Մաթեմատիկա

XVIII, Nº 4, 1983

Математика

ソAK 517.43

Р. Г. АЙРАПЕТЯН, И. М. ГЕЛЬФАНД, М. И. ГРАЕВ, Г. Р. ОГАНЕСЯН

ТЕОРЕМА ПЛАНШЕРЕЛЯ ДЛЯ ИНТЕГРАЛЬНОГО ПРЕОБРАЗОВАНИЯ. СВЯЗАННОГО С КОМПЛЕКСОМ p-МЕРНЫХ ПЛОСКОСТЕЙ В \mathbf{CP}^n И \mathbf{C}^n

В [1, 2] изучалось интегральное преобразование, относящее функциям в аффинном пространстве их интегралы по прямым, пересекающим фиксированную кривую. Задача интегральной геометрии состояла в том, чтобы получить для этого преобразования формулу обращения и формулу Планшереля. Комплекс прямых, пересекающих фиксированную кривую, является одним из самых интересных комплексов прямых. Наша цель—определить комплекс K_C p-мерных плоскостей, заменяющий при p > 1 комплекс прямых, пересекающих кривую (см. 3, 4, 5]). Для этого обозначим через $G_{p+1,n+1}$ комплексное грассманово многообразие, т. е. множество (p+1)-мерных подпространств в C^{n+1} или, что то же, множество p-мерных плоскостей в n-мерном проективном пространстве CP^n . Зададим p-мерное подмногообразие $C \subset G_{p+1,n+1}$ (оно заменяет кривую при p > 1). Определим комплекс $K_C \subset G_{p+1,n+1}$ как множество всех подпространств $h \in G_{p+1,n+1}$, содержащих хотя бы одно подпространство $l \in C$; очевидно, что dim $K_C = n$

В работе [5] было введено интегральное преобразование J_C , относящее каждой функции f(x) на \mathbb{CP}^n функцию $\varphi(h)$ на K_C : именно, $\varphi(h)$ равно интегралу f по плоскости $h \in K_C$ (точное определение см. в § 1) и для этого преобразования была получена формула обращения

В данной работе, при условии, что C— гармоническое многооб разие, получена теорема Планшереля. Сформулируем условие гармоничности (см. [5]). Заметим, что если C— p-мерное подмногообразие в $G_{p,n+1}$, то для почти всех $\eta \in (\mathbb{C}^{n+1})'$ имеется лишь конечное число \mathbb{C}^r (η) подпространств $l \in C$, ортогональных η . Мы называем C гармоническим многообразием, если \mathbb{C}^r (η) = const $\neq 0$ для почти всех η . Эту константу мы обозначаем через \mathbb{C}^r (\mathbb{C}^r) и называем числом Крофтона. Число Крофтона является естественным обобщением понятия порядка алгебраической кривой, так как в случае алгебраической кривой C (\mathbb{C}^r) ес при \mathbb{C}^r) оно равно числу точек пересечения кривой \mathbb{C}^r с гиперплоскостью общего положения*.

Примечание. В работе разобран случай комплексного пространства, поскольку он является более простым. Случай вещественного пространства будет разобран в другой работе.

^{*} Краткое изложение результатов см. в [9].

§ 1. Постановка задачи и формулировка результатов

1. Введем пространство F C^- -функций на $C^{n+1} \setminus 0$, удовлетворяющих условию однородности:

$$f(\lambda x) = |\lambda|^{-2p-2} f(x), \ \lambda \in \mathbb{C} \setminus 0. \tag{1.1}$$

Определим интегральное преобразование f функций $f \in F$. Обозначим через E многообразие (p+1)-реперов $v = (v_1, \cdots, v_{p+1})$ в C^{n+1} ; оно является расслоением над грассмановым многообразием $G_{p+1, n+1}$. Пусть $f \in F$, $v = (v_1, \cdots, v_{p+1}) \in E$. Положим

$$\sigma(t) = \sum_{k=1}^{p+1} (-1)^{k-1} t^k dt^1 \wedge \cdots \wedge dt^{k-1} \wedge dt^{k+1} \wedge \cdots \wedge dt^{p+1}.$$

Из условия однородности для $f \in F$ следует, что дифференциальная (p, p)-форма $f(v_1 t^1 + \cdots + v_{p+1} t^{p+1}) \sigma(t) \wedge \overline{\sigma(t)}$ имеет степень однородности 0, а потому она опускается с $\mathbb{C}^{p+1} \setminus 0$ на \mathbb{CP}^p . Мы полагаем:

$$(ff) (v) = \left(\frac{i}{2}\right)^{\rho} \int_{\mathbb{CP}^{\rho}} f(v_1 t^1 + \cdots + v_{\rho+1} t^{\rho+1}) \circ (t) \wedge \overline{\circ (t)}. \tag{1.2}$$

Очевидно, что $\varphi = \iint -C^*$ -функция на E, удовлетворяющая следующему условию однородности:

$$\varphi(vg) = |\det g|^{-2} \varphi(v) \text{ AAS ANOGORO } g \in GL(p+1, \mathbb{C}). \tag{1.3}$$

В силу втого условия, функция φ фактически зависит только от подпространства $h \in G_{p+1, n+1}$, натянутого на репер $u \in E$.

Пусть теперь $K_C \subset G_{p+1, n+1}$ — комплекс (p+1)-мерных подпространств, построенный по p-мерному подмногообразию $C \subset G_{p, n+1}$. Пусть далее E_C — расслоение реперов над K_C , Φ_C — пространство C —функций на E_C , удовлетворяющих условию однородности:

$$? (vg) = |\det g|^{-2} \varphi (v) \text{ and another } g \in GL (p+1, \mathbb{C}). \tag{1.4}$$

Определим интегральное преобразование $J_C: F o \Phi_C$, полагая

$$\int_{C} f = \int_{C} f|_{E_{C}}$$

2. Наша цель—получить теорему Планшереля для преобразования \int_C . Для этого нужно как в F так и в Φ_C ввести скалярное произведение. В дальнейшем предполагается, что $2p \leqslant n-1$. Чтобы ввести скалярное произведение в пространстве F, зафиксируем произвольный однородный многочлен $P(\eta)$ от η , $\overline{\eta} \in (\mathbb{C}^{n+1})'$ бистепени (k_1, k_2) , где $k_1 + k_4 = n-1-2p$, и положим

$$w(x) = \sum (-1)^{k-1} x^k dx^1 / \cdots / dx^{k-1} / dx^{k+1} / \cdots dx^{k+1}.$$

Пусть f_1 , $f_2 \in F$. Тогда из условия одвородности для функций f_t ясно, что дифференциальная форма

$$\left[P\left(\frac{\partial}{\partial x}\right)f_1(x)\right]\overline{P\left(\frac{\partial}{\partial x}\right)f_2(x)} \otimes (x) \wedge \overline{\otimes (x)}$$

имеет степень однородности 0, а поэтому она опускается с $C^{n+1} \setminus 0$ на CP^n . Положим

$$(f_1, f_2) = \left(\frac{i}{2}\right)^n \int_{\mathbb{CP}^n} \left[P\left(\frac{\partial}{\partial x}\right) f_1(x) \right] \left[P\left(\frac{\partial}{\partial x}\right) f_2(x) \right] \otimes (x) \wedge \overline{\otimes (x)} . \quad (1.5)$$

Обозначим через \overline{F} пополнение пространства F по норме $[f] = (f, f)^{1/2}$. Введем теперь скалярное троизведение в пространстве Φ_C , где C — гармоническое многообразие. Пусть $l \in C$, $v = (v_1, \dots, v_p)$ —произвольный базис в l и $x \in \mathbb{C}^{n+1} \setminus l$; тогда $(v_1, \dots, v_p, x) \in E_C$. Положим

$$\tau_{p}(x) = \frac{1}{(n-p)!} \sum_{i=1}^{n} sgn(i_{1}, \dots, i_{n+1}) v_{i}^{l_{1}} \dots v_{p}^{l_{p}} x^{l_{p+1}} dx^{l_{p+2}} \wedge \dots \wedge dx^{l_{n+1}}$$

(суммирование ведется по всем перестановкам индексов $1, \cdots, n+1$)

$$\chi_{x}(\varphi) = \sum \frac{\partial^{\rho} \varphi \left(v_{1}, \cdots, v_{\rho}, x\right)}{\partial x^{i_{1}} \cdots \partial x^{i_{\rho}}} dv_{1}^{i_{1}} \wedge \cdots \wedge dv_{\rho}^{i_{\rho}}.$$

Введем для любых φ_1 , $\varphi_2 \in \Phi_C$ следующую дифференциальную форму:

$$\Omega\left(\varphi_{1},\,\varphi_{2}\right)=\left[\sigma_{v}\left(x\right)\wedge\,P\left(\frac{\partial}{\partial x}\right)\mathsf{x}_{x}\,\varphi_{1}\right]\wedge\left[\sigma_{v}\left(x\right)\wedge\,P\left(\frac{\partial}{\partial x}\right)\mathsf{x}_{x}\left(\varphi_{2}\right)\right]\cdot\left(1.6\right)$$

Пусть сначала v_l и dv_l ($i=1,\cdots,p$) фиксированы и $l\in C$ —подпространство, натянутое на векторы v_l . Тогда Ω (φ_1 , φ_2) является дифференциальной (n-p, n-p)-формой на \mathbb{C}^{n+1} , l. Зададим отображение $\mathbb{C}^{n+1}\setminus l\to \mathbb{C}P^n/l$, где $\mathbb{C}P^n/l\cong \mathbb{C}P^{n-p}$ — множество всех подпространств $h\in G_{p+1,\,n+1}$, содержащих l; именно, отнесем каждой точке $x\in \mathbb{C}^{n+1}\setminus l$ подпространство, натянутое на x и l. Легко проверить, что форма Ω (φ_1 , φ_2) опускается с $\mathbb{C}^{n+1}\setminus l$ на $\mathbb{C}P^n/l$; таким образом, определен ее интеграл по пространству $\mathbb{C}P^n/l$, являющийся дифференциальной (p,p)-формой на расслоении реперов C над C. Легко далее проверить, что полученная (p,p)-форма на C опускается с C на C. Положим

$$<\varphi_1, \varphi_2> = \frac{1}{(2\pi)^{2\rho} \operatorname{Cr}(C)} \left(\frac{i}{2}\right)^n \int_{C} \int_{CP^n/l} Q(\varphi_1, \varphi_2).$$
 (1.7)

Обозначим через Φ_C пополнение пространства Φ_C по норме $[\varphi] = (\varphi, \varphi)^{1/2}$,

Теорема 1. Пусть $2p \leqslant n-1$, $C \subset G_{\theta,n+1}$ — гармоническое подмногообразие, J_C — интегральное преобразование, определенное в n. 1. Тогда преобразование J_C изометрично относительно введенных в F и Φ_C скалярных произведений, m. e.

$$(f_1, f_2) = \langle \int_C f_1, \int_C f_2 \rangle$$

для любых f_1 , $f_2 \in F$. Следовательно, оно продолжается до изометрического отображения $F \to \overline{\Phi}_C$.

3. Опишем образ пространства \overline{F} при отображении J_C . Пусть $\varphi \in \Phi_C$, $l \in C$, $\upsilon = (\upsilon_1, \cdots, \upsilon_p)$ — произнольный базис в l, а $\eta \in (\mathbb{C}^{n+1})' \setminus 0$ — вектор, ортогональный l. Введем следующую дифференциальную форму на $\mathbb{C}^{n+1} \setminus l$:

$$\varphi\left(v_{1},\cdots,v_{p},x\right)\delta^{(n-p-1,n-p-1)}\left(<\eta,x>\right)\sigma_{v}\left(x\right)/\sqrt{\sigma_{v}\left(x\right)},$$

где $\delta^{(n-p-1,\,n-p-1)}(z) = \partial_z^{n-p-1}\partial_z^{n-p-1}\delta(z)$, $\delta(z)$ —дельта-функция на С. Легко показать, что эта форма не зависит от выбора базиса v в подпространстве l и что она опускается на проективное пространство $\mathbb{CP}^n/l \cong \mathbb{CP}^{n-p}$ при естественном отображении $\mathbb{C}^{n+1} \setminus l \to \mathbb{CP}^n/l$. Положим

$$\widetilde{\varphi}(l, \eta) = \left(\frac{i}{2}\right)^{n-\rho} \int_{\mathbb{CP}^n \mid l} \varphi(v_1, \dots, v_\rho, x) \times \\ \times \delta^{(n-\rho-1, n-\rho-1)} \left(\langle \eta, x \rangle \right) \sigma_v(x) / \overline{\sigma_v(x)}. \tag{1.8}$$

Скажем, что функция $\varphi \in \Phi_C$ удовлетворяет условию Кавальери, если для почти каждого $\eta \in (\mathbb{C}^{n+1})' \setminus 0$ $\varphi(l, \eta)$ не зависит от пространства $l \in C$, ортогонального η , т. е.

$$\widetilde{\varphi}(l_1, \eta) = \widetilde{\varphi}(l_2, \eta) \tag{1.9}$$

для любых подпространств l_1 , $l_2 \in C$, ортогональных η (число втих подпространств конечно и равно Cr(C)).

Теорема 2. Пусть выполнены условия теоремы 1. Тогда образ пространства \overline{F} при отображении $\int_C : \overline{F} \to \overline{\Phi}_C$ есть замыкание пространства функций $\varphi \in \Phi_C$, удовлетворяющих условию Кавальери (1.9).

П'римечание. Необходимость условия (1.9) вытекает из следующего факта. Пусть $\varphi = Jf$, $f \in F$, т. е. функция φ задана на многообразии всех (p+1)-реперов в \mathbb{C}^{n+1} , тогда интеграл (1.8) определен для любой ортогональной пары $l \in G_{p, n+1}$, $\eta \in (\mathbb{C}^{n+1})' \setminus 0$. Легко убедиться, что он равен

$$\int_{CP^n} f(x) \, \delta^{(n-\rho-1, n-\rho-1)}(\langle \gamma_i, x \rangle) \, \omega(x) \wedge \overline{\omega(x)},$$

а потому зависит только от η .

4. Введем семейство интегральных преобразований, родственных J_C . Пусть C-p-мерное подмногообразие в $G_{p,\ n+1}$, k_1 , k_2 -любые целые числа такие, что $1\leqslant k_1$, $k_2\leqslant n$ и $2p+2\leqslant k_1+k_2\leqslant n+1$. Обозначим через $F^{k_1,\ k_2}$ пространство всех C^∞ -функций на $C^{n+2} \searrow 0$, удовлетворяющих условию однородности:

$$f(\lambda x) = \lambda^{-k_1} \overline{\lambda}^{-k_1} f(x), \ \lambda \in \mathbb{C}^1 \setminus 0. \tag{1.10}$$

Определим интегральное преобразование функций $f \in F^{k_0 \cdot k_0}$. Имелно, пусть $l \in C$, $v = (v_1, \dots, v_p)$ —произвольный базис в l и $x \in C^{n+1} \setminus l$. Полагаем

$$(f_C^{k_1,k_2}f)(v,x)=\left(\frac{i}{2}\right)^p\int\limits_{\mathbb{C}^p}f\left(vt+x\right)\,dt\,\wedge\,d\bar{t}\;,$$

THE $vt = v_1 t^1 + \cdots + v_p t^p$, $dt = dt^1 \wedge \cdots \wedge dt^p$.

Из определения следует, что $\varphi = \int_C^{k_1, k_2} f - C^*$ -функция, удовлетворяющая следующим условиям:

- 1) при фиксированном v функция $\varphi(v, x)$ зависит только от проекции x на фактор-пространство \mathbb{C}^{n+1}/l ;
- 2) $\varphi(vg, \lambda x) = |\det g|^{-2} i^{\rho-k_1} \bar{\lambda}^{\rho-k_2} \varphi(v, x)$ для любых $g \in GL(\rho, \mathbb{C})$, $\lambda \in \mathbb{C} \setminus 0$. В силу этих условий, φ зависит фактически только от пары пространств (l, h), где $l \in C$ подпространство, натянутое на v, а $h \in K_C$ подпространство, натянутое на l и x. Отметим, что при $k_1 = k_2 = p + 1$ функция φ зависит только от h, а преобразование $\int_{C}^{k_1} k_2 \cos n dx$ совпадает с \int_{C} .

Обозначим черев $\Phi_C^{k_1, k_2}$ пространство всех C^{-} -функций $\varphi(v, x)$, удовлетворяющих условиям 1, 2. Зафиксируем произвольный однородный многочлен $P(\eta)$ от η , $\overline{\eta} \in (C^{n+1})' \setminus 0$ бистепени (l_1, l_2) , где $l_1 + l_2 = n + 1 - k_1 - k_2$, и зададим скалярные произведения в пространствах F^{k_1, k_2} и $\Phi_C^{k_1, k_2}$ формулами (1.5), (1.6), (1.7). Определим, далее, функ-

цию $\varphi(l, \eta)$ формулой (1.8), в которой $\delta^{(n-p-1, \kappa-p-1)}$ заменено на $\delta^{(n-k_1, \kappa-k_2)}$. При таком определении скалярчых произведений и функции $\varphi(l, \eta)$ теоремы 1 и 2 остаются справедливыми при любых k_1, k_2 .

§ 2. Вспомогательные предложения

Пусть F^{k_1, k_2} — пространство C^{∞} -функций на $\mathbb{C}^{n+1} \setminus 0$, удовлетворяющих условию (1.10). Аналогично определим пространство $F^{(k_1, k_2)}$ C^{∞} -функций на $(\mathbb{C}^{n+1})' \setminus 0$. Будем предполагать, что $1 \leqslant k_1, k_2 \leqslant n$, $k_1 + k_2 \leqslant n + 1$.

Пусть $f \in F^{k_1, k_2}$ и $\tau \in (\mathbb{C}^{n+1})' \setminus 0$. Тогда дифференциальная форма на $\mathbb{C}^{n+1} \setminus 0$: $f(x) \delta^{(n-k_1, n-k_2)} (<\eta, x>) \omega(x) / \overline{\omega(x)}$ опускается на \mathbb{CP}^n и мы полагаем

$$(Rf)(\eta) = \left(\frac{i}{2}\right)^n \int_{CP^n} f(x) \, \delta^{(n-k_1, n-k_2)} \left(\langle \eta, x \rangle \right) \omega(x) / \sqrt{\omega(x)}. \tag{2.1}$$

Назовем функцию f = Rf на $(C^{n+1})' \setminus 0$ обобщенным преобразова нием Радона функции f. Очевидно, что $f \in F'^{n+1-k_1, n+1-k_2}$. Таким образом, мы получили отображение

$$R: F^{k_1, k_2} \to F'^{n+1-k_2, n+1-k_2}$$

Введем скалярные произведения в пространствах F^{k_1, k_2} и $F'^{n+1-k_1, n+1-k_2}$. Для этого зафиксируем произвольный однородный ненулевой многочлен $P(\eta)$ от η , $\eta \in (\mathbb{C}^{n+1})' \setminus 0$ бистепени (l_1, l_2) , где $l_1 + l_2 = n + 1 - k_1 - k_2$. Если f_1 , $f_2 \in F^{k_1, k_2}$, то дифференциальная форма на $\mathbb{C}^{n+1} \setminus 0$:

$$\left[P\left(\frac{\partial}{\partial x}\right)f_{1}(x)\right]\left[\overline{P\left(\frac{\partial}{\partial x}\right)f_{2}(x)}\right]\omega(x)\wedge\overline{\omega(x)}$$

имеет степень однородности 0, а потому она опускается на СР^п. По-

$$(f_1, f_2) = \left(\frac{i}{2}\right)^n \int_{\mathbb{CP}^n} \left[P\left(\frac{\partial}{\partial x}\right) f_1(x)\right] \left[P\left(\frac{\partial}{\partial x}\right) f_2(x)\right] \omega(x) \wedge \overline{\omega(x)}.$$

Аналогично, если φ_1 , $\varphi_2 \in F'^{n+1-k_1, n+1-k_2}$, то дифференциальная форма на $(\mathbb{C}^{n+1})' \setminus 0$: $|P(\eta)|^3 \varphi_1(\eta) \overline{\varphi_2(\eta)} \omega(\eta) \wedge \overline{\omega(\eta)}$ опускается на $(\mathbb{CP}^n)'$, и мы полагаем

$$(\varphi_1, \ \varphi_2) = \pi^{2(1-n)} \left(\frac{i}{2}\right)^n \int\limits_{(\mathbb{CP}^n)'} |P(\eta)|^2 \ \varphi_1(\eta) \ \widetilde{\varphi_2(\eta)} \ \omega \ (\eta) \wedge \overline{\ \omega \ (\eta)}.$$

Обозначим через \overline{F}^{k_1, k_2} , $\overline{F}^{(n+1-k_1, n+1-k_2)}$ пополнения пространств F^{k_1, k_2} , $F^{(n+1-k_1, n+1-k_2)}$ по введенным нормам.

 Π редложение 1. Отображение $R: F^{k_1, k_2} \to F^{*-n+1-k_1, n+1-k_2}$ изометрично относительно введенных скалярных произведений, т. е.

$$(f_1, f_2) = (Rf_1, Rf_2),$$
 (2.2)

поэтому оно продолжается до изометрического отображения гильбертовых пространств $R: \overline{F}^{k_1,k_2} \to \overline{F}'^{n+1-k_1,n+1-k_2}$. Полученное отображение является изоморфизмом \overline{F}^{k_1,k_2} и $\overline{F}''^{n+1-k_1,n+1-k_2}$, причем обратное отображение имеет аналогичный вид:

$$(R^{-1} \varphi)(x) = (-1)^{n-1} \pi^{2(1-n)} \left(\frac{i}{2}\right)^{n} \int_{(CP^{n})'} \varphi(\eta) \times \\ \times \delta^{(k_{i}-1, k_{i}-1)} (<\eta, x>) \omega(\eta) \wedge \overline{\omega(\eta)}.$$
 (2.3)

A оказательство. Рассмотрим сначала случай $k_1+k_2=n+1$. В втом случае скалярные произведения в $\overline{F}^{k_1,\ k_2}$ и $\overline{F}^{r_1,k_1,\ n+1-k_2}$ задаются, соответственно, формулами

$$(f_1, f_2) = \left(\frac{i}{2}\right)^n \int_{CP^n} f_1(x) \overline{f_2(x)} \omega(x) \wedge \overline{\omega(x)},$$

$$(\varphi_1, \varphi_2) = \pi^{2(1-n)} \left(\frac{i}{2}\right)^n \int_{(CP^n)^n} \varphi_1(\eta) \overline{\varphi_2(\eta)} \omega(\eta) \wedge \overline{\omega(\eta)}.$$

Наше утверждение в этом случае можно получить как простое следствие из известных теорем об унитарных представлениях группы $SL(n+1, \mathbb{C})$. Именно, зададим в пространствах \overline{F}^{k_1, k_2} , $\overline{F}^{i_1+1-k_1-n+1-k_2}$ представления группы $SL(n+1, \mathbb{C})$ по формулам

$$(T_g f)(x) = f(xg), (T_g \varphi)(\eta) = \varphi(\eta g'^{-1}).$$

Очевидно, что вти представления унитарны, и хорошо известно (см., например, [6]), что они неприводимы и эквивалентны. Очевидно, далее, что R является сплетающим оператором для этих представлений; следовательно, оператор cR при подходящем множителе c задает изоморфизм соответствующих пространств. То, что c=1 легко установить, сравнивая (f, f) и (Rf, Rf) для какой-либо функции из $F^{a_1.k_2}$.

Пусть теперь $k_1 + k_2 < n+1$ и $f \in F^{k_1, k_2}$. Тогда $P\left(\frac{\partial}{\partial x}\right) f(x) \in F^{k_1, k_2}$, где $k_1 + k_2 = n+1$ и $P(\eta) R f = (-1)^{l_1 + l_2} R\left(P\left(\frac{\partial}{\partial x}\right) f\right)$. Позтому при $k_1 + k_2 < n+1$ равенство (2.2) следует непосредственно из уже доказанного. Очевидно далее, что пространства

$$\left\{P\left(\frac{\partial}{\partial x}\right)f, f \in F^{(k_1, k_2)}\right\} \cdot \left\{P\left(\eta\right) Rf, f \in F^{k_1, k_2}\right\}$$

плотны, соответственно, в \overline{F}^{k_1, k_2} , $\overline{F}^{n+1-k_1, n+1-k_2}$. Отсюда и из уже доказанного для (k_1, k_2) следует, что преобразование Радона $R: \overline{F}^{k_1, k_2} \to \overline{F}^{n+1-k_1, n+1-k_2}$ является изоморфизмом.

Примечание. Тот же результат можно получить и не опираясь на теорию представлений, а именно, свести преобразование R к преобразованию Радона в аффинном пространстве и воспользоваться теоремой Планшереля для последнего преобразования.

Обозначим через Ф пространство всех C^* -функций на множестве реперов (v_1, \cdots, v_{p+1}) в C^{n+1} , удовлетворяющих условию однородности (1.3). Пусть $l \in G_{p, n+1}$, $v = (v_1, \cdots, v_p)$ — фиксированный базис в l. Тогда, если $\varphi \in \Phi$, то в силу условия (1.3), функция $\psi(x) = \varphi(v_1, \cdots, v_p, x)$ есть функция на $C^{n+1-p} \setminus 0 \cong C^{n+1/l} \setminus 0$, удовлетворяющая условию однородности $\psi(tx) = |t|^{-2} \psi(x)$. Повтому к, ней можно применить определенное выше обобщенное преобразование Радона; оно задается формулой (1.8):

$$\overline{\varphi}(l,\eta) = \left(\frac{i}{2}\right)^{n-p} \int_{\mathbb{CP}^{n}ll} \varphi(v_1,\cdots,v_p,x) \, \delta^{(n-p-1,n-p-1)}(\langle x,\eta\rangle) \, \times$$

$$\times \sigma_{\sigma}(x) \wedge \overline{\sigma_{\sigma}(x)}, \ \eta \in (\mathbb{C}^{n+1}/l)' = \text{ann } l.$$

Из предложения 1 легко следует

Предложение 2. Для любых функций φ_1 , $\varphi_2 \in \Phi$ и любого од нородного многочлена Q от η , $\overline{\eta}$ бистепени (m_1, m_2) , где $m_1 + m_2 = n - 1 - p$ имеет место следующее равенство Плиншереля:

$$\left(\frac{i}{2}\right)^{n-p} \int_{\operatorname{CP}^{n}\mu} \left[Q\left(\frac{\partial}{\partial x}\right) \varphi_{1}\left(v, x\right) \right] \left[\overline{Q\left(\frac{\partial}{\partial x}\right) \varphi_{2}\left(v, x\right)} \right]^{\sigma_{v}}(x) \wedge \overline{\sigma_{v}\left(x\right)} =$$

$$=\pi^{2(p+1-n)}\left(\frac{i}{2}\right)^{n-p}\int\limits_{Cp^{n-p}}|Q(\eta)|^{2}\widetilde{\varphi_{1}}(l,\eta)\overline{\widetilde{\varphi_{2}}(l,\eta)}\,\mu_{\sigma}(\eta)\wedge\overline{\mu_{\sigma}(\eta)},\qquad(2.4)$$

иде μ_v (η)— дифференциальная форма на \mathbb{C}^{n+1}/l)' = ann l, определяемая равенством

$$\omega (\eta) = \langle v_1, d\eta \rangle \wedge \cdots \wedge \langle v_\rho, d\eta \rangle \wedge \mu_v (\eta).$$

В частности, равенство (2.4), где $l \in C$ справедливо для функций φ_1 , $\varphi_2 \in \Phi_C$.

Предложение 3. Пусть $f \in F$, $\varphi = J_C f$ и \widetilde{f} — обобщенное преобразование Радона функции f. Тогда функция $\widetilde{\varphi}$, определенная равенством (1.8), удовлетворяет соотношению

$$\stackrel{\sim}{\varphi}(l, \eta) = \stackrel{\sim}{f}(\eta), \tag{2.5}$$

дая любого l ∈ C (l = ann 7).

Доказательство. Мы имеем

$$\varphi\left(v_1,\cdots,v_p,x\right)=\left(\frac{i}{2}\right)^p\int\limits_{\mathbb{C}^p}f\left(v_1\,t^1+\cdots+v_p\,t^p+x\right)\,dt\wedge d\bar{t}.$$

Подставив это выражение в формулу (1.8), получаем

$$\widetilde{\varphi}(l, \eta) = \left(\frac{i}{2}\right)^n \int_{CP^n ll} \int_{C^p} f(vt + x) \times$$

$$\times \delta^{(n-p-1,(n-p-1))} (\langle \tau_i, x \rangle) dt \wedge dt \wedge \sigma_v(x) \wedge \overline{\sigma_v(x)}.$$

Но так как $\eta \in \text{ann } l$ последний интеграл равен следующему:

$$\left(\frac{i}{2}\right)^n \int_{CP^n} f(x) \, \delta^{(n-p-1, n-p-1)} \, (<\eta, \, x>) \, \omega(x) \wedge \overline{\omega(x)} = \widetilde{f}(\eta).$$

§ 3. Доказательство теорем 1 н 2

Теорема 2 следует непосредственно из предложения 3. Докажем теорему 1.

Из предложения 1 следует, что для функций $f_1, f_2 \in F$ справедливо равенство:

$$(f_1, f_2) = \pi^{2(1-n)} \left(\frac{i}{2}\right)^n \int_{(\mathbb{CP}^n)^i} |P(\eta)|^2 \widetilde{f_1}(\eta) \widetilde{\widetilde{f_2}(\eta)} \omega(\eta) \wedge \overline{\omega(\eta)}. \tag{3.1}$$

Обозначим через A многообразие ортогочальных пар (l,η) , где $\eta \in (\mathbf{CP}^n)'$, $l \in C$ ($l \subset \operatorname{ann} \eta$). Зададим отображения $\pi_1 : A \to (\mathbf{CP}^n)'$ и $\pi_1 : A \to C$, полагая π_1 (l, η) = η , π_2 (l, η) = l. Для почти каждой точки $\eta \in (\mathbf{CP}^n)'$ ее прообраз π^{-1} (η) $\subset A$ состоит из конечного числа точек, равного C_1 (C_1); иными словами C_1 является C_1 листным накрытием над (C_1), где C_1 (C_1).

Поднимем дифференциальную форму

$$\left(\frac{i}{2}\right)^{n}|P(\eta)|^{2}\widetilde{f_{1}}(\eta)\overline{\widetilde{f_{2}}(\eta)}\omega(\eta)\wedge\overline{\omega(\eta)}=$$

$$=\left(\frac{i}{2}\right)^{n}|P(\eta)|^{2}\widetilde{\varphi_{1}}(l,\eta)\overline{\widetilde{\varphi_{2}}(l,\eta)}\omega(\eta)\wedge\overline{\omega(\eta)}$$

с (СРⁿ)' на A. Так как, в силу условия Кавальери, функции $\phi_1(l,\eta)$, $\phi_2(l,\eta)$ постоянны на каждом слое $\pi_1^{-1}(\eta)$ и равны, соответственно, $\widetilde{f}_1(\eta)$, $\widetilde{f}_2(\eta)$, то получаем

$$\left(\frac{i}{2}\right)^{n}\int_{(\mathbb{CP}^{n})'}|P\left(\eta\right)|^{2}\widetilde{f_{1}}\left(\eta\right)\widetilde{\widetilde{f_{2}}\left(\eta\right)}\omega\left(\eta\right)\wedge\overline{\omega\left(\eta\right)}=\frac{1}{\mathrm{Cr}\left(C\right)}\left(\frac{i}{2}\right)^{n}\int_{A}|P\left(\eta\right)|^{2}\times$$

$$\times \overline{\varphi_1}(l, \eta) \cdot \overline{\varphi_2}(l, \eta) \omega(\eta) \wedge \omega(\overline{\eta}).$$

Теперь воспользуемся тем, что $\pi_2:A\to C$ является векторным расслоением, поэтому интеграл по A можно представить как повторный, где интегрирование ведется сначала по слоям, а затем по базе расслоения $A\to C$. Поэтому имеем

$$\frac{1}{\operatorname{Cr}(C)} \left(\frac{i}{2}\right)^{n} \int_{C} \int_{\operatorname{ann}} |P(\eta)|^{2} \sum_{\substack{l_{1}, \dots, l_{p} \\ j_{1}, \dots, j_{p}}} \eta_{l_{1}} \cdots \eta_{l_{p}} \widetilde{\varphi}_{1}(l_{1}, \eta) \cdot \overline{\eta_{j_{1}} \cdots \eta_{j_{p}} \widetilde{\varphi}_{2}(l_{1}, \eta)} \times$$

$$\times$$
 $\mu_{v}(\eta) \wedge \overline{\mu_{v}(\eta)} \wedge dv_{1}^{t_{1}} \wedge \cdots \wedge dv_{p}^{t_{p}} \wedge \overline{dv_{1}^{t_{1}} \wedge \cdots \wedge dv_{p}^{t_{p}}}$

Для завершения доказательства остается воспользоваться пред-

§ 4. Замечання о преобразовании *f* в аффинном пространстве

$$(J_a f)(v_0, v) = \left(\frac{i}{2}\right)^p \int_{C^p} f(v_0 + vt) dt \wedge d\bar{t}, \qquad (4.1)$$

TAE $v_0 \in \mathbb{C}^n$, $v = (v_1, \dots, v_p) - p$ -penep b \mathbb{C}^n , $vt = v_1 t^1 + \dots + v_p t^p$, $dt = dt^1 \wedge \dots \wedge dt^p$.

Комплекс K_C в аффинном пространстве задается p-мерным многообразием (p-1)-мерных плоскостей в \mathbb{C}^n ; он состоит из всех p-мерных плоскостей, содержащих хотя бы одну плоскость из C. Теоремы 1, 2 нетрудно переформулировать в терминах функций f и Jf.

Рассмотрим пример, разобранный ранее в [1]— комплекс прямых в \mathbb{C}^3 , пересекающих гиперболу $x^1x^3=1$, $x^3=0$. Этот комплекс возникает в гармоническом анализе на группе $SL(2,\mathbb{C})$. Связанное с K интегральное преобразование J задается формулой

$$\varphi(z_1, z_2; \lambda) = \frac{i}{2} \int_{\mathbb{R}^n} f(\lambda^{-1} + tz_2, t, \lambda - tz_1) dt \wedge d\overline{t}. \tag{4.2}$$

Условие на образ J, полученное в [1] и условие данной работы (условие Кавальери) задаются по разному. Именно, условие из [1] таково:

$$\Phi (\omega_1, \omega_2; \lambda) = \Phi \left(\omega_1, \omega_2, -\frac{\omega_2}{\lambda \omega_1} \right), \tag{4.3}$$

где Φ — преобразование Φ урье функции φ по переменным z_1 , z_2 , τ . e.

$$\Phi\left(\omega_{1}, \omega_{2}; \lambda\right) = \left(\frac{i}{2}\right)^{2} \int \varphi_{1}(z_{1}, z_{2}; \lambda) e^{i \operatorname{Re}\left(z_{1} \, \omega_{1} + z_{2} \, \omega_{1}\right)} dz_{1} \wedge d\overline{z_{1}} \wedge dz_{2} \wedge d\overline{z_{2}}. \quad (4.4)$$

Условие же Кавальери имеет вид: для любых η_1 , $\eta_2 \in \mathbb{C}^2 \setminus 0$, $s \in \mathbb{C}$ имеет место равенство

$$\int \varphi (z_1, z_2; \lambda_1) \, \delta^{(1, 1)} (\eta_1 z_2 - \eta_2 z_1 + s) \, dz_1 \wedge dz_2 \wedge d\bar{z}_1 \wedge d\bar{z}_2 =$$

$$= \int \varphi (z_1, z_2; \lambda_2) \, \delta^{(1, 1)} (\eta_1 z_2 - \eta_2 z_1 + s) \, dz_1 \wedge dz_2 \wedge d\bar{z}_1 \wedge d\bar{z}_2 \qquad (4.5)$$

при условии, что $\eta_1 \, \lambda_1^{-1} + \eta_2 \lambda_1 = \eta_1 \, \lambda_2^{-1} + \eta_2 \lambda_2$.

Убедимся непосредственно, что условия (4.3) и (4.5) эквивалентны. Мы имеем

$$\left(\frac{i}{2}\right)^{2} \int_{C^{i}} \varphi\left(z_{1}, z_{2}, \lambda\right) \delta^{(1, 1)}\left(\eta_{1}z_{2} - \eta_{3}z_{1} + s\right) dz_{1} \wedge d\bar{z}_{1} \wedge dz_{3} \wedge d\bar{z}_{2} =$$

$$= \left(\frac{i}{2}\right)^{3} \int_{\mathbb{C}^{3}} \varphi\left(z_{1}, z_{2}; \lambda\right) |t|^{2} e^{i\operatorname{Re} t\left(\tau_{1}z_{1}-\tau_{1}z_{1}+s\right)} dt \wedge d\overline{t} \wedge dz_{1} \wedge d\overline{z}_{1} \wedge dz_{2} \wedge d\overline{z}_{2} =$$

$$= \left(\frac{i}{2}\right) \int_{\mathbb{C}} \Phi\left(-\overline{t\eta_{2}}, \overline{t\eta_{1}}; \lambda\right) e^{i\operatorname{Re}(ts)} |t|^{2} dt \wedge d\overline{t}.$$

Таким образом, условие (4.5) эквивалентно условию

$$\int \Phi\left(-\overline{t}\eta_{2}, \overline{t\eta_{1}}; \lambda_{1}\right) |t|^{2} e^{i\operatorname{Re}(ts)} dt / \sqrt{dt} = \int \Phi\left(-\overline{t}\eta_{2}, \overline{t\eta_{1}}; \lambda_{2}\right) |t|^{2} e^{i\operatorname{Re}(ts)} dt / \sqrt{dt},$$
(4.6)

где $\eta_1 \lambda_1^{-1} + \eta_2 \lambda_1 = \eta_1 \lambda_2^{-1} + \eta_2 \lambda_2$. В свою очередь, ввиду произвольности s, условие (4.6) эквивалентно условию

$$\Phi(-\overline{t\eta_2}, \overline{t\eta_1}; \lambda_1) = \Phi(-\overline{t\eta_2}, \overline{t\eta_1}; \lambda_2), \tag{4.7}$$

где $\eta_1 \lambda_1^{-1} + \eta_2 \lambda_1 = \eta_1 \lambda_2^{-1} + \eta_2 \lambda_2$. Очевидно, что полученное условие эквивалентно условию (4.3). В самом деле, достаточно заметить, что ра-

венство $\eta_1 \lambda_1^{-1} + \eta_2 \lambda_1 = \eta_1 \lambda_2^{-1} + \eta_2 \lambda_2$ равносильно соотношению $\lambda_2 = \frac{\eta_1}{\eta_2 \lambda_1}$.

Поэтому, полагая в (4.7)— $tr_{12}=\omega_1$, $tr_{11}=\omega_2$, $h_1=h$, получаем равенство (4.3).

Институт прикладной математики АН СССР,

Институт математики АН Армянской ССР

Поступили 31.1.1983

Ռ. Գ. ՀԱՅՐԱՊԵՏՅԱՆ, Ի. Մ. ԳԵԼ**Ն**ԱՆԴ, Մ. Ի. ԳՐԱԵՎ, Գ. Ռ. ՀՈՎՀԱՆՆԻՍՅԱՆ. Պլանշե**ւելի** թեուհժը CPⁿ և Cⁿ տասածություննեւում p–լափանի ճառթությունների կոմպլեքսի ճետ կապված ինտեցրալ ձեափոխության ճամար *(ամփոփում)*

Հողվածում դիտարկվում է ինտեզրալ ձևափոխություն, որը կապված է \mathbb{CP}^n տարածությունում p-լափանի հարթությունների կոմպլեքսի հետ։ Կոմպլեքս գրասմանի $G_{p,\ n+1}$ բատտաձևությունում տրված p-լափանի C ենթաբազմության օգնությամբ որոշված է $K_{\mathbb{C}}$ կոմպ-լեքսը, որը կաղմված է այձ $h\in G_{p+1,\ n+1}$ ենթատարածություններից, որոնք պարունակում են գոնե մեկ ենթատարածություն $l\in C$ ։

Դիցութ J_C – ինտեգրալ ձևափոխու θ յուն է, որը ամեն մի f ֆունկցիային CP^{κ} –ի վրա համապատասխանեցնում է ϕ (h) Գունկցիան KC –ի վրա, այսինքն՝ ϕ (h) Գավասար է f–ի ինտեգրային $h\in \mathsf{K}_C$ հար θ ու θ յամբ։

Այդ ձևափոխության համար ստացված է Պլանշերելի թեորեմը և պատկերի նկարագրումը։

R. G. AJRAPETIAN, I. M. GELFAND, M. I. GRAEV, G. R. HOVHANNISIAN.

Plancherel theorem for the integral transformation, connected with complexes of p-planes in CPⁿ and Cⁿ (summary)

In the paper integral transformations connected with complexes of p-planes in \mathbb{CP}^n is considered. For a given p-dimensional submanifold $C \subset G_p$, n+1 the complex K_C is defined as a submanifold of complex grassman manifold G_{p+1} , n+1. K_C consists of the subspaces $h \in G_{p+1}$, n+1 containing no less than one subspace $l \in C$. Let J_C be an integral transformation mapping every function on \mathbb{CP}^n to a function $\gamma(h)$ on K_C : $\gamma(h)$ is the integral of the function f over the plane $h \in K_C$. The Plancherel theorem for this transformation is proved and the image of this transformation is described in the case when C is harmonic manifold.

ЛИТЕРАТУРА

- 1. И. М. Гельфанд, М. И. Граев, Н. Я. Виленкин. Интегральная геометрия и связанные с ней вопросы теории представлений, М., «Физматгиз», 1962.
- 2. А. А. Кириллов Об одной задаче И. М. Гельфанда, ДАН СССР, 137, № 2, 1961, 276—277.
- 3. С. Г. Гиндикин. Унитарные представления групп автоморфизмов римановых симметрических пространств нулевой кривизны, Функц. анализ и его прилож., 1, № 1, 1967, 32—37.
- 4. И. М. Гельфанд, С. Г. Гиндикин. Нелокальные формулы обращения в вещественной интегральной геометрии, Функц. анализ и его прилож., 11, № 3, 1977, 12—19.
- И. М. Гельфанл, М. И. Граев, Р. Рошу. Нелокальные формулы обращения в задаче интегральной геометрии, связанной с р-мерными плоскостями в вещественном проективном пространстве, Функц. анализ и его прилож., 16, № 3, 1982, 49—51.
- И. М. Гельфанд, М. А. Наймарк. Унитарные представления классических групп, Труды Матем. нн-та им. В. А. Стеклова, 36, 1950.
- 7. И. М. Гельфанд, М. И. Граев, З. Я. Шапиро. Интегральная геометрия на k-мерных плоскостях, Функц. анализ и его прилож., 1, № 1, 1967, 15—31.

- 8. Р. Г. Айрапетян, И. М. Гельфана, М. И. Граев, Г. Р. Озанесян. Формула Планшереля для интегрального преобразования, связанного с комплексом прямых, перссекающих алгебранческую кривую в С³ и СР³! ДАН Арм. ССР, 75, № 1, 1982, 9—15.
- 9. Р. Г. Айрапетян, И. М. Гельфанд, М. И. Граев, Г. Р. Озанесян. Формула Планшерсля для интегрального преобразования, связанного с комплексом р-мерных плоскостей в СР^п, ДАН СССР, 268, № 2, 1983, 265—268.