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I. Introduction and Statement of Main Results

Let D be a domain of the finite complex plane C and E a (rela­
tively) closed proper subset of D. A speed on E is a positive, conti­
nuous, bounded function on E. If a is a speed on E, then E is called 
a set of approximation (in D) with speed a, or simply, a set of'a-appro- 
ximation provided that for each function / continuous on E, holomor­
phic on its interior E°, and each constant e ^>0, there is a function g, 
holomorphic on D, such that

|/W-fWK«W. ^e. (1)

In this paper, we consider the problem of describing sets of approxi­
mation with speed a. We obtain new results, even for the case when D 
is a disc or the finite plane.

Both authors express their deep appreciation to the Research Coun - 
cil of Canada and the Queen’s-Steklov exchange programme for pro­
viding us with the opportunity to work together.

A (relatively) closed set E in D is called a set of uniform appro­
ximation if E is a set of approximation with speed 1. Clearly, if E is 
a set of a-approximation, then E is, a fortiori, a set of uniform ap­
proximation. Thus, it is natural for us to consider only sets E which 
are sets of uniform approximation.

The first author has shown [1], that a necessary and sufficient 
condition in order that E be a set of uniform approximation is that 
D*\E be connected and locally connected. HereD*=Z)U { * ) denotes 
the Alexandrov compactification of D, where * denotes the ideal point 
of £>.

Actually, conditions on a set E of uniform approximation to be a set 
of a-approximation, depend exclusively on a and topological-metric pro­
perties of E°. In this connection we need some notations and definitions.

1) For an arbitrary subset X of the Riemann sphere C*, we de­
note by X?, X and dX respectively the interior, closure and boundary 
of X in C*.

2) Let E be a closed set in a domain D. Denote

E = (E°)nD.

Client
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E is closed in D, and it is easy to show, using the well-known Tietze 

Extension Theorem [2, p. 134], that £ is a set of uniform approxi­
mation in D, if the set £ is.

Now let a be a speed on £.
3) We say, that a is log-super harmonic if log a|£° is superharmo­

nic and has a continuous superharmonic extension on some neighbour­

hood of the set £.
4) Consider two extensions of a|£ on (£°), a and a, defined for

C^<?£°\£ by
a (C) = lim a (z), a (C) = lim a (z), z £ £®.

Obviously, a and a are semicontinuous, non-negative and bounded. With 
the convention logO=—co, the functionslog a and log a are semicon­
tinuous and upper-bounded.

5) We say, that the speed a is inner-continuous, if a = a. In this- 
case, we use the notation a instead of a or a.

6) For z££°, we denote by the harmonic measure on d£° with 
respect to £®. Let p : d£°—» |— oo] [J R be an upper-bounded and measur­
able function with respect to harmonic measure The following con­
dition on P is often used in this paper:

inf C Pdpz > — co (2)
J dF.' 

for each compact Kt=. D.
Theorem 1A. Let E be a set of approximation in a domain D 

with speed a. Then for log a condition (2) is satisfied.
Theorem 1B. Let D be a finitely connected domain and let £ 

be a set of uniform approximation in D such that C*\£ has no isola­
ted points. Let a be a log-superharmonic speed on E, such that for log a 
condition (2) 7$ satisfied. Then E is a set of approximation in D 
with speed a.

Tne following consequence from these theorems is our main re­
sult.

Theorem 1. Let D and E be as in Theorem IB and let a be
an inner-continuous and log-super harmonic speed on E. 
set of approximation in D with Speed a, if and only if 
for log a zs satisfied.

Let us say that the boundary of an open set G is a 
there is a homeomorphism h of some neighbourhood V of 
unit disc ('wj)<^l) with h (Q=0 and

Then E is a 
condition (2)

curve at C if 
C onto the

V 0 dG — h 1 (Im w = 0).

Theorem 2. Suppose D, E and a. are as in Theorem 1 and 
moreover that D fl dE° is a curve at each of its points. Then E is a set 
of approximation with speed a if and only if
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i log a dp, >—oo (3)
dP

for each z£E°.
Now suppose D is a disc Dr with centre 0 of finite or infinite 

radius 0R -C + 00 • For Q<^t<R and z£EP, we write
“ (2> = (dE°\Di').

6 (f) = sup 9(s).
i<3

Let v (z) = v (|z|) be a function on Dr which depends only on |z|. 
Then, if v is a convex increasing function of log|z|, v is subharmonic 
on Dr (see Lemma 7). Conversely, if v (z) = v (|z|) is subharmonic, then

2k
v (f) = Jo (fe/0) df> 

u
is a convex increasing function of logf. Thus, if a(z) = a(|z|), then a is 
a log-superharmonic speed if and only if —log a (t) is a convex increa­
sing function of logf.

Theorem 3. Let E be a set of approximation in Dr with asymp­
totic decreasing speed a(z) = a(|z|). Then w (z, R) =0 for each z£E° and

R

sup ( log a (/) du> (z, f) <Z °o (4)

o
for each Q <Z r R. Conversely, let E be a set of uniform approxima­
tion in Dr, with oj (z, R) =0 for z^E° and such that (4) is satisfied for 
some a, where—log a is a log-convex function, tending to co on [0, R). 
Then E is a set of approximation in Dr with speed a(|z|).

A speed a on E is called an asymptotic speed if a (z) -* 0 as 
z -» dD on E. The set E is called a set of asymptotic approximation if 
E is a set of a-approximation for some asymptotic speed a. Obviously, 
such a speed a is inner-continuous and a = 0 on dD f] E.

Corollary 1 [3]. Let D and E be as in Theorem 1. Then, E is 
a set of asymptotic approximation if and only if

V.z(dE^D)=^
for each z£E°.

A set E of uniform approximation in D is called a set of Carle­
man approximation provided £ is a set of a-approximation for every 
speed a.

Corollary 2 .[4—5]. Let D and E be as in Theorem 1. Then, E 
is a set of Carleman approximation if and only if it satisfies

Condition C: For each compact K in D, there is a compact K՛ 
in D such that no component of E9 meets both K and D\K՛.

For EczDr and 0 t R, we denote by t^(t) the linear measure 
of E° f| dDt, and set 6 *
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Corollary 3. Let — log» be a log-convex function on [0, R) 

and let E be a set of uniform approximation in Dr such that
R
J log a (t) (t) <+'*’• (5)

o

Then E is a set of approximation with speed a. (|z|), ifG(R — 0) =0.
Corollary 4. Let a(z) = a(|z|) be a speed decreasing to zero on 

C and let E be a set of uniform approximation in C such that for 
some 0<^&<O»

(6)

Then, E is a set of approximation with speed a.
Corollary 5 [6]. Let a(z) = a(|z|) be a decreasing speed on C 

satisfying

■«>-“• mJ t*" i
Then, each set of uniform approximaton by entire functions is a set 
of approximation with speed a. If the integral (7) diverges, then the 
conclusion fails.

We shall say that E° is sectorial in Dr if there are continuous 
functions and 9։ on (0, /?) with

, 61 < 9» < 0r + 2«
and

£«={« 0i(H)<argz<e։(|.|)),
for some branch of argz.

Corollary 6 [6]. Let —log® be a log-convex function on [0, R) 
and suppose E is a set of uniform approximation on Dr such that E° 
is sectorial and for some 0 tx < R,

Then E is a set of approximation with speed a, If (42) holds.

II. Remarks

1. Theorem 1 is no longer true if the complement of E is allowed 
to have infinitely many components (even if they are non-degenerate). 
We wish to thank A. A. Gonchar for furnishing us with the following 
example.

The set E = E, which will be constructed as the complement of 
certain "champagne bubbles“ (see [7]) in the unit disc Dv has the pro­
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perty that |*,(d£\Z?1) = 0, for all z £ E°, and so by Lemma 9 below, 
satisfies (2) for some asymptotic speed a. However, E is also a set of 
uniqueness, in the sense that if / (z)-• 0 as z — dDlt z£E, then /=0, 
for any f continuous on E and holomorphic on E°. Clearly, E cannot be 
a set of asymptotic approximation in the domain D obtained from Dx 
by removing the centers of the “champagne bubbles“.

To construct E we need the following fact (see [8]). For given 
e > 0, 0 2, and 0<r<O, there exists a set a,,

։։cS={te'’':f£(r, 1), ?£(?', <p")),

where a, is a union of disjoint closed discs accumulating to Tf = S\Z)i 
such that T, = da, n/\ has length less than e and (f, £\\a, )=0.

It is easy to see that there exist ew \ 0 such that

2efl2" [log (p4֊2)p, 
i

for arbitrary p=0, 1, 2,---. We construct as above an = a,n for S=Sn, 
with r =2-" , <p'=2՜" and ^>՞ =2“'*+1. Also, set r« = r.n andf^Oj^ 
= 0. Moreover, we denote by a_„, S-n etc. the reflection of the sets 
On, 5» etc. with respect to the real axis. We set

£ = D1\u‘»t 
- «■

Now let / be continuous on E and holomorphic on and suppose 
/(z)-»0 as z-+dZ), z^E. Putting /(z)=0, for |z|>-l, we have

/°” (x)= V -£L f ..fS*) dt> x£ [0, 2] 
£2«։ J (* — x)p+I

for p — 0, 1, 2, •••. Since, |Z— x|>2_|"*for and x£[0, 2], we have

(x)| < p! J e„2" ^+1>< [(p +2) log (p + 2)]'. 
i

Now by the well-known Carleman-Denjoy theorem on quasianalytic 
functions, f (x) = 0, for x£[0, 1), and so /=0. Thus E is a set of 
uniqueness and the example is complete.

2. If C*\F has an isolated point a, then it may still be possible 
to approximate with a certain asymptotic speed a near a, however con­
dition (2) is inappropriate in this situation, for it completely ignores 
the behaviour of a near a, and it certainly is not possible to approxi­
mate arbitrarily fast near an isolated point a.

3. In Theorem 1, we assume that log a is superharmonic on E. In 
fact, the remark following lemma 5 shows that we may restrict our 
attention to functions log« superharmonic on E° (and inner-continuous 
on E),
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4. Corollary 1 was first proved for the unit disc [9]. A. Stray 

[3] extended the result to quite general domains including certain 
infinitely connected domains.

5. Condition C was introduced in [4] where it was shown to be 
necessary for Carleman approximation. Nersesian [5] showed that for 
arbitrary domains, the conidtion is also sufficient.

6. By considering the nature of the prime ends of it is
possible to relax the condition that DftdE0 be a curve at each of its 
points, in the statement of Theorem 2.

7. Of course, if E° is connected, it is the same to assert that (3) 
holds at each point of E° as to assert that it holds at some point in E°.

8. In [6], Corollary 6 was proved for the case that R = 4՜ 00 •
9. The notion of a completely regular point for the Dirichlet pro­

blem is not new; the name “completely regular“ perhaps is. Brelot [10] 
has shown that a regular point need not be completely regular.

In Lemma 3 the condition that dG be a curve at the point C can 
be relaxed by considering the prime end structure of dG. It follows 
that the hypothesis in Theorem 2 can also be relaxed. However, con­
ditions (2) and (3) are not in general equivalent as the following exam­
ple shows.

Example: There is a set E of uniform, approximation in C and 
a log-superharmonic function a such that condition (3) holds but con­
dition (2) fails .

Let yj be a sequence of positive numbers decreasing to zero and 
choose 8y so small that the rectangles

Ej == {z = x 4-iy : |x|<7, |y — yj<8 J 
are disjoint. We may construct a continuous positive function a on C 
which decreases to zero so rapidly that for zy= iy.

H U/X֊/,' (9)
EOj

where the left-member denotes the solution of the Dirichlet problem on 
Ej with boundary values log«. By Lemma 9 below, we may assume that 
a is log-superharmonic.

Now let
S;= [z:|x|<Br y^CyCy/

be a thin rectangle connecting Ej to £/+i> where s7 will be specified 
shortly. Set

E = U (Ej U 5y).

Then E is a set of uniform approximation. We may choose sy decrea 
sing to zero so rapidly that

J log a — co, (10)

dE*
and thus He»= He?* exists and is finite valued. We may further insist 
that ej decrease so rapidly that for each j,
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— I - ■■■ ■ - - -------I- ■ ■ ——T

is bounded. Thus,' by Lemma 2 below, and H£> have the same 

boundary values on dEjftdE. Hence by making the sequence ey still 
smaller, if necessary, we have that for each j

|H£o(zy)-//£.(zy)|<l. (11)

From (9) and (11), we have
Jlogarf[i։,<— J 4-1. (12)

dE*

Thus, from (12), (2) fails. But (11) shows that
/fe («J = J log a dpi։ > — so, 

dE’

and since E° is connected, H£° is finite for all z£E°. Hence (3) holds, 
10. The problem of asymptotic approximation by entire functions 

was investigated by Carleman, Roth, Lavrentiev—Keldysh, Keldysh, 
Mergelian, Dzrbashian, Kaplan, and Arakelian. This problem for more 
general domains with special conditions imposed on the speed a and set 
E has been considered by Brown—Gauthier, Roth, Nersesian, Schein- 
berg. The speeds a considered are particular cases of the speeds we 
consider.

In all of the works just cited, as well as in the present work, a is 
assumed to be positive on E. If a is allowed to assume the value zero, 
then the problem becomes not only one of approximation but also of 
simultaneous interpolation. This question has been considered by Gau­
thier—Hengartner, Nersesian, Rubel—Venkateswaran, and Sinclair.

III. Preliminary lemmas

In this section, G will denote an open set in C* having non-cons­
tant positive superharmonic functions. Thus, we may consider the gene­
ralized Dirichlet problem on G. Let f be a function on dG. If the ge­
neralized solution on G with boundary values <p exists we denote it by 
//o, or simply Hq, if <p is clear from context, and in this case, we say 
that <p is resolutive for G. A well known theorem of Brelot states that 
<P is resolutive if and only if it is integrable with respect to harmonic 
measure, and in this case

HZ(z)=\<fdpz. (13)
db

Lemma 1 [11, p. 23]. Let ® be resolutive for G. Let V be an 
open set and define

V on dG 0 V, 
t = o (14)

/73 on dl^nG.



428 N. U. Arakelian and P. M. Gauthier
Then <j> is resolutive for V0 G and

fftn0 = Hl\VnG. <15)

is continuous at z0, where A is any Borel set whose closure is com­
pact in G.

Proof: It is enough to suppose A in a sufficiently small open 
neigbourhood U of z0 with compact closure in G. Then, by the Riesz

We recall that a boundary point C£dG is called regular if 
lim HS(x)=?(Q (16>

for each 7 continuous on dG.
Lemma 2. Suppose C £ dG is a regular point and is resolutive 

and continuous at G Then (16) holds if and only if Ho is bounded 
near G

Proof: Suppose Hl is bounded in some neighbourhood V of C. 
Let | be given by (14). Since regularity is a local property, C is also 
regular for Vfl G, and since ՛]» is bounded and continuons at ֊., it is 
well-known that

lim/4n0(x)==HQ.

Thus, (16) follows from Lemma 1.
•The converse is trivial.
We shall say that a point C£dG is completely regular if (16) 

holds for each resolutive function <p which is continuous at G
Lemma 3. Suppose dG is a curve at G Then C rs a completely 

regular point.
Proof: Suppose <p is resolutive and continuous at G Since dG is 

a curve at G there is some neighbourhood W of C such that Wfl G is 
homeomorphic to a disc. To show (16) we may assume that for 
if not we may write «[> = and consider <p+ and f՜ separately.

Since Hl is non-negative, it follows that //J|W fl G has finite
asymptotic values at a dense set of points on. dG near C (see [12,
Th IV. 14]). Thus, we may construct a neighbourhood V of C such that
Hl is bounded on GfldK. Since © is continuous at G we may also
assume that <p is bounded on dG fl V. Thus, from Lemma 1, it follows 
that Hl is bounbed in Gfl V and from Lemma 2, we have (16), This 
completes the proof of Lemma 3.

If v is superharmonic on G, then by the Riesz theorem, we may 
associate a unique non-negative Borel measure v to v which we call the 
Riesz measure for v. Without loss of generality, we shall assume that 
c©CG.

Lemma 4. Suppose v is superharmonic on G and continuous at 
some point x0£G. Let v be the Riesz measure for v. Then, the logarith­
mic potential

A
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theorem, P (z, U) is continuous at z0 and finite valued, for z^U. Sin­
ce, on each component of G, P (z, A) is either superharmonic or iden. 
tically infinite, it follows that P (z, A) is superharmonic for all z^G, 
and finite valued since it is dominated by P (z, U). In particular, P(z, A) 
(and P (z, U\A)) is lower semicontinuous. Thus, we have only to show 
upper semicontinuity at z0.

lim P (z, A) = lim [P (z, U) — P (z, f/\j4)] = 
2-2. x-2.

= P(z0, U) - Jim P (z, £/X>4)<

<P(z0. U)-P(z0, U\A) = P(z„ A).

Lemma 5. Let D = Dr for some 0< R -C + °°, and suppose E 
is (relatively) closed in D and D*\E is connected and locally connec­
ted. Suppose v is superharmonic on E, continuous on E, and harmo­
nic on E°. Then for each constant e>0, there exists a function h, har­
monic on E such that

|A (z) ֊ v (z)|<a, z^E.

Remark. Recently, Gauthier, Hengartner and Labreche [13] have 
obtained a more general result in which it is not necessary to assume 
that v is superharmonic on E (see also [14], [15]). Since their proof is 
different and not yet available, we present our own.

Proof: Since D*x£ is connected and locally connected, we may 
construct an exhaustion of D, Dj/ D, such that D*\(E U Dj) is also 
connected and locally connected (see [16, Lemma 3]).

By assumption, there is an open set UzsE such that v is super­
harmonic on U f] D. Set D-i = Do= 0 and

aj = n U.

Since the Riesz measure for v has no mass on E°, P (z, aj) is harmonic 
on E° U Dj-z. By Lemma 4, P (z, at) is continuous on E. Suppose first 
that R<^ oo. Then P (z, a/) is also continuous on PU Dj-i and harmo­
nic on the interior of this same set. By the theorem of Keldysh [17] 
(see also [18]), there is a function hj, harmonic on with

| hj (z) - P (z, o/ )| < e 2-y , Z e Eu Dj-2. (17)

For each j, there is a function vj, harmonic on U f\Dj such that 
for z £ Iff] Dj,

V (z) =■ P (z, UftDj) + Vj (z) =

= 2 P(z, ok) +vj (z). (18)
k=l

Now set
h (z) = v (z) + f [hk (z) - P (z, «*)), (19)

4—1
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which by (17) converges on a neighbourhood of E. From (18), we can 
write

A(z) = 2M*)+M*) + 2 (A*(z)-P(z, «*)|, 
*-l 4-7-rl

from which it is clear that h is harmonic on E. From (19) and (17), we 
have

|A(z)-v(z)|<8, z^E, (2°>
and the proof is complete in case R

If R=co, we choose a point z0^C\E and merely replace /’(«, °/) 
by P(z, aj) 4֊v(oy) log fz — z0| in (17) and (19). Let A (z0) be a ^‘sc 
centered at zQ such that A fl E — Qi. Then, instead of (17) we have

IM*)— E(z, <։>) —*(°>) log |z —2:0||<e-2->
for z£ (EH Dy-2)\A. Again A will be harmonic on E and satisfy (20). 
This completes the proof of Lemma 5.

Lemma 6 (19, 20]. Let E be a set of uniform approximation in 
a domain D and let u> be a continuous, bounded, zero-free function on 
E, holomcrphic on E°. Then E is a set of approximation with speed |<o|.

To prove the Lemma it is enough to construct a function <p, holo­
morphic on D and satisfying

0<H<l®| on E, (21)
for then, the |oj|— approximation of the function f follows from the 
uniform approximation of //<? on E.

We may assume that |u>| on E. There exists g, holomorphic on 
D, such that

|2/u> — g|<l on E, 
and hence

IVgKH on E. , (22)
Let (zj)^(N^. co) be the zeros of g, zj£E, taken according to their 
multiplicities. Now construct a function b, holomorphic in D. 0 <|6|<1 
on E and 6(z/) = 0 for each j. Then from (22) it follows that <f = b/g 
satisfies (21).

To construct b, consider a sequence (Ej)‘i of sets of uniform 
approximation in D. zj^Ej and EjZoE for each j. If 7V< co, we put 
Ej = E. If N = co, we assume, that

U Ej = D. 
/=։

Since £yU [zj] is a set of uniform approximation in D, for each j 
there exists a function bj, holomorphic in D. bj(z/)=0, such that 
n,v t |by֊l|<2֊> on Ei.
The function

6 = 4->n6y

satisfies to all our conditions.
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Notice, that the existence of b may be easily proved by using- 
results on simultaneous approximation and interpolation (see [21]).

Lemma 7. [22, p. 18]. If <p is a convex increasing function of u 
and u-^u(z) is subharmonic, then ^(u(z)) is also subharmonic.

Lemma 8. Let a be a positive function decreasing to zero on 
[0, R). Then, there exist functions «_ and a+ also decreasing to zero, 
with 0 <^a_ <7 «<^ P«+, and such that—loga_ and —log«+ are both 
log-convex.

Proof: Set P= — log«. Choose any sequence of points n increa­
sing to R. It is easy to construct a piecewise linear convex function 
P- with nodes at rj and with P-^> P. Then we put a_ =’exp (— P_).

To construct a+, we may assume /2 = 1. We set
A = {z = x+ iy : 0 -<x<l, P(x)<y|

and denote by A the closed convex hull of A. Now set for 0-<x<l,

P+(x) = min {y: x 4-4/£<4j.

Clearly, P+ is convex. It is easy to see that A does not meet the line 
x = l, and so P+ tends to oo. Finally, we put a+=exp( — P+).

Lemma 9. Let E° be an open subset of the unit disc Dx such that 
V-z(dEP\D1) = 0, for each z(zE°. Then, there exists a log-super harmo­
nic asymptotic speed i on Dx, such that (2) is satisfied for log a.

Proof: By Lemma 8, it is sufficient to construct a positive fun­
ction «(f) decreasing to zero as t J 1, and log a satisfying (2).

Set, for s < t < 1

(f) = sup <u (z, t),
UI < J

and W, (f) = 0 if E°f\Ds= 0. By Dini’s theorem, (f) u0 as fz 1.
Now set t0 =0 and choose tx so close to 1 that IFO (f1)<^2՜1. Ha­

ving chosen t0, tx,---, tj—i such that

rtFr,-, (f/)<2֊', i--==0, 1,-

we may again, by Dini's theorem, choose tj so near to 1 that

(23)

Thus, by induction, we have a sequence tjS 1 and satisfying (23).
Now define

« (f) = e~J , ij < f < 0+i.

Then, setting Aj = (D<y+։\ Dt j) fl Ea, we have

If z^Dtt, then for y^-z+l,
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/IF/

Thus log a satisfies (2) and the proof is complete. . a , \ •
Lemma 10. If a(f) z’s decreasing for and if {) ls

also decreasing and uniformly bounded for z^E°, P(z, R 0) = en 
for each 0<^r<^R,

sup *60,0^*
R
f log a (t) dp (z, f)*C + °°

if and only if 
R
J ₽ d <10g “ — °°- 
0

Proof:
R t
f log s (f) </p (z, t) = lim C log a (f) </P (z, f) =
J tj»r J

(24)

(25)

o

= Ooga (0) p (z, t)
R T

— lim (*P (z, t) d (log a (t)).
0 T/R nJ

The Lemma follows, since (log a (f)) P (z, t) is upper bounded, inde­
pendently of z.

IV. Proofs

1. Proof of Theorem 1A. Suppose E is a set of a-approxi- 
mation in D. Then, for some r՝£D\E and for the function f (z) = 
= (z — Co)՜1 and e>0, consider a function g = g. satisfying (1). Now 
choose ex and e։ positive such that and g,t^gi,. Then
f ■— gti—g,, is holomorphic in D and =?^= 0. From (1) we have

]<p| < a on E. (26)
If £°։?t 0, then it follows from (26), that

lim log |® (z)| < log a (C), C£dE°. (27)z-C

For each n, the function P«=n\/loga is bounded semicontinuous 
on dE° and therefore resolutive. Since log ]<p| is subharmonic on £® and 
by (27) has boundary values -CP«, then we have, using (13) and the 
definition of the generalized solution to the Dirichlet problem, that

!og If Wl < J Pn <fP*, z € £°-
dE’

Letting here n -* — co, we have
log |? (z)|<w (z)= C logarfp.,, z^E°. (28)
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The integral converges since log a is upper bounded and since

It follows from (28) that there is an exhaustion Kj r D and se­
quence M) > —<», such that for each j

v{zy>Mj, z£_E°r\dKj. (29)

From (29) and Lemma 1, it follows that v is bounded on Kj f] E 
for each j. This completes the proof of Theorem 1A.

2. Proof of Theorem IB. Using Tietze’s Extension Theorem, 

we may be sure, that the set £ is a set of uniform approximation in 

D. Using for E Lemma 6 and again Tietze’s Theorem, we see, that to 
prove Theorem IB, it is enough to construct a function o>, continuous

on £ and holomorphic on E9, such that

0<M<aon£. (30)
Let Kv Kt,- • •, Kn be the complementary components of D, which 

meet with the closure of E. Suppose that for each j =1, 2,■ • n wejcan 
construct a neighbourhood Vj of Kj and a function holomorphic on 
Z)y = C*\A; and satisfying

0<|“/l<« on ~Ej= E f] Vj. (31)

Then, for some suitably small constant k>0, we have that
u> = /,w1a>։ • • • u>n

is holomorphic on D and satisfies (30) on E. Thus we have only to 
construct each w; , /=1, 2,•••, n.

Fix j then. We shall consider two cases depending on whether Kj 
meets with D X E or not. Suppose first that

Kjft (D\E) = 0.

Then, there is an open Jordan neighbourhood Vj of Kj such that

DjfiVj= E° n = £n Vy = £/<=£«.

By the hypothesis of the Theorem, Kj cannot be a singleton. Putting 

v(z)= j log a dpz, z^E9, 

• 6E'
we may write

—v։, 
where is harmonic in Dj and vt is harmonic in Vj. Thus, vt is boun­
ded on Kj and so for some constant X,

— X< v on Ej.
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Since v is the greatest harmonic minorant of log ։ on £°, we also have 

log a on Ej.

Now write hj = v1— )֊ and let A; be a harmonic conjugate of A/. Then

"y = exp (Ay + i hj) is holomorphic on Dj and satisfies (31).
Consider now the second case: that is, 

^n(£>\£)=/= 0.
In this case, there exists a neighbourhood Vj of Kj such that 

£"0 Vj=Ej is a set of uniform approximation in Dj.
By mapping D, conformally to Dr for some 0<7?< + <», it fol­

lows from Lemma 5, that there is a function hj, harmonic on Ej with

|Ay (z)֊v (x)|<l, z^Ej, (32)
where

log a, z^U\E°,

and U is the domain of definition of a. By a result in [16] (see also 
[15]), there is a function uj, harmonic on Dj, with

(34)

Now let uj be a harmonic conjugate of uj and set

io, — exp(uj — 2 + i uj).
Then, from (32), (33), and (34), it follows that wy satisfies (31).

This completes the proof of Theorem IB.
3. Proof of Theorem 1. Theorem 1 is an immediate conse­

quence of Theorem 1A and Theorem IB.
4. Proof of Theorem 2. Suppose the hypotheses of Theorem 2 

are satisfied. By (3), log a is resolutive. Thus, (2) for log a follows from 
Lemmas 2 and 3. Hence Theorem 2 follows from Theorem 1.

5. Proof of Theorem 3. Let £ be a set of a-asymptotic ap­
proximation. Then log a = —co on dE°\D and so by Theorem 1A, u։ (z, 
7?) = 0 for each z^E°. If a is decreasing, then we have the identity

R
J loga(f) dw (z, f)= — Jloga dp,» 

n <>£•
for z^E°, and (4) follows from Theorem 1A.

To show the converse, we remark first, that it follows from the 
• conditions on a, that a is decreasing on some interval "[£0, R). We „may 

assume t0 = 0 and then a (|z|) is a log-superharmonic speed on Dr, sa­
tisfying (4). By the above mentioned identity, a satisfies the conditions 
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of Theorem IB for D—Dr. Since E is a set of uniform approximation 

in Dr, it follows that C* X E is connected. Then from Theorem IB it 
follows that E is a set of a-approximation in Dr.

6. Proof of Corollary 1. Suppose E is a set of a-approxi­
mation for some asymptotic speed a. Then loga =— oo on dE°\D and 
by Theorem 1A, for log a condition (2) is satisfied. This implies that 

£)j = 0 for *6£°.
Conversely, let p» (dE°\D)=Q for z£E°. To prove, that E is a set 

of asymptotic approximation, it is enough by Theorem IB, to construct 

an asymptotic log-superharmonic speed a on some neighbourhood of E, 
such that for log a condition (2) is satisfied.

Denote by K1։ • • •, Kn the complementary components of D, which 

meet with the closure of E. We may assume, that no Kj can be a 
singleton. By conformally mapping C*\A} onto the unit disc Dt, it 
follows from Lemma 9, that there is a log-superharmonic asymptotic 
speed o.j on C*\Kj, such that for log ay, condition (2) is satisfied. 
Then obviously the speed

a = a։A«։A- "A»«

is asymptotic and log-superharmonic on D, such that condition (2) for 
log a satisfied.

7. Proof of Corollary 2. Suppose first that a is a log-super­
harmonic speed on E. Fix K compact in D and let K' be a compact 
set associated to K as in Conidtion C. Then, for E°, pz (dE°\ 
\K') = 0 and so

floga</px> inf log a X
K'ftdE*

K'ndE‘

Thus, (2) holds for each log-superharmonic speed, and so by Theorem 1, 
E is a set of a-approximation for each log-superharmonic speed a.

Now if ag is an arbitrary speed, then by Lemma 8 and the techni­
que used in Corollary 1, we may construct a log-superharmonic speed 
a on E with 0 a a0. Since we have already shown that E is a set 
of a-approximation, it is, all the more, a set of a0-approximation.

Suppose, conversely, that E fails to satisfy Condition C. Then, 
for some KcD and some sequence Kj/'D, there are components E/ of 
£° which meet both K and Choose a sequence zj^E°j[\K. It is
easy to construct a speed a which decreases to zero so rapidly that 

2-1025
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Hence by Theorem 1A, E is not a set of a-approximation, and so, not 
a set of Carleman approximation. This completes the proof of Corol­
lary 2.

8. Proof of Corollary 3. From Lern.na 10 we have

R
p(0d(log«(0)>-°°- 

0
(35)

For zCDrftE*, r<it, it is clear that <u (z; t) is less than the harmonic 
measure of Ea(\dDt with respect to the open set This, ip turn,
is less than the harmonic measure of the same set with respect to Di. 
This last quantity is dominated by X(r)9(t), for some constant *(r).

Thus, w(z, f)<J.(r) S(/). Hence,

R r R
p (z, t) d (log a)> p (z, t) d (log a) + X (r) J 9 (f) d (log a), 

oo r .

Hence from (35) and Lemma 10, (5) is satisfied, and so Corollary 3 
follows from Theorem 3.

9. Proof of Corollary 4. First, we shall show that we may 
assume that — log a (t) is log-convex. Set 7 = (logo)՜1 for c^>l and 
denote

cr
log ac (r) = 7 J log a (t) — . 

1

Obviously, —log ac (r) is a convex function of log r. Assuming 
we have for r > 1: '

WCiflogo«. log a (0 —< log a (r).

Integrating by parts, and since log ae is upper-bounded, we have 
that (6) holds for ac and k', if and only if

Since
dt 
t

<2k dt
to (k't)

the finiteness of the last integral follows trom (6) after the substitution 
ct — t, if we choose c>l such that Jt' = cfc<l. Thus, in proving Co­



On tangential approximation 437

rollary 4, we may assume, that—log a is an increasing log-convex 
function.

We may also assume that E is not a set of Carleman approxi­
mation, for otherwise E is trivially a set of «-approximation. Thus, ։by 
Corollary 2, there is an r0, 0<^r0<^co, such that for each t > r0 some 
component of E° meets both dDr, and dDt.

Fix r r0 and suppose z £ DT fl £°. Let D be the component of 
£°L|jDr which contains z=0. Then D is unbounded. Let denote the 
component of D[}Dt which contains z = 0 and let f0 (t) be its linear 
measure. Following Tsuji, we define 0* (f) as follows. If dDtC.E\ then 
we put 6* (f) = 0(f) and if dDt։c. E°, we put 6* (f) = co. Since E is a 
set of uniform approximation, and we may assume that E =f= C, there is 
some such that 6* (f) = ® (0 for t > t0. Let ut.(z) be the harmonic 
measure of d&t [\dDt with respect to Then, Tsuji has shown [12, 
p. 116], that if z^Drr\E° and r<^kt/2, 0<7:<^l, then

ktr r dp 
p L J p ©* (p) 

2r

Since 0* (t) = 0 (f) for t > tt and we may choose 2r>jtf0, we have

ut (z)< Xr exp (36)

for t^> (2/k) r, where Xr is some constant. Since u> (z, t) = (dEt\Dt), 
it is clear that <■ (z, f) £is dominated by the harmonic measure of 
dD\Dt with respect to the domain D. This in turn is dominated by 
u։(z). Thus, from (36), we have

kt
<0 (z, t) <xr exp [—« f “-ri’ (37)

L J p0 (p) J
t.

From (6) and Lemma 10, we have that 
- kt
CexpT —tt d (log «)>—oo. (38)
J L J Pe (P) Ji

Hence from (38), (37) and Lemma 10, we have (4) and so Corollary 4 
follows from Theorem 3.

10. P r o’o f of C or o 1 Ija r y 5. Suppose a satisfies (7). There 
exists a set Eo of uniform approximation, such that Ec.E& and for Eo, 
|0(O-2k|</-։,

Then conditions (6) and (7) are equivalent, and it follows from 
Corollary 4, that Eo is a set of «-approximation. Then so is the set E.

Now let E is a set of «-approximation by entire functions for 
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some decreasing asymptotic speed « (|z|). Then by Theorem 3, a satisfies 
(4). Using Lemma 10 (for 3 r= <u), we have from (25):

inf f <o (z, t) d (log » (f)) > — 00 ($$)
^Ori}E" J

lor each 0 < co.
Suppose for the set E, that

«°’
for z^Drr\E° and t > cr, where c and are some cons_
tants. It follows from (39) and (40) that

1 d (log a (/)) > — °°.

Hence a satisfies (7).
It is easy to construct a set E of uniform approximation, satisfying 

.(40). For instance, E is such a set, if

E ■=> Eo = {z'.z — x 4֊ iy,

11. Proof of Corollary 6. We shall estimate o> (z, t) using 
the Ahlfors distortion theorem.

Fix z e A 0 E°, and suppose r t R, and t is very close to R. 
We map E° to a strip Se by the log-function.- We then map the strip 
Se to the strip Y: |KKk/2) so-that corresponds to
X = + oo. Consider the image Lt of E° fl dDt in SK and denote by u։ (/) 
the minimum value of X for points on Lt. Then, by the Ahlfors dis­
tortion theorem (see [23, p. 101])

t
HiU) >>• + « f֊^- « (41)

J p° (p) fl
for some constant a, provided

R

This last formula is obvious if E = 4֊oo.
From (41), we have that u> (z, t) is dominated by the harmonic 

measure of dSK f) {X > ut (t)}. This we estimate by mapping S, to a 
half-plane H so that u։ (z, t) is dominated by the harmonic measure of 
Hn{|lF|>exp[u1(0]|. Since we may assume that the image of z is of 
module less than exp [m։ (t)], this in turn is bounded by the harmonic 
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measure of the half-circle of radius exp [ux (f)] with respect to the half­
disc. Thus, (see [23, p. 49]), for z^P

u> (z, t) < i.r exp [—(f)]
for some constant ).z.

Hence, from (41), we have

w (z, f)<.>., exp

Corollary 6 then follows from Lemma 10 by the same reasoning as was 
used in the proofs of Corollaries 3, 4, and 5.
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Ն. Z. ԱՌԱՔԵԼՑԱՆ, A. Մ. ԳՈէ^Յե. Հոլոմորֆ ֆունկցիաներով շոչափումային մոտավորու­թյան մասին (ամփոփում)

Դիցուք D-ն տիրույթ է Շ*-ում և E-ն D-ի հարաբերական փակ, սեփական ենթաբազ­
մություն է» Թող ֆունկցիան լինի անընդհատ E-ի վրա և սահմանափակ» Անվանենք
E-ն a֊ մոտավորության թարմություն [D-ում), եթե ամեն մի B > 0 թվի և կամայական [ 
ֆունկցիայի համար, որն անընդհատ է E-ի վրա և հոլոմորֆ EF-ում, գոյություն ունի D-ում 
հոլոմ որֆ այնպիսի g ֆունկցիա, որ

|/(z) — g(z)|<sa(z), z£E.
a 1 դեպքում E-ն կանվանենք հավասարաչափ մոտավորության թազմություն: Վերջին­

ներիս նկարագրությունը տրված է [lj-ումւ
Ներկա աշխատանքում հետազոտվում է 1-մոտավո րութ յան բազմությունների նկա­

րագրման խնդիրր»
Հիմնական թեորեմ 1-ում դիտարկված է այն դեպքը t երր D-ն վերջավոր կապանի Լ, 

իսկ E-ն D-ում հավասարաչափ մոտավորության այնպիսի բազմություն է, որ C*\E-i չունի 
մեկուսացված կետեր»

&՝ից պահանջվում է, որ նրա նեղացումը £°-ի վրա ունենա անընդհատ շարունակություն 
[E°) - ի վրա, ընդ որում log 2 -ն լինի սուպերհարմոնիկ ( EQ) ("\D-ի վրա» Նշված պայման­
ների դեպքում, որպեսզի E-ն լինի ՕԼ -մոտավորության բազմություն, անհրաժեշտ է ու բա­
վարար, որ

inf I logarfj^> — co 
sGA'nf J 

ö£»

ամեն մի KCZ.D կոմպակտի համար, որտեղ ()EQ֊(l հարմոնիկ չափն է E՞-ի նկատմամբ- 
Նշղալ- .աՐՂ1ո1^քր միավորում է չափական և երկրաչափական բնույթի մի չարբ հայտնի 

‘-այտանիշներ, որոնք վերաբերվում են ամ բող, և անալիտիկ ֆունկցիաներով ասիմպտոտա֊ 
կան մոտավորություններին (երր a (z) -* 0, z — ÖD դեպքում) և բերում է այդ բնույթի նոր 
հայտանիչների (տես թեորեմներ 2—3-բ և հետևանքներ 1 — Տ-բ)ւ

У- Аракелян, П. М. Готье. О касательном приближении голоморфными функ 
цнями (резюме).

Пусть О область в С* и £— относительно замкнутое собственное подмножество 
Л. Пусть а > 0 — непрерывная на £ и ограниченная функция. Назовем £ множеством
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а- приближения (в D), если для каждого ։> 0 и произвольной функции /, непре­
рывной на £ в голоморфной в £°, существует такая голоморфная в D функция g. что

I/ (z) — g (*)| < еа (г)> •
В случае а = 1 будем называть £ множеством равномерного приближения. Описание 

таких £ дано в [1].
В настоящей работе исследуется задача описания множеств “-приближения. В 

основной теореме 1 рассматривается случай, когда D— конечносвязная область, а 
£ — множество равномерного приближения в D, такое, что С*\£ не имеет изолиро­
ванных точек. Относительно “ предполагается, что ее сужение на £° допускает непре­
рывное продолжение на (£°), причем log “ —супергармоннческая на (£°)Л®- Тогда 
для того, чтобы £ было множеством “-приближения, необходимо и достаточно, чтобы

дЕ>

для каждого компакта К С О, где р-х — гармоническая мера й£° относительно £°.
Отмеченный результат объединяет ряд известных метрических и геометрических 

критериев об асимптотическом приближении целыми и аналитическими функциями 
(когда “(г)—>-0 при г->-дО) и приводит к новым критериям такого характера (см 
теоремы 2—3 и следствия 1—6). _
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