравнениям

$$\sum_{t \in Z} U(t-s) \alpha_t = -h, \ s \in Z^{\circ}. \tag{1.3}$$

2. Векторные случайные поля. Пусть $X = (R^n)^{Z'}$ — пространство вектор-функций $x = (x_1 = (x_1, \dots x_{n,t}))$, $t \in Z'$, определенных на у-мерной целочисленной решетке Z', со значениями x_t в n-мерном векторном пространстве R^n . При всех $x \in X$ и $V \in v'$, где v' — совокупность всех конечных подмножеств множества Z', положим $x_V = (x_t, t \in V) \in (R^n)^V$. Пусть $\Phi \subset X$ — совокупность финитных функций от $t \in Z'$. Положим

^{*} Здесь и далее (b, c) — скалярное произведение векторов $b, c \in R^*$.

$$\xi_{\varphi}(x) = \sum_{t \in \mathbb{Z}^*} (\varphi(t), x_t), x \in X, \varphi \in \Phi$$
 (2.1)

И

$$\xi_{t}(x) = x_{t}, \ t \in Z^{*}, \ x \in X,$$

 $\xi_{t, t}(x) = x_{t, t}, \ t \in Z^{*}, \ i = 1, \dots, n, \ x \in X.$ (2.2)

Пусть множество $\hat{V} \subseteq \{1, 2, \dots, n\} \times Z' = \hat{Z}'$

Через B_{v} будем обозначать наименьшую с-алгебру подмножеств пространства X, относительно которой измеримы все функции \hat{v}_{i} , i, $(i, t) \in \hat{V}$. При $V \subset Z^{*}$ и $\hat{V} = \{1, \cdots, n\} \times V$, с-алгебру B_{v} будем обозначать просто через B_{v} . Положим также $B_{Z^{*}} = B$.

Распределениями вероятностей (р.в.) случайных полей будем называть вероятностные меры на пространстве (X, B). Будем называть средним значением поля с (р.в.) P линейный функционал

$$A^{P}(\varphi) = \int_{Y} \xi_{\varphi}(x) P(dx) = \sum_{t \in Z^{\gamma}} (A_{t}^{P}, \varphi(t)),$$
 (2.3)

где ф ЕФ и

$$A_t^p = \int_X \xi_t(x) P(dx), \ t \in Z^*. \tag{2.4}$$

Предполагая, что средние значения существуют, положим

$$\zeta_{\varphi}^{P}(x) = \xi_{\varphi}(x) - A^{P}(\varphi), \ \varphi \in \Phi,$$

$$\zeta_{t}^{P}(x) = \xi_{t}(x) - A_{t}^{P}, \ t \in Z^{\gamma}.$$
(2.5)

Теперь, предполагая существование вторых моментов, введем ковариа ционный функционал, положив

$$B^{p}\left(\varphi_{1},\,\varphi_{2}\right)=\int\limits_{X}\zeta_{\varphi_{1}}^{p}\left(x\right)\,\zeta_{\varphi_{2}}^{p}\left(x\right)\,P\left(dx\right)=$$

$$= \sum_{t,s\in\mathbb{Z}^{3}} (B^{p}(t,s) \varphi_{1}(t), \varphi_{2}(s)), \varphi_{1}, \varphi_{2} \in \Phi, \qquad (2.6)$$

где

$$B^{p}(t, s) = [B_{j, l}^{p}(t, s)]_{j, l=1,\dots, n}$$

H

$$B_{ji}^{p}(t, s) = \int_{Y} \zeta_{j, t}^{p}(x) \zeta_{i, s}^{p}(x) P(dx) t, s \in Z^{r}.$$
 (2.7)

Случайное поле с р.в. P называется ковариационно-стационарным, если оно имеет конечный ковариационный функционал и

$$B^{p}(\varphi_{1}, \varphi_{2}) = B^{p}(\varphi_{1}^{s}, \varphi_{2}^{s}), \varphi_{1}, \varphi_{2} \in \Phi, s \in Z^{s},$$

$$rae \varphi_{j}^{s}(t) = \varphi_{j}(t-s), s, t \in Z^{s}, j = 1, 2.$$
(2.8)

Известно, что (см. [3], § 4.3) для конариационно-стационарного поля

$$B^{\rho}(\varphi_{1}, \varphi_{2}) = \int_{(-\infty)^{3}} (\overline{\varphi_{1}}(k) F^{\rho}(dk), \overline{\varphi_{2}}(k)), \varphi_{1}, \varphi_{2} \in \Phi, \qquad (2.9)$$

rae $(-\pi\pi]^{\nu} = \{k = (k_1, \dots, k_{\nu}) \in R^{\nu}, -\pi < k_j \leqslant \pi, j = 1, \dots, \nu\}$

$$\widetilde{\varphi}_{j}(k) = \sum_{t \in Z^{*}} \varphi(t) e^{t(k,t)}, k \in (-\pi\pi]^{*}, j=1, 2,$$

а $F^{\rho}(\cdot)$ — вто матричная неотрицательно определенная функция мно жества, определяемая на σ -алгебре $\mathbf{B}[(-\pi\pi]^{\tau}]$ борелевских подмножеств множества $(-\pi\pi]^{\tau}$. Функцию $F^{\rho}(\cdot)$ называют спектральной мерой поля с р.в. P. Если

$$F^{p}(A) = \int_{A} f(k) dk, A \in \mathbb{B} \{(-\pi\pi)^{*}\},$$
 (2.10)

то будем говорить, что поле имеет спектральную плотность f(k), $k \in (-\pi\pi]^*$. Любая измеримая функция с неотрицательно определенными значениями такая, что $\int\limits_{(-\pi\pi)^*} Spf(k) \, dk < \infty$, где Spf(k)—это след

матрицы f(k), является спектральной плотностью некоторого поля.

Здесь и далее P— это р.в. с конечным ковариационным функционалом. Будем обозначать через $L_2^{(P)}$ — гильбертово простравство вещественных функций на X, квадратично интегрируемых по мере P, и через $L_2^1(P)$ —подпространство пространства $L_2^{(P)}$, являющееся за

мыканием в $L_2(P)$ системы функций $\zeta_{l,t}^P$, $(j,t)\in \widehat{Z}^*$. Обозначим через L пространство $L_2^1(P)\bigoplus \cdots \bigoplus L_2^1(P)$. Пусть $L_2(F)$ — гильбертово про-

странство комплекснозначных вектор-функций $g(k) = (g_1(k), \cdots, g_n(k)),$ $k \in (-\pi\pi]^*$ таких, что $g(k) = \overline{g(-k)}$ со скалярным произведением, за данным неотрицательно определенной квадратичной формой

$$(g_1(k), g_2(k)) = \int_{(-\infty)^n} (g_1(k) F^p(d_k), g_2(k))$$
 (2.11)

с естественной факторизацией по классу функций, на которых эта форма обращается в нуль.

Предложение 2.1. (см. [2]). Существует единственный изоморфизм пространств $L_2(F)$ и $L_2^1(P)$ такой, что влементу $\mathcal{C}_{\mathfrak{p}}^P \in L_2^1(P)$ соответствует элемент $\widetilde{\mathfrak{p}} \in L_2(F)$. Образ элемента $g \in L_2(F)$ при этом изоморфизме будем обозначать через $Z_{\mathfrak{p}}$. Через $H_{\widetilde{\mathfrak{p}}} \subseteq L_2^1(P)$, $\widehat{V} \subseteq \widehat{Z}^{\mathfrak{p}}$ будем обозначать замкнутое подпространство, порожденное векторами $\mathcal{C}_{\mathfrak{p}}^P$, $(j,t)\in\widehat{V}$. Через $d_{j,t}$, $\widetilde{V}\in L_2^1(P)$, где $(j,t)\in\widehat{V}$ и \widetilde{V} —конечное

подмножество множества \widehat{Z}° , будем обозначать проекцию вектора \widehat{C}^{ρ} , на $H_{\widehat{Z}^{\circ}} \setminus \widehat{V}$, а если $\widehat{V} = \{1, \cdots, n\} \times V$, то положим просто

$$d_{i, t, \hat{V}} \equiv d_{j, t, V}, V \in V^*, d_{t, V} = \{d_{j, t, V}\}_{j=1, \dots, n}$$

Положим

$$B_{j,\,l,\,V}^{p}(t,\,s) = \int_{X} (\zeta_{j,\,l}^{p}(x) - d_{j,\,l,\,V}(x))(\zeta_{l,\,s}^{p}(x) - d_{l,\,s,\,V}(x)) P(dx)$$

H

$$B_{V}^{\rho}(t, s) = \{B_{h, t, V}^{\rho}(t, s)\}_{j, t=1, \dots, n}.$$
 (2.12)

Предложение 2.2 (см. [8], § 2.3, 4.3, 7.12). Пусть P— это р.в. векторного гауссовского случайного поля. Тогда при любом- $V \in V$ сужение на B^V условного р.в. $P_V(\cdot/x)$ относительно з-подал гебры L_{X^V} и имеет характеристическую функцию вида

$$\gamma_{t}(\lambda_{t}, t \in V/x) = \int_{(\mathbb{R}^{n})^{V}} \exp\left(i \sum_{t \in V} (\lambda_{t}, \xi_{t}(\widehat{x}_{V})) P_{V}(\widehat{x}_{V}/x) = \right)$$

$$= \exp \left\{-\frac{1}{2} \sum_{t,s \in V} (B_V^P(t,s) \lambda_t, \lambda_s) + i \sum_{s \in V} (\lambda_s, d_{s,V}(x) + A_s^P\right\}, \quad (2.13)$$

* т. е. является гауссовским с матрицей ковариации

 $B_V^p = \{B_{j, l, V}^p (s, t), s, t \in V j, l = 1, \cdots, n\}$ и вектором средних значений $\{d_l, v + A_l^p, t \in V\}$.

Векторное случайное поле называется минимальным, если

$$\zeta_{j,\,i}^{p} \subset H_{\widehat{Z}_{i}^{p}((j,\,0))} \tag{2.14}$$

при всех $(j, t) \in Z^{*}$.

Предложение 2.3 (см. [2], гл. II). Для того, чтобы векторное ковариационно-стационарное поле со спектральной плотностью f(k) было минимальным необходимо и достаточно, чтобы почти всюду существовала обратная матрица $f^{-1}(k)$ и

$$\int_{(-\pi\pi)^3} Sp f^{-1}(k) dk < \infty, \tag{2.15}$$

где $Sp f^{-1}(k)$ — след матрицы $f^{-1}(k)$.

При втом

$$\sigma_t^2 = B_{\{t\}}^p \quad (t, t) = (2\pi)^{2\tau} \left[\int_{-\infty}^{\infty} f_{(k)}^{-1} dk \right]^{-1}$$
 (2.16)

И

$$d_{I,\{I\}} := Z_{e^{I}(I,k)}_{[I_{n}-(2n)^{-1}\circ^{I}f_{k}^{-1}]}. \tag{2.17}$$

Случайное поле с р.в. P называется линейно регулярным, если

$$\bigcap_{\widehat{V} \subset \widehat{Z}'} H_{\widehat{Z}' \setminus \widehat{V}} = 0,$$
(2.18)

где |V| — мощность подмножества \widehat{V} множества \widehat{Z}' .

Предложение 2.4 (см. [4]). При выполнении условия (2.15) поле с р.в. P линейно регулярно. В соответствии с определением (2.12) для линейно регулярного поля

$$B^{\rho}(s, t) = \lim_{V \to -\infty} B_{V}^{\rho}(s, t), s, t \in Z'.$$
 (2.19)

Говорят, что система векторов $\{\zeta_{j,t}^{P}, (j,t) \in \widehat{Z}^{*}\}$ образует слабый базис в пространстве $L_{2}^{1}(P)$, если любой вектор $a \in L_{2}^{1}(P)$ единственным образом представим в виде

$$\alpha = \sum_{(j,t)\in\widehat{Z}^*} c_{j,t}(t) \, \eta_{j,t}^p, \qquad (2.20)$$

где $c_j(t)$, $(j, t) \in \widehat{Z}^*$ — действительные числа, а ряд в (2.20) сходится в слабом смысле в пространстве $L^1_2(P)$. Известно (см. [2], § 2), что

при выполнении условия (2.15) система векторов $\{\zeta_{j,\ l},(j,t)\in Z^{l}\}$ образует слабый базис в пространстве $L_{2}^{l}(P)$, при этом если $a=Z_{\ell}$, $g(k)=(g_{1}(k),\cdots,g_{n}(k))$, то функции $g_{j}(k)$, $1\leqslant j\leqslant n$ интегрируемы по мере Лебега и при этом

$$c_j(t) = (2\pi)^{-\tau} \int_{(-\infty)^{\tau}} g_j(k) e^{i(k,t)} dk.$$
 (2.21)

3. Гиббсовские поля. Пусть $h \in R^n$, а U(t), $t \in Z^r$ $n \times n$ — матричная функция такая, что U(t) = U(-t), $t \in Z^r$ и

$$\sum_{t \in \mathbb{Z}^*} |U(t)| < \infty, \tag{3.1}$$

где норма матрицы $U(t) = \{U_{j, l}(t)\}_{j, l=1\cdots n}$ онределяется как $|U(t)| = \max_{j, l=1\cdots n} |U_{j, l}(t)|, t \in Z^*$. Пусть далее $Y(U) \subset X$ — множество функций $x = (x_t, t \in Z^*)$ таких, что $x_t \in R^n$ и

$$\sum_{t \in Z'} |U(t-s) x_t| < \infty, \ s \in Z', \tag{3.2}$$

где норма вектора $x_i \in R^n$ определяется, как $|x_i| = 1 / \sum_{j=1}^n |x_{j,i}|^2$. Вве-

$$H_{V}^{(k,U)}(\hat{x}_{V}/x) = \sum_{\{s_{t},t\}\subseteq V} (U(t-s)\hat{x}_{t},\hat{x}_{s}) + \frac{1}{2}\sum_{t\in V} (U(0)\hat{x}_{t},\hat{x}_{t}) +$$

$$+\left(h,\sum_{s\in V}\widehat{x}_{s}\right)+\left(\sum_{s\in V}\widehat{x}_{s},\sum_{t\in Z^{v}\setminus V}U\left(t-s\right)x_{t}\right),\tag{3.3}$$

где $\hat{x_V} = (\hat{x_t}, t \in V) \in (R^n)^V$, $x = (x_t, t \in Z^i) \in Y(U)$, $V \in V^i$ и гиббсовскую плотность

$$P_{V}^{(h,U)}(\hat{x}_{V}/x) = \frac{\exp\left\{-H_{V}^{(h,U)}(x_{V}/x)\right\}}{Z_{V}(x)},$$
 (3.4)

где

$$Z_{V}(x) = \int_{(R^{n})V} \exp\left\{-H_{V}^{(h,U)}(\hat{x}_{V}/x)\,d\hat{x}_{V}.\right\}$$
(3.5)

Ясно, что $Z_V(x)>0$ для всех $V\in V$ и $x\in Y(U)$ тогда и только тогда, если при всех $V\in V$

$$\sum_{t, s \in V} (U(t-s) Z_t, Z_s) > 0, Z_s \neq 0, Z_s \in C^n, s \in V.$$
 (3.6)

Если положим $q(k) = \sum_{t \in Z'} U(t) e^{i(k,t)}$, то (3.6) можно записать в виде

$$\int_{-\infty}^{\infty} (p(k) q(k), \bar{p}(k) dk > 0, \qquad (3.7)$$

где $p(k) = \sum_{s \in V} z_s e^{i(k,s)}, z_s \neq 0, s \in V, V \in V^*.$

Отсюда следует (см. [5], § 5), что матричная функция q(k) имеет почти всюду строго положительно определенные значения. В дальнейшем будем рассматривать только потенциалы, для которых выполнено условие (3.7). Выражение (3.4) перепишем в виде

$$p_{V}^{(h,U)}(\hat{x}_{V}/x) = \underline{[(2\pi)^{|v|n} \det U_{V}]}^{-\frac{1}{2}} \times \times \exp \left\{ \frac{1}{2} \sum_{t,s \in V} (U(t-s)(x_{t}-a_{t}^{V}(x)), x_{s}-a_{s}^{V}(x) \right\},$$
(3.8)

где det U_V — это детерминант матрицы $U_V = \{U_V (t-s), t, s \in V\}$, а $a_t^V(x)$, $t \in V$ определяются из системы линейных уравнений

$$\sum_{t \in V} U(t-s) \alpha_t^V(x) + \sum_{t \in Z^* \setminus V} U(t-s) x_t = -h, s \in V.$$
 (3.5)

Будем назыпать векторное случайное поле с р.в. $P\left(h,\ U\right)$ — гиббсовским, если

$$P(Y(U)) = 1,$$
 (3.10)

при любом $V \in V^*$ существует условная плотность $P_V(\cdot/x)$ и для P почти всех $x \in X$ и $P_V(\cdot/x)$ — почти всех $\widehat{x_V} \in (R^n)^V$

$$P_{V}(\hat{x}_{V}|x) = p_{V}^{(h,U)}(\hat{x}_{V}|x).$$
 (3.11)

Пусть A $(h, U) \subseteq X$ — множество всех функций $a = (a_t, t \in Z^i) \in X$ таких, что

$$\sum_{t \in \mathbb{Z}^*} U(t-s) \alpha_t = h, \ s \in \mathbb{Z}^*. \tag{3.12}$$

Будем называть сверткой $P=P_1*P_2$ двух р.в. случайных полей р.в.

$$P(A) = \int_{A}^{a} P_{1}^{a}(A) P_{2}(da), A \in \mathbb{B},$$
 (3.13)

 $r_{A}e P_{1}^{\alpha}(A) = P_{1}(A - a), A \in B.$

Положим (см. (3.6))

$$f(k) = (2\pi)^{-1} [q(k)]^{-1}$$
. (3.14)

Если

$$\int_{(-\pi\pi)^{*}} sp [q(k)]^{-1} dk < \infty, \tag{3.15}$$

то существует стационарное гауссовское поле с параметрами (0, f) Его р.в. будем обозначать через P'.

Теорема. Для того, чтобы совокупность (h, U)-гиббсовских полей была не пуста необходимо и достаточно, чтобы выполнялось условие (3.15) и множество A (h, U) было не пусто. При этом р.в. Р будет (h, U)-гиббсовским в том и только том случае, когд.

$$P = P' * P^1, (3.16)$$

где р.в. P1 такое, что

$$P^{1}(A(h, U))=1.$$
 (3.17)

 \mathcal{A} оказательство. Проверим, что при условии (3.15) р.в. P^I является (0 U)-гиббсовским. Из (3.1) следует условие (2.15) и повтому из предложений 2.2 и 2.3 и формулы (2.20) следует, что существует индуцированная состоянием P^I условная плотность

$$P'_{\langle t \rangle}(\hat{x}_t/x) = [(2\pi)^{\gamma} \det \sigma^x]^{-\frac{1}{2}} \times$$

$$\times \exp \left\{ -\frac{1}{2} \left((\mathfrak{z}^{8})^{-1} (\hat{x}_{t} - d_{t, \{t\}}), (\hat{x}_{t} - d_{t \{t\}}) \right) \right\}, \tag{3.18}$$

где

$$\sigma^2 = (U(0))^{-1} \tag{3.19}$$

н

$$d_{t,\langle t\rangle}(x) = -\sigma^2 \sum_{s+t} U(s-t) \,\xi_t(x), \qquad (3.20)$$

где ряд сходится в слабом смысле в пространстве L. Так как ряды $\sum_{i=1}^{n}U(t-s)\,\delta_{j}\,e^{i\,(k,\,t)}$, где $\delta_{j}=(0\,\cdots\,1\,\cdots\,0),\,j=1,\,\cdots,n$ сходятся в пространстве $L_{2}\left(F\right)$, то ряд в (3.20) сходится в сильном смысле. Далее, среднее значение по мере P^{f}

$$E_{f}\left(\sum_{t\in\mathbb{Z}^{*}}|U\left(t-s\right)|\mathbb{E}_{t}(\mathbf{x})|\right)\leqslant K\sum_{t\in\mathbb{Z}^{*}}|U\left(t-s\right)|<\infty \tag{3.21}$$

и поэтому верна (3.10) и формула (3.20) верна в смысле сходимости при почти всех по мере P^f значений $x \in X$. Тогда почти всюду

$$p_{\{i\}}^{(0,U)}(\hat{x}_{t}/x) = \left[(2\pi)^{n} \det \sigma^{2} \right]^{-\frac{1}{2}} \times \\ \times \exp \left\{ -\frac{1}{2} \left((\sigma^{2})^{-1} \hat{x}_{t} - d_{i,\{i\}}(x) \right), (\hat{x}_{t} - d_{i,\{i\}}(x)) \right) \right\}.$$
 (3.22)

Тем самым проверено условие (3.11) при $V=\{t\}$, но отсюда следует его выполнение и при всех $V\in V^*$ (ср. [1], предложение 3.2).

 $C_{ABH\Gamma} P^{f,a}(x_{\nu}/x)$ р.в. P^f при условии (3.15) имеет условные плотности вида

$$P_{V}^{\prime a}(\hat{x}_{v}/x) = P_{V}^{\prime}(\hat{x}_{v} - a_{v}/x - a), \ \hat{x}_{v} \in (R^{a})^{V} \ V \in V^{*}.$$
 (3.23)

Из формулы (3.3) сдедует, что при условии (3.12) разность $H_V^{(h,\ U)}(x_V/x)-H_V^{(h,\ U)}(x_V-a_V/x-a)$ не зависит от x_V и поэтому

$$p_{V}^{(h,U)}(x_{V}/x) = p_{V}^{(h,U)}(x_{V} - a_{V}/x - a) x_{V} \in (R^{n})^{V}, x \in X.$$
 (3.24)

Выполнение условия (3.10) для $P^{f. a}$ следует из выполнения этого условия для P^f и из того, что ряд в (3.12) сходится абсолютно.

Тогда из формул (3.23) и (3.24) вытекает, что при условии (3.12) поле с р.в. $P^{f\cdot a}$ является (h, U)-гиббсояским. Отсюда следует, что поле с р.в. вида (3.16) это р.в. (h, U)-гиббсовских полей.

Покажем теперь, что условие (3.15) необходимо для существования (h, U)-гиббсовских полей. Пусть потенциал таков, что интеграл в (3.15) расходится. Обозначим через $b_{j, V}(t)$, $t \in V$, $j = 1, \cdots, n$ диагональные влементы матрицы, обратной к матрице $\{U(t-s), s, t \in V\}$, т. е. дисперсии случайных величин $\xi_{j, t} = x_{j, t}$, задаваемых плотностью р.в. (3.8). Положим

$$q^{m}(k) = \frac{1}{m} I_{n} + q(k), k \in (-\pi\pi]^{*}, m=1, 2, \cdots,$$
 (3.25)

где I_n — это $n \times n$ -единичная матрица. Обозначим через $p_{i_n}^{(h,U^m)}$ плотность р.в., задаваемую формулой (3.8), в которой коэффициенты U(t-s) заменены на $U^m(t-s)$, где $U^m(t)$, $t \in Z$ —это коэффициенты Фурье функций $q^m(k)$, $k \in (-\pi\pi]^*$, а через $b_{i_n}^m -$ дисперсии случайных величин x_i , t, задаваемые плотностями р.в. $p_i^{(h,U^m)}$. Тогда

$$\lim_{m\to\infty} b_{j,\ V}^m(t) = b_{j,\ V}(t),\ t\in V,\ V\in V^*,\ j=1,\cdots,n. \tag{3.26}$$

Из доказанной части теоремы следует, что

$$b_{I,V}^{m}(t)=B_{V}^{pfm}(t,t),$$

где $f^m(k) = \frac{1}{2\pi^*} [q^m(k)]^{-1}$, а $f_{jj}^m - j$ -ый диагональный элемент матрицы $f^m(k)$, $k \in (-\pi \pi]^*$.

Из (3.25) следует (см. [9], § 4.12), что

$$f_{jj}^{m}(k) \leqslant f_{jj}^{m+1}(k), \ k \in (-\pi, \pi]^{*}. \tag{3.28}$$

Тогда (см. [1], лемма 4.2) последовательность $b_{j,V}^m(t)$ монотонно возрастает по m и тогда из (3.26) следует, что

$$b_{l, V}(t) \geqslant b_{l, V}^{m}(t), t \in V, V \in V^{2}.$$
 (3.29)

Для р.в. P^{m} из предложения 2.4 вытекает, что

$$\lim_{V \to -} b_{J, V}^{m}(t) = B_{(t, t)}^{\rho} \int_{(-\infty t)^{\tau}}^{f_{JJ}^{m}} \int_{(0, \infty t)^{\tau}}^{f_{JJ}^{m}} f_{JJ}^{m}(k) dk.$$
 (3.30)

Тогда из (3.26), (3.29) и из того, что интеграл в (3.15) расходится, следует, что для некоторого $j, j = 1, \dots, n$

$$\lim_{V \to \infty} b_{j, V}(t) = \infty. \tag{3.31}$$

Пусть теперь P— вто некоторое (h, U)-гиббсовское р.в. Тогда из формул (3.11) и (3.8) следует, что при любом $V \in V$, $t \in V$ случайная величина

$$\xi_t(x) = \alpha_t^{V}(x) + J_t^{V}(x),$$
 (3.32)

где $J_t^V(x) = \xi_t(x) - a_t^V(x)$ имеет гауссовское р.в. со средним 0 и ковариационной матрицей $b_V(t)$ и слагаемые в (3.32) независимы. Ясно, что

$$P(|\xi_{j,\,t}| > (b_{j,\,\nu})^{1/2}) \gg P(J_{j,\,t}^{\nu} > (b_{j,\,\nu}(t))^{1/2}), \tag{3.33}$$

где $\xi_{j,\,\ell}$ и $J_{j,\,\ell}^V - j$ -ые компоненты соответственно ξ_ℓ и J_ℓ^V и левая часть этого неравенства представляет собой константу, не зависящую от $V \in V^*$. Но это противоречит тому, что $P\left(|\xi_{j,\,\ell}| > c\right) \to 0$ при $c \to \infty$. Это противоречие доказывает необходимость условия (3.15).

Пусть теперь условие (3.15) выполняется.

Предложение 3.1. Любое регулярное (h, U)-гиббсовское поле c p.s. P является гауссовским ковариационно-стационарным полем со спектральной плотностью f(k) и средним вначением a_i^p таким, что $(a_i^p, t \in Z^*) \in A(h, U)$.

 \mathcal{A} оказательство. Пусть $\mathcal{X}_{P}(\varphi)$ — характеристический функционал этого поля. \mathcal{A} ля каждого $V \in V^*$ и каждого $x \in X$ рассмотрим

$$\chi_{V,x}(\varphi) = \int_{\mathbb{R}^{n} \setminus V} \exp \left\{ i \sum_{t \in V} (\varphi(t), \hat{x}_{t}) \right\} P_{V}^{(h,U)}(\hat{x}_{V}/x) d\hat{x}_{V} =$$

$$= \exp \left\{ -\frac{1}{2} \sum_{s, i \in V} (b_{V}(s, t) \varphi(s), \varphi(t)) + i \sum_{t \in V} (\varphi(t), a_{t}^{V}(x)) \right\}, \varphi \in \Phi,$$

$$x \in X, \qquad (3.34)$$

где $B_V = \{b_V(t, s), t, s \in V\}$ — матрица обратная к матрице $U_V = \{U(t-s), s, t \in V\}$ и $\{a_t^V(x), t \in V\}$ — решения уравнения (3.9). Из

условия (3.11) (см. [8], 7.4) следует, что при любом $\phi \in \Phi$ и почти всех по мере P значений $x \in X$

$$\lim_{V \to \infty} \chi_{V,x}(\varphi) = \chi_{P}(\varphi). \tag{3.35}$$

Из предложения 2.4 имеем

$$\lim_{V \to \infty} b_V(s, t) = B^{p/s}(s, t), s, t \in Z^*.$$
 (3.36)

Тогда из (3.34) и (3.35) следует, что для почти всех по мере P зна чений $x \in X$

 $\lim_{V \to \infty} \alpha_t^V = \alpha_t^P, \ t \in \mathbb{Z}^*, \tag{3.37}$

где a^P — некоторые константы.

Покажем, что $(a_i^p, t \in Z^i) \in A$ (h, U). Из условия (3.10) следует, что ряд в (3.2) сходится с вероятностью 1 относительно меры P и так как из такой сходимости гауссовских величин вытекает их сходимость в среднем, то ряды в (3.2) сходятся в среднем по мере P. Из формулы (2.1) видно, что ряды в (3.12)) сходятся. Из сходимости ряда (3.2), условия (3.1) н ковариационно-стационарности поля следует, что

$$\sum_{t \in \mathbb{Z}^{*}} |U(t-s)| \int_{\mathbb{X}} |K_{t}(x)| P(dx) \leq \sum_{t \in \mathbb{Z}^{*}} |U(t-s)| |a_{t}^{p}| + \sum_{t \in \mathbb{Z}^{*}} |U(t-s)| \int_{\mathbb{X}} |K_{t}^{p}(x)| P(dx) < \infty.$$
 (3.38)

Формула (3.8) и условие (3.11) позволяют писать для почти всех $x \in X$

$$a_t^V(x) = E_P(\xi_t/\mathbf{B}_{Z^* \setminus V}), \ t \in V, \ V \in V^*. \tag{3.39}$$

Тогда (см. [12], разд. 2)

$$\int_{X} \|a_{t}^{V}(x)\| P(dx) \leqslant \int_{X} \|\varepsilon_{t}(x)\| P(dx), t \in V, V \in V^{*}$$
(3.40)

и из (3.38) следует, что каждый из рядов

$$\sum_{t\in\mathbb{Z}^*}U(t-s)\,\widehat{a}_t^{\,\nu}(x),\,s\in\mathbb{Z}^*,$$

где $a_t^V = a_t^V$, $t \in V$ и $a_t^V = x_t$, $t \in Z^* \setminus V$, сходятся в среднем по мере P равномерно относительно $V \to \infty$ в смысле сходимости по мере P, при условии (3.37), откуда получим (3.12). Предложение 3.1 доказано.

К ванершению доказательства теоремы остается добавить, что любое (h, U)-гиббсовское поле может быть получено как взвешенное интегральное среднее регулярных (h, U)-гиббсовских полей (см. [10], § 2).

Институт проблем передачи миформации АН СССР Մ. Հ. ԱՎԵՏԻՍՅԱՆ. Վեկտուական գառայան գիրոյան պատանական դայտեւ *(ամփոփում)*

Դորրուշինի Հոդվածում [1] արված է սկալյար գառայան պատահական դաշտերի նկարագրությունը գիրսյան պոտենցիալների տերմիններով։ Այս Հոդվածում ընդհանրացվում են այդ արդյունցները վեկտորական դառայան դաշտերի համար։

M. H. AVETISYAN. Vector gaussian gibbsian random fields (summary)

In the Dobrushin's paper [1] a description of gaussian random fields in terms of gibbsian potentials was given for scalar fields. Here we generallize these results to the case of vector gaussian random fields.

ЛИТЕРАТУРА

- R. L. Dobrushin. Gaussian random Fields—Gibbsian point of view, Multicomp random systems, Advance in Probab. and relat. topics, vol. 6, Marcel. Bekker Inc. N. Y., Basel, 1980.
- 2. Ю. А. Розанов. Стационарные случайные процессы, Физматгиз, 1963.
- 3. И. И. Гихман. А. В. Скороход. Теория случайных процессов, «Наука», 1971.
- 4. Ю. А. Розанов. О гауссовских полях с заданными условными распределеннями. Теория вер. и её примен., XII, 3, 1967, 165—202.
- H. Helson, D. Loudenslager. Prediction theory and Fourier series in several variables, Acta Math., 99, 3-4, 1958.
- А. М. Яглом. Введение в теорию стационарных случайных функций, УМН, 7 (5), 1952, 3—168.
- 7. S. C. Chay. H. On Qausi-Markov rendon Fields, J. of Multiv. Anal., 2, No 1, 1972, 14-76.
- 8. Дж. Л. Дуб. Вероятностные процессы, ИИЛ, 1956.
- 9. Р. Беллман. Введение в теорию матриц. «Наука», 1976.
- 10. C. Preston, Random fields, Lect. Notes Math., No 534. Springer, Berlin, 1976.
- 11. H. Kunsch. Thermodynamics and statistical analysis of Gaussian random fields (преприят).
- 12. П. А. Майер. Вероятность и потенциалы, «Мир», 1973.
- 13. А. Зигмунд. Тригонометрические ряды, «Мир», 1965.
- 14. М. Г. Аветисян, Р. Л. Добрушин. Условие линейной регулярисоти векторных случайных полей (преприит).