Մաթեմատիկա

XVII, № 5, 1982

Математика

YAK 517.98

А. О. БАБАЯН

ОСОБЫЙ СЛУЧАЙ УРАВНЕНИЯ ВИНЕРА-ХОПФА

§ 1. Введение. Формулировка ревультатов

В этой работе исследуется уравнение

$$\varphi(t) - \int_{0}^{\infty} k(t-s) \varphi(s) ds = f(t), t \geqslant 0.$$
 (1)

Здесь $k \in L^1$ (— ∞ , ∞), $f \in L^p$ (0, ∞), $1 \le p \le \infty$, φ ищется из того же класса L^{-} (0, ∞), которому принадлежит f. В случае, когда символ уравнения

$$1-K(\lambda)=1-\int_{-\infty}^{\infty}k(t)\,e^{it\lambda}\,dt$$

отличен от нуля на всей вещественной оси, полное исследование (1) было дано М. Г. Крейном в [1]. В работах [2—5] рассматривается случай, когда символ имеет вырождение степенного вида в некоторых точках, то есть когда символ допускает представление:

$$1-K(\lambda)=\prod_{k,l}\left(\frac{\lambda-\lambda_k}{\lambda+i}\right)^{\sigma_k}\left(\frac{\lambda-\lambda_l}{\lambda-i}\right)^{\eta_l}H(\lambda).$$

Здесь λ_k , λ_j — действительные числа, $\Re c_k > 0$, $\Re a_j > 0$, $H(\lambda) \neq 0$ при всех действителеных λ . В работе М. И. Хайкина [6] рассматривался более общий случай, а именно, когда $\ln (1-K(\lambda))$ локально интегрируем на вещественной оси. При дополнительных предположениях, что mes $E(\lambda) < \lambda^a$. где $E(\lambda) = \{t: |1-K(t)| < \lambda\}$, $\alpha > 0$ и что arg $(1-K(\lambda))$ ограничен, доказывается возможность факторизации символа в классе $S(\kappa)$ (класс медленно растущих распределений) и на втой основе решается однородное уравнение

$$\varphi(t) - \int_{0}^{\pi} k(t-s) \varphi(s) ds = 0, t > 0.$$
 (2)

В настоящей работе методом, отличным от метода работы [5], исследуется не только однородное, но и неоднородное уравнение в случае, когда символ допускает следующее представление:

$$1 - K(\lambda) = \theta(\lambda)(1 - H(\lambda)). \tag{3}$$

Здесь $H(\lambda)$ — образ Фурье функции $h \in L^1(-\infty, \infty)$, $1-H(\lambda) \neq 0$ для всех λ , а $\theta(\lambda)$ имеет следующий вид:

$$\theta(\lambda) = 1, |\lambda| > 2s; \ \theta(\lambda) = \begin{cases} a \left| \frac{\lambda}{\lambda + i} \right|^{s}, \ 0 > \lambda > -s \\ b \left| \frac{\lambda}{\lambda + i} \right|^{s}, \ 0 < \lambda < s, \end{cases}$$

$$(4)$$

где a и b— постоянные, $a \neq 0$, $b \neq 0$. Кроме того предполагается, что θ (λ) не обращается в нуль нигде, кроме точки нуль, и что θ (λ) бесконечно дифференцируема везде, кроме точки нуль. Кроме того предполагается, что $\alpha_1 - \alpha_2 - \alpha_3$ действительное число (хотя α_1 и α_2 , вообще говоря, комплексные числа, такие, что $\text{Re } \alpha_1 > 0$, $\text{Re } \alpha_2 > 0$). В дальнейшем не умаляя общности, можно предположить, что $\alpha_1 - \alpha_2 > 0$.

В параграфе 2 будет доказано, что при этих условиях символ может быть представлен в виде

$$1 - K(\lambda) = \left(\frac{\lambda}{\lambda + i}\right)^{\alpha_{+}} \left(\frac{\lambda}{\lambda - i}\right)^{-\alpha_{-}} \psi(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{\dagger} \frac{\Phi_{0}^{-}(\lambda)}{\Phi_{0}^{+}(\lambda)}, \tag{5}$$

где

$$\psi(\lambda) = \exp\left[\beta\left(\log\frac{\lambda}{\lambda+i} + i\frac{\pi}{2}\right)^2 - \beta\left(\log\frac{\lambda}{\lambda-i} + i\frac{\pi}{2}\right)^2\right], \quad (6)$$

Re
$$\alpha_{+} > 0$$
, $0 < \text{Re } \alpha_{-} < 1$, $\beta = \frac{\alpha_{1} - \alpha_{2}}{4\pi i}$, $\Phi^{\pm}(\lambda) \neq 0$

для всех $\lambda \in \overline{D^{\pm}}$ ($D^{+} = \{z \in \mathbb{C} : \text{Im } z > 0\}$, $D^{-} = \{z \in \mathbb{C} : \text{Im } z < 0\}$), γ — целое число. Под $[\lambda/(\lambda + i)]^{a_{+}}$, $[\lambda/(\lambda - i)]^{-a_{-}}$ понимаются те ветви этих функций, которые аналитически продолжимы соответственно в D^{+} и D^{-} . Пусть теперь

$$g_1(\lambda) = \left(\frac{\lambda}{\lambda + i}\right)^{n+} \exp\left[\beta \left(\log \frac{\lambda}{\lambda + i} + i \frac{\pi}{2}\right)^2\right],$$
 (7)

$$g_{s}(\lambda) = \frac{1}{\Phi_{0}^{-}(\lambda)} \left(\frac{\lambda}{\lambda - i}\right)^{s} \exp\left[\beta \left(\log \frac{\lambda}{\lambda - i} + i \frac{\pi}{2}\right)^{s}\right]. \tag{8}$$

Тогда результаты, полученные в настоящей работе, могут быть сфорлированы так:

1. Случай 1 . Предполагается, что преобразование Фурье правой части (1) допускает представление

$$F(\lambda) = \left(\frac{\lambda}{\lambda - i}\right)^m G(\lambda) + F_1^-(\lambda), \tag{9}$$

где $G(\lambda)$ —преобразование Фурье функции $g(t) \in L^1 \cap L^p$, а $F_1^-(\lambda)$ --образ Фурье функции из L^1 , и, кроме того, $F_1^-(\lambda)$ допускает аналитическое продолжение в D^- ; $m = \left[\text{Re } \alpha_+ + i\beta\pi + \frac{1}{p} \right]$, где $[\cdot]$ означает целую

часть числа. Такому условию удовлетворяют, в частности, функции, имеющие некоторую скорость убывания на бесконечности, а именно

$$\int_{0}^{\infty} t^{k} |f(t)| dt < \infty, k=0, 1, \dots, m+1.$$

Теорема 1. Уравнение (1) с правой частью, допускающей представление (9), имеет решение, принадлежащее $L^p(0,\infty)$ при $m+\gamma>0$ тогда и только тогда, когда выполнены $m+\gamma$ условий

$$\int_{0}^{\pi} t^{k} e^{-t} \psi_{1}(t) dt = 0, k = 0, 1, \dots, m + \gamma - 1,$$
 (10)

где $\psi_1(t)$ — прообрав Фурье функции $g_1(\lambda)$ $G(\lambda)$. Однородное уравнение не имеет нетривиальных решений.

T е о ре w а 2. При $m+\gamma=0$ существует и единственное решение уравнения (1) в классе L^p при правой части, допускающей представление (9). Это решение определяется как прообраз **Ф**урье функции

$$\Phi^{+}(\lambda) = g_1^{-1}(\lambda) \left(\frac{\lambda}{\lambda + i}\right)^m \Phi_0^{+}(\lambda) \pi^{+} \left[g_2(\lambda) G(\lambda)\right]. \tag{11}$$

Tе о ре ма 3. При $m+\gamma<0$ уравнение (1) при правой части, допускающей представление (9), всегда разрешимо, и однородное уравнение и меет $|m+\gamma|$ линейно независимых решений.

Общее решение определяется как прообраз Фурье функции

$$\Phi^{+}(\lambda) = g_{1}^{-1}(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{-1} \Phi_{0}^{+}(\lambda) \left(\frac{\lambda}{\lambda - i}\right)^{m} \times \left[\pi^{+}\left[g_{2}(\lambda) G(\lambda)\right] + \sum_{j=0}^{-\gamma - m-1} \frac{c_{j} \lambda^{j}}{(\lambda - i)^{-\gamma - m}}\right]$$
(12)

Здесь с - произвольные постоянные.

2. Случай p=1. При $\alpha_++i\beta\pi\neq [{\rm Re}\ \alpha_++i\beta\pi]$ остаются справедливыми теоремы 1, 2, 3. При $\alpha_++i\beta\pi=[{\rm Re}\ \alpha_++i\beta\pi]$ достаточно требовать, чтобы преобразование Фурье правой части (1) допускало представление

$$F(\lambda) = \left(\frac{\lambda}{\lambda - i}\right)^{m-1} G(\lambda) + F_1^{-}(\lambda). \tag{13}$$

На $G(\lambda)$ и $F_1^-(\lambda)$ налагаются те же ограничения, что и в представлении (9). Тогда теоремы 1, 2, 3 будут верны при замене m на m-1 и подстановке $G(\lambda)$ из представления (13).

3. Случай $p=\infty$. При $\operatorname{Re} \alpha_+ + i\beta\pi \neq [\operatorname{Re} \alpha_+ + i\beta\pi]$ остаются справедливыми теоремы 1, 2, 3. В случае, когда $\operatorname{Re} \alpha_+ + i\beta\pi = [\operatorname{Re} \alpha_+ + i\beta\pi]$ достаточно требовать, чтобы преобразование Фурье правой части (1) допускало представление (13). Тогда теоремы 1, 2, 3 будут выполнены при замене m на m-1 и подстановке $G(\lambda)$ из (13).

§ 2. Вспомогательные предложения

Множество функций, имеющих вид

$$c+\int_{-\infty}^{\infty}h(t)\,e^{ith}\,dt,\,h\in L^{1}(-\infty,\,\infty) \qquad \qquad (14)$$

будем обозначать R. Класс функций вида (14), когда h(x) = 0 п.в. при x < 0, обозначим R^+ , а класс функций вида (14) с h(x) = 0 п.в. при x > 0 обозначим R^- . Свойства этих классов описаны в [1]. Обозначим через R_p , R_p^+ , R_p^- классы преобразований Фурье функций, принадлежащих соответственно $L^p(-\infty,\infty)$, $L^p(0,\infty)$, $L^p(-\infty,0)$ (где $L^p(0,\infty)$ -класс функций из $L^p(-\infty,\infty)$, обращающихся в нуль на $(-\infty,0)$. Аналогично определяется $L^p(-\infty,0)$). Класс R_p при некоторых p состоит вообще говоря из обобщенных функций, действующих на S (пространство бесконечно дифференцируемых быстро убывающих функций) таким образом:

$$(f,\psi) = \int_{-\infty}^{\infty} f(t) \, \dot{\psi}(t) \, dt \, \operatorname{при} \, \psi \in S.$$

Здесь \hat{f} -- преобразование Фурье функции f. Если функция $h \in L^1$ ($-\infty$, ∞), то $\hat{h}\hat{f}$ будет обозначать следующую обобщенную функцию:

$$(\widehat{h}\,\widehat{f},\,\,\psi) = \int_{-\infty}^{\infty} (h\,*\,f)(t)\,\,\widehat{\psi}\,(t)\,\,dt,\,\,\psi \in \mathcal{S}. \tag{15}$$

Ив втого определения ясно, что R_{ρ} инвариантен относительно умножения на функции из R (умножение понимается в смысле (15)). Аналогично R_{ρ}^{+} (R_{ρ}^{-}) инвариантно относительно умножения на функции из R^{+} (R^{-}). Операторы π^{+} и π^{-} , переводящие R_{ρ} в R_{ρ}^{+} и R_{ρ}^{-} соот ветственно, определим следующим образом:

$$\pi^+[\widehat{f}] = \widehat{\chi f}, \ \pi^-[\widehat{f}] = (\widehat{1-\chi})f,$$

где $\chi(t)$ — функция Хевисайда.

При доказательстве теорем 1, 2, 3 будет использовано другое представление $1-K(\lambda)$.

Лемма 1. При условиях, наложенных на символ уравнения (1) в § 1, символ допускает представление (5).

Доказательство. Прежде всего, используя тот факт, что

$$\left|\frac{\lambda}{\lambda+i}\right|^{\frac{\alpha_1+\alpha_2}{2}} = \left(\frac{\lambda}{\lambda+i}\right)^{\frac{\alpha_1+\alpha_2}{4}} \left(\frac{\lambda}{\lambda-i}\right)^{\frac{\alpha_1+\alpha_2}{4}}, \lambda = \overline{\lambda}$$

(под $[1/(\lambda+i)]$, $[1/(\lambda-i)]$ понимаются те ветви этих функций, которые аналитически продолжимы соответственно в полуплоскости $D^+ = \{z \in \mathbb{C} : \text{Im } z > 0\}, \ D^- = \{z \in \mathbb{C} : \text{Im } z < 0\}$). Функцию $1 - K(\lambda)$ можно представить в виде

$$1-K(\lambda)=\left(\frac{\lambda}{\lambda+i}\right)^{\frac{\alpha_1+\alpha_2}{4}}\left(\frac{\lambda}{\lambda-i}\right)^{\frac{\alpha_2+\alpha_2}{4}}\theta_1(\lambda)(1-H(\lambda)).$$

Здесь θ_1 ().) имеет в окрестности нуля следующий вид:

$$\theta_{1}(\lambda) = \begin{cases} a \left| \frac{\lambda}{\lambda + i} \right|^{\frac{\alpha_{1} - \alpha_{2}}{2}}, -\epsilon < \lambda < 0 \\ b \left| \frac{\lambda}{\lambda - i} \right|^{-\frac{\alpha_{1} - \alpha_{2}}{2}}, 0 < \lambda < \epsilon. \end{cases}$$

Для того чтобы уничтожить втот разрыв в нуле введем функцию (6). Эта функция в окрестности нуля допускает такие оценки:

$$\psi(\lambda) \sim \exp \left[\beta \pi^2 - 2\pi i \beta \log |\lambda/(\lambda + i)|\right], \ \lambda \to +0,$$

$$\psi(\lambda) \sim \exp \left[-\beta \pi^2 + 2\pi i \beta \log |\lambda/(\lambda + i)|\right], \ \lambda \to -0.$$

Следовательно, если в определить из соотношения

$$2\pi \mathrm{i}\beta = \frac{\alpha_1 - \alpha_2}{2},$$

то функция

$$\eta(\lambda) = \psi^{-1}(\lambda) \theta_1(\lambda) (1 - H(\lambda))$$

нигде не обращается в нуль, а в точке 0 имеет разрыв первого рода. Значит можно подобрать такое в, чтобы

$$\left(\frac{\lambda}{\lambda+i}\right)^{-\delta}\left(\frac{\lambda}{\lambda-i}\right)^{\delta}\eta(\lambda)$$

была непрерывна в нуле. Для этого можно определить 8 из соотношения

$$-\beta\pi^2 + \frac{1}{2}\log\frac{b}{a} = -i\delta\pi$$

или

$$\delta = -i\beta\pi + \frac{i}{2\pi}\log\frac{b}{a}.$$

Окончательно получим, что функция

$$g(\lambda) = \left(\frac{\lambda}{\lambda + i}\right)^{-\delta} \left(\frac{\lambda}{\lambda - i}\right)^{\delta} \eta(\lambda)$$

не обращается в нуль на $[-\infty, \infty]$ и непрерывна. Кроме того из вида функций θ_1 (λ) и ψ^{-1} (λ) можно заключить, что g (λ) $\in R$. Следовательно символ можно записать так:

$$1-K(\lambda)=\left(\frac{\lambda}{\lambda+i}\right)^{\frac{\alpha_1+\alpha_2}{4}}\left(\frac{\lambda}{\lambda-i}\right)^{\frac{\alpha_2+\alpha_2}{4}}\psi(\lambda)\left(\frac{\lambda}{\lambda+i}\right)^{\delta}\left(\frac{\lambda}{\lambda-i}\right)^{-\delta}(c+H_0(\lambda)).$$

Здесь $H_0(\lambda) \in R_1$ и $c + H_0(\lambda) \neq 0$ для всех действительных λ . В силу втих свойств функция $c + H_0(\lambda)$ допускает факторизацию (см. [1]):

$$c + H_0(\lambda) = \left(\frac{\lambda - i}{\lambda + i}\right)^{\lambda} \frac{\Phi_0^{-}(\lambda)}{\Phi_0^{+}(\lambda)}$$

В втой формуле $\Phi_0^+(\lambda) \in R^+, \Phi_0^-(\lambda) \in R^-, \Phi_0^+(z) \neq 0$ при Im z > 0, $\Phi_0^-(z) \neq 0$ при $\text{Im } z \leqslant 0$, x — целое число, равное индексу функции $c + H_0(\lambda)$. В силу втого соотношения символ можно представить так:

$$1-K(\lambda) = \left(\frac{\lambda}{\lambda+i}\right)^{\frac{\alpha_1+\alpha_2}{4}+b} \left(\frac{\lambda}{\lambda-i}\right)^{\frac{\alpha_1+\alpha_2}{4}-b} \psi(\lambda) \left(\frac{\lambda-i}{\lambda+i}\right)^{x} \frac{\Phi_{0}^{-}(\lambda)}{\Phi_{0}^{+}(\lambda)}, \quad (5*)$$

отнуда и получается представление (5). При этом

$$\alpha_{+} = \frac{\alpha_{1} + \alpha_{2}}{4} + \delta + \left[\operatorname{Re} \left(\frac{\alpha_{1} + \alpha_{2}}{4} - \delta \right) \right] + 1; \ \alpha_{-} = \left[\operatorname{Re} \left(\frac{\alpha_{1} + \alpha_{2}}{4} - \delta \right) \right] + 1 + 1 - \frac{\alpha_{1} + \alpha_{2}}{4} + \delta; \ \gamma = x - \left[\operatorname{Re} \left(\frac{\alpha_{1} + \alpha_{2}}{4} - \delta \right) \right] - 1.$$

Докавательство закончено.

Кроме того понадобится также одно свойство преобразований Фурье-Лапласа функций из $L^p(0,\infty)$, $1\leqslant p\leqslant \infty$.

Обозначим следующую дугу через Г ::

$$\Gamma_{\xi} = \{x + ix^{2} : 0 \leqslant x \leqslant \xi\}, \ \xi > 0,$$

$$\Gamma_{\xi} = \{x + ix^{2} : \xi \leqslant x \leqslant 0\}, \ \xi < 0. \tag{16}$$

Аемма 2. Пусть

$$\Phi^{+}(\lambda) = \int_{0}^{\pi} \varphi(t) e^{tt\lambda} dt, \text{ Im } \lambda > 0.$$

Если $\phi \in L^p(0, \infty)$ при $1 , а <math>\Gamma_{\epsilon}$ определяется формулами (16), то справедливы следующие оценки:

$$|\Phi^{+}(\lambda) - c| = o(1), \ \lambda \to 0 \ npu \ p = 1,$$
 (17)

$$\left|\int_{\Gamma_{\xi}} \Phi^{+}(\lambda) d\lambda\right| = o(1) |\xi|^{\frac{1}{p}}, \; \xi \to 0 \; npu \; 1$$

$$\left|\int_{\Gamma_{k}} \Phi^{+}(\lambda) d\lambda\right| < c_{0} |\phi|_{-}, \; \xi \to 0 \; npu \; p = \infty. \tag{19}$$

Здесь $c=\int\limits_0^\pi \varphi\left(t
ight)\,dt,\;c_0$ — некоторая постоянная, не зави-

сящая от ф.

Доказательство. Оценка (17) очевидна, так как при $\varphi \in L^1(0, \infty)$ $\Phi^+(\lambda)$ непрерывна в замкнутой верхней полуплоскости D^+ . Пусть $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$. Имеем

$$\left| \int_{\Gamma_{\xi}} \Phi^{+}(\lambda) d\lambda \right| = \left| \int_{0}^{\infty} \varphi(t) \left(\int_{\Gamma_{\xi}} e^{i\lambda t} d\lambda \right) dt \right| =$$

$$= \left| \int_{0}^{\infty} \varphi(t) \frac{e^{t(\xi+t\xi^{2}) t} - 1}{tt} dt \right| \leq \left\| \varphi \right\|_{p} \left(\int_{0}^{\infty} \frac{\left| e^{t(\xi+t\xi^{2}) t} - 1 \right|^{q}}{|t|^{q}} dt \right)^{\frac{1}{q}} \leq c_{0} \left\| \varphi \right\|_{p} \left| \xi \right|^{\frac{1}{p}}. \quad (20)$$

Здесь c_0 — абсолютная постоянная, а $|\phi|_p$ — норма ϕ в L^p $(0, \infty)$. Это доказывает утверждение леммы в случае $p=\infty$. При $1 эту оценку можно уточнить. Действительно, (18) справедлива для функций <math>\phi \in L^1(0, \infty)$, а так как такие функции образуют плотное подмножество в L^p $(0, \infty)$ при $1 в силу (20) получим, что оценка справедлива для всех функций из <math>L^p$ $(0, \infty)$. Доказательство закончено.

§ 3. Доказательство теорем 1, 2, 3.

Наиболее существенную часть доказательства составляет следующее предложение.

 Λ емма 3. Уравнение (1) в L^p (0, ∞), $1 \leqslant p \leqslant \infty$ при $\gamma > 0$ вквивалентно следующему уравнению:

$$g_1(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{\intercal} \frac{\Phi^+(\lambda)}{\Phi_0^+(\lambda)} = \pi^+ \left[g_2(\lambda) F(\lambda)\right]. \tag{21}$$

Здесь $F(\lambda)$ — образ Фурье функции f, а решение $\Phi^+(\lambda)$ ищется в классе R_3^+ .

При $\gamma < 0$ уравнение (1) эквивалентно такому уравнению:

$$g_1(\lambda) \left(\frac{\lambda - i}{\lambda + i} \right)^{\mathsf{T}} \frac{\Phi^+(\lambda)}{\Phi_0^+(\lambda)} = \pi^+ \left[g_2(\lambda) F(\lambda) \right] + \sum_{k=1}^{-\mathsf{T}} \frac{\zeta_{-k-\mathsf{T}}}{(\lambda - i)^k} . \tag{22}$$

Здесь $\sum_{k=1}^{-1} \frac{\zeta_{-k-1}}{(\lambda-i)^k}$ — главная часть равложения Лорана функции

$$g_1(\lambda) \left(\frac{\lambda-i}{\lambda+i}\right)^{\gamma} \frac{\Phi^+(\lambda)}{\Phi_0^+(\lambda)}$$
.

Доказательство. Уравнение (1) можно записать в виде:

$$\varphi(t) - \int_{-\infty}^{\infty} k(t-s) \varphi(s) ds = b(t) + f(t), -\infty < t < \infty.$$

Здесь ϕ и f доопределяются на (— ∞ , 0) равными вулю, а b (t) определяется следующим образом:

$$b(t) = \begin{cases} 0, & t \geqslant 0 \\ -\int_{0}^{\infty} k(t-s) \varphi(s) ds, & t < 0. \end{cases}$$

Перейдем к преобразованиям Фурье:

$$(1 - K(\lambda)) \Phi^{+}(\lambda) = \Phi^{-}(\lambda) + F(\lambda). \tag{23}$$

Здесь $\Phi^+(\lambda)$ — образ Фурье $\varphi(t)$, $\Phi^-(\lambda)$, $F(\lambda)$ — образы Фурье b(t) и f(t) соответственно. Учитывая представление (5) уравнение (23) примет вид:

$$\left(\frac{\lambda}{\lambda+i}\right)^{\alpha_{+}} {\lambda \choose \lambda-i}^{-\alpha_{-}} \psi(\lambda) \left(\frac{\lambda-i}{\lambda+i}\right)^{\tau} \frac{\Phi_{0}^{-}(\lambda)}{\Phi_{0}^{+}(\lambda)} \Phi^{+}(\lambda) = \Phi^{-}(\lambda) + F(\lambda).$$

Так как $g_2(\lambda) \in R^-$ (g_2 определяется из (8)), то можно умножить обе части уравнения на эту функцию. Тогда получим

$$g_1(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{\dagger} \frac{\Phi^+(\lambda)}{\Phi_0^+(\lambda)} = g_2(\lambda) \Phi^-(\lambda) + g_2(\lambda) F(\lambda) \tag{24}$$

 (g_1) определяется из (7)). Так как $g_2(\lambda) F(\lambda) \in R_p$, то эта функция единственным образом представима в виде суммы функции из R_p^+ и функции из R_p^- :

$$g_2(\lambda) F(\lambda) = \pi^+ [g_2(\lambda) F(\lambda)] + \pi^- [g_2(\lambda) F(\lambda)].$$

Учитывая это равенство, уравнение (24) преобразуем в следующее уравнение:

$$g_{1}(\lambda)\left(\frac{\lambda-i}{\lambda+i}\right)^{\intercal}\frac{\Phi^{+}(\lambda)}{\Phi_{0}^{+}(\lambda)}=g_{2}(\lambda)\Phi^{-}(\lambda)+\pi^{+}\left[g_{2}(\lambda)F(\lambda)\right]+\pi^{-}\left[g_{2}(\lambda)F(\lambda)\right].$$

Предположим сначала, что $\gamma \geqslant 0$. Перепишем уравнение (24) таким образом:

$$g_{1}(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{\mathsf{T}} \frac{\Phi^{+}(\lambda)}{\Phi^{+}_{J}(\lambda)} - \pi^{+} \left[g_{2}(\lambda) F(\lambda)\right] =$$

$$= g_{2}(\lambda) \Phi^{-}(\lambda) + \pi^{-} \left[g_{2}(\lambda) F(\lambda)\right]. \tag{25}$$

Так как $g_1(\lambda)$, $\left(\frac{\lambda-i}{\lambda+i}\right)^{\intercal}$, $[\Phi_0^+(\lambda)]^{-1}$ принадлежат R^+ , а $\Phi^+(\lambda)\in R_\rho^+$, то первый член разности в левой части (25) принадлежит R_ρ^+ . В силу определения оператора π^+ функция $\pi^+[g_1(\lambda) F(\lambda)]$ также принадлежит R_ρ^+ . Следовательно, левая часть (25) принадлежит R_ρ^+ . Аналогично правая часть (25) принадлежит R_ρ^- . Отсюда сразу следует, что обе части должны равняться нулю, в частности

$$g_1(\lambda) \left(\frac{\lambda-i}{\lambda+i}\right)^{\intercal} \frac{\Phi^+(\lambda)}{\Phi_0^+(\lambda)} = \pi^+ [g_2(\lambda) F(\lambda)].$$

Таким образом, если ϕ удовлетворяет (1), то Φ^+ (λ) удовлетворяет (21). Допустим теперь, что Φ^+ (λ) удовлетворяет (21) и $\phi \in L^p(0,\infty)$ — прообраз Фурье функции Φ^+ (λ). Докажем, что ϕ — решение уравнения (1). Предположим, что это не так.

Тогда для некоторой функции $g(t) \in L^p(0, \infty)$ спреведливо:

$$\varphi(t) - \int_{0}^{\pi} k(t-s) \varphi(s) ds = g(t), t > 0$$

(так как $\varphi \in L^p(0, \infty)$ и $k(t) \in L^1(-\infty, \infty)$). Принимая это уравнение за исходное после тех же рассуждений, с помощью которых перешли от (1) к (21), получим

$$g_1(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{\dagger} \frac{\Phi^+(\lambda)}{\Phi_0^+(\lambda)} = \pi^+ \left[g_2(\lambda) G(\lambda)\right] \tag{26}$$

 $(G(\lambda)$ — преобразование Фурье функции g(t)).

Но так как Φ^+ (λ) удовлетворяет также и (21), то имеем

$$\pi^{+}\left[g_{2}\left(\lambda\right)\left(F\left(\lambda\right)-G\left(\lambda\right)\right)\right]=0$$

ИЛИ

$$g_{2}(\lambda)(F(\lambda) - G(\lambda)) = R^{-}(\lambda), \tag{27}$$

где $R^-(\lambda) \in R^-$. Так как $g_*(\lambda)$ имеет вид (8), где β — чисто мнимоечисло, то существует целое число n такое, что функция

$$\psi(\lambda) = \left(\frac{\lambda}{\lambda - i}\right)^n [g_2(\lambda)]^{-1}$$

принадлежит R^- . После умножения равенства (27) на эту функцию получим

$$\left(\frac{\lambda}{\lambda-i}\right)^n (F(\lambda)-G(\lambda))=\psi(\lambda) R^{-1}(\lambda).$$

Правая часть этого равенства принадлежит R_p^- . Рассмотрим левую часть. Так как $F(\lambda) - G(\lambda)$ аналитически продолжима в D^+ , то функция

$$\left(\frac{\lambda}{\lambda-i}\right)^n (F(\lambda)-G(\lambda))$$

может иметь в точке i полюс перядка не выше n. Пусть $\sum_{k=1}^{n}\frac{c_k}{(\lambda-i)^k}$ —

главная часть разложения Лорана в точке г этой функции. Тогда функция

$$B(\lambda) = \left(\frac{\lambda}{\lambda - i}\right)^n (F(\lambda) - G(\lambda)) - \sum_{k=1}^n \frac{c_k}{(\lambda - i)^k}$$

аналитически продолжима в D^+ . Кроме того $B(\lambda) \in R^-_{\rho}$, следовательно $B(\lambda) \equiv 0$ или

$$\lambda^{n}\left(F\left(\lambda\right)-G\left(\lambda\right)\right)=\sum_{j=0}^{n-1}b_{j}\,\lambda^{j}.\tag{28}$$

Так как $F(\lambda) - G(\lambda) \in R_p$, то при $1 \leqslant p \leqslant \infty$ из (28) следует, что $F(\lambda) \equiv G(\lambda)$. Следовательно, f(t) = g(t) п.в. и φ является решением уравнения (1). Осталось рассмотреть случай $p = \infty$. В этом сдучае из (28) следует, что

$$G(\lambda) = F(\lambda) + \frac{c}{\lambda}$$

где с — некоторая постоянная, или в прообразах Фурье

$$g(t) = f(t) + c \theta(t).$$

Здесь

$$\theta(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0. \end{cases}$$

Таким образом, надо доказать, что уравнение (1) с правой частью, равной c^{6} (1), не имеет решения в L^{∞} (0, ∞). Предположим противное, пусть ϕ удовлетворяет уравнению

$$\varphi(t) - \int_{0}^{\infty} k(t-s) \varphi(s) ds = c \theta(t), t > 0.$$
 (29)

Перейдем к уравнению (21)

$$g_1(\lambda)\left(\frac{\lambda-i}{\lambda+i}\right)^{\intercal}\frac{\Phi^+(\lambda)}{\Phi_0^+(\lambda)}=\pi^+\left[g_2(\lambda)\ c\ \widehat{\theta}(\lambda)\right].$$

Ho tak kak $g_2(\lambda) = 0$ при $\lambda = 0$, то

$$\pi^+ [g_1(\lambda) c \widehat{\theta}(\lambda)] = 0,$$

то есть $\Phi^+(\lambda) = 0$ ($\Phi^+(\lambda)$ ищется в классе R_-^+). Следовательно, (29) не имеет решения из $L^+(0, \infty)$.

Итак, доказано, что при $\gamma > 0$ все решения уравнения (1) в пространствах $L^p(0, \infty)$, $1 \leqslant p \leqslant \infty$ являются прообразами Фурье решений уравнения (21), принадлежащих R_p^+ , $1 \leqslant p \leqslant \infty$.

Аналогично доказывается, что (1) и (22) эквивалентны при $\gamma < 0$. Лемма доказана.

Перейдем непосредственно к доказательству теорем 1, 2, 3.

1. Рассмотрим сначала уравнение (1) в пространствах L^p (0, ∞), $1 . В силу леммы 3 уравнение (1) можно свести к уравнению (21) при <math>\gamma > 0$ или к уравнению (22) при $\gamma < 0$.

а). Пусть $\gamma > 0$. Исследуем уравнение (21).

$$g_1(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{\intercal} \frac{\Phi^+(\lambda)}{\Phi_0^+(\lambda)} = \pi^+ [g_2(\lambda) F(\lambda)].$$

Сначала преобразуем это уравнечие. Так как $\left(\frac{\lambda-i}{\lambda+i}\right)^{\mathsf{T}}$ и Φ^+ (λ) принадлежат R, то можно умножить обе части уравнения на эти функции. Тогда получим

$$g_1(\lambda) \Phi^+(\lambda) = \Phi_0^+(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{-7} \pi^+ \left[g_2(\lambda) F(\lambda)\right]. \tag{30}$$

Теперь выясним, каким условиям должна удовлетворять функция $f \in L^p(0, \infty)$, чтобы это уравнение имело решение. Прежде всего, так как левая часть (30) аналитически продолжима в D^+ , то и

$$\Phi_0^+(\lambda) \left(\frac{\lambda-i}{\lambda+i}\right)^{-\gamma} \pi^+ \left[g_2(\lambda) F(\lambda)\right]$$

должна быть аналитична в D^+ . А вто означает, что функция π^+ [g_2 (λ) $F(\lambda)$] должна иметь нуль порядка не ниже γ в точке i, так как [($\lambda - i$)/($\lambda + i$)]⁻⁷ имеет в втой точке полюс порядка γ , а Φ_0^+ (λ) не обращается в нуль для всех $\lambda \in D^+$. То есть, если ψ — прообраз Фурье функции g_2 (λ) F (λ), то для разрешимости уравнения (30) необходимо выполнение следующих условий:

$$\int_{0}^{\pi} t^{k} e^{-t} \psi(t) dt = 0, k = 0, 1, \dots, \gamma - 1.$$
 (31)

Кроме того, для разрешимости (30) в R_p^+ необходимо выполнение еще некоторых условий, так как наличие сомножителя $g_1(\lambda)$ в левой части (30) накладывает некоторые ограничения на поведение функции π^+ [$g_2(\lambda) F(\lambda)$] в окрестности нуля.

Функция $g_1(\lambda)$ имеет следующий порядок убывания при $\lambda \in \Gamma_\xi$, $\lambda \to 0$ (Γ_ξ определено в (16))

$$g_1(\lambda) \sim |\lambda|^a + \lambda \Longrightarrow x + ix^a, x \to +0,$$
 (32)

$$g_1(\lambda) \sim |\lambda|^{\alpha_+} \exp[i\beta\pi \log |\lambda|] = |\lambda|^{\alpha_+ + i\beta\pi}, \ \lambda = x + ix^2, \ x \to -0.$$

Таким образом, в силу (18) и (32) для левой части (30) справедлива следующая оценка:

$$\left|\int_{\Gamma} g_1(\zeta) \, \Phi^+(\zeta) \, d\zeta\right| = o(1)|\xi|^{\alpha+1\beta\pi+\frac{1}{p}}, \, \xi \to -0.$$

Следовательно, эта же оценка должна выполняться и для правой части (30):

$$\left| \int_{\Gamma_{\xi}} \pi^{+} \left[g_{2} \left(\lambda \right) F \left(\lambda \right) \right] d\lambda \right| = o \left(1 \right) \left| \xi \right|^{\alpha_{+} + \left| \beta \alpha_{+} + \frac{1}{\rho} \right|}, \ \xi \to -0. \tag{33}$$

Оценка (33) необходима, чтобы решение (21) существовало, но в более узком классе функций, преобразования Фурье которых допускают представление (9), она будет также и достаточной.

Посмотрим какой вид для таких функций примет функция $\pi^+[g_2(\lambda) F(\lambda)]$:

$$\pi^{+}\left[g_{2}(\lambda)F(\lambda)\right] = \pi^{+}\left[g_{2}(\lambda)\left(\frac{\lambda}{\lambda-i}\right)^{m}G(\lambda) + g_{2}(\lambda)F_{1}^{-}(\lambda)\right] =$$

$$=\pi^{+}\left[\left(\frac{\lambda}{\lambda-i}\right)^{m}g_{3}(\lambda)G(\lambda)\right]$$

(равенство справедливо, так как $g_2(i) \in R^-$). Далее

$$\pi^{+} \left[\left(\frac{\lambda}{\lambda - i} \right)^{m} g_{2} (\lambda) G (\lambda) \right] = \pi^{+} \left[\left(\frac{\lambda}{\lambda - i} \right)^{m} \left[\pi^{+} \left[g_{2} (\lambda) G (\lambda) \right] + \right. \right. \\ \left. + \pi^{-} \left[g_{2} (\lambda) G (\lambda) \right] \right] \right] = \pi^{+} \left[\left(\frac{\lambda}{\lambda - i} \right)^{m} \pi^{+} \left[g_{2} (\lambda) G (\lambda) \right] \right].$$

Пусть c_k — значение k-ой производной функции $\{\lambda^m \pi^+ [g_2(\lambda) \times G(\lambda)]\}$ в точке i. Рассмотрим функцию

$$E(\lambda) = \left(\frac{\lambda}{\lambda - t}\right)^m = \left[g_2(\lambda) G(\lambda)\right] - \sum_{k=1}^m \frac{c_{m-k}}{(m-k)!(\lambda - t)^k}.$$
 (34)

Так как $\sum_{k=1}^{m} \frac{c_{m-k}}{(m-k)!} (\lambda-i)^k$ — главная часть разложения Лорана

функции $\left(\frac{\lambda}{\lambda-i}\right)^m \pi^+ \left[g_2(\lambda) \ G(\lambda)\right]$ в точке i, то функция (34) аналитична в D^+ . Кроме того, так как по предположению $G(\lambda) \in R_1 \cap R_p$, то и функция (34) принадлежит тем же классам. Следовательно, по теореме Пвли-Винера

$$E(\lambda) = \pi^{+} \left[E(\lambda) \right] = \pi^{+} \left[\left(\frac{\lambda}{\lambda - i} \right)^{m} \pi^{+} \left[g_{2}(\lambda) G(\lambda) \right] \right].$$

Окончательно

$$\pi^{+}\left[g_{2}\left(\lambda\right)F\left(\lambda\right)\right] = \left(\frac{\lambda}{\lambda - i}\right)^{m}\pi^{+}\left[g_{2}\left(\lambda\right)G\left(\lambda\right)\right] - \sum_{k=1}^{m}\frac{c_{m-k}}{(m-k)!}\frac{c_{m-k}}{(i-i)^{k}} \cdot (35)$$

Условие (33) в этом случае принимает вид:

$$\left| \int_{\Gamma_{\xi}} \left(\frac{\lambda}{\lambda - i} \right)^{m} \pi^{+} \left[g_{2} \left(\lambda \right) G \left(\lambda \right) \right] d\lambda - \int_{\Gamma_{\xi}} \sum_{k=1}^{m} \frac{c_{m-k}}{(m-k)! \left(\lambda - i \right)^{k}} d\lambda \right| =$$

$$= o \left(1 \right) |\xi|^{\alpha_{+} + i\beta \pi + \frac{1}{p}}, \ \xi \to -0.$$

Вспоминая, что $m = \left[\operatorname{Re} \alpha_+ + i \beta \pi + \frac{1}{p} \right]$, выводим

$$\left| \int_{\Gamma_{z}} \left(\frac{\lambda}{\lambda - i} \right)^{m} \pi^{+} \left[g_{2} \left(\lambda \right) G \left(\lambda \right) \right] d\lambda \right| = o \left(1 \right) |\xi|^{\frac{n}{n} + i \beta n + \frac{1}{p}}, \; \xi \to -0. \tag{36}$$

Следовательно, для того, чтобы выполнялось (33), необходимо и достаточно, чтобы выполнялось условие

$$\left|\int_{0}^{\infty}\sum_{k=1}^{m}\frac{c_{m-k}}{(m-k)!(\lambda-i)^{k}}d\lambda\right|=o(1)\left|\xi\right|^{\frac{\alpha}{2}+i\beta\alpha+\frac{1}{\rho}},\ \xi\to-0.$$

Выполнение этого условия возможно только при $c_k = 0$, k = 0, $1, \cdots, m-1$; то есть для того, чтобы (33) выполнялось, необходимо и достаточно, чтобы сама функция $= [g_2(\lambda) G(\lambda)]$ и первые m-1 ее производные обращались в нуль в точке i. Если (i) — прообраз Фурье функции $g_2(\lambda) G(\lambda)$, эти условия запишутся так:

$$\int_{0}^{\pi} t^{k} e^{-t} \psi_{1}(t) dt = 0, k = 0, 1, \dots, m-1.$$
 (37)

Можно объединить эти условия с (31). Действительно, учитывая (37) представление (35) примет вид

$$\pi^{+} \left[g_{2} \left(\lambda \right) F \left(\lambda \right) \right] = \left(\frac{\lambda}{\lambda - i} \right)^{m} \pi^{+} \left[g_{2} \left(\lambda \right) G \left(\lambda \right) \right] \tag{38}$$

и, следовательно, условия (31) имеют вид

$$\int_{0}^{\pi} t^{k} e^{-t} \psi_{1}(t) dt = 0, k = m, \dots, m + \gamma - 1.$$

Таким образом, для того, чтобы уравнение (21) было разрешимо в R_p^+ , $1 , когда <math>F(\lambda)$ допускает представление (9), необходимо выполнение $m+\gamma$ условий (10).

Эти условия будут также и достаточными. Действительно, если (10) выполнены, то справедлива формула (38) и, следовательно, функция

$$\Phi^{+}(\lambda) = \Phi_{0}^{+}(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{-1} g_{1}^{-1}(\lambda) \left(\frac{\lambda}{\lambda - i}\right)^{m} \pi \left[g_{2}(\lambda) G(\lambda)\right]$$

является решением (21). Кроме того, так как $m = \left[\text{Re} z_+ + i \beta \pi + \frac{1}{p} \right]$, то $\Phi^+(\lambda) \in R_+^+$. В случае $\gamma > 0$ теорема 1 доказана.

б). Пусть теперь 7 < 0. Рассмотрим уравнение (22);

$$g_1(\lambda) \left(\frac{\lambda-i}{\lambda+i}\right)^{\intercal} \frac{\Phi^+(\lambda)}{\Phi_0^+(\lambda)} = \pi^+ \left[g_2(\lambda) F(\lambda)\right] + \sum_{k=1}^{-\intercal} \frac{\zeta_{-k-\uparrow}}{(\lambda-i)^k}$$

Так же, как и при $\gamma \gg 0$, правая часть должна удовлетворять условию (33) для того, чтобы решение (22) в R_{α}^{+} существовало:

$$\left| \int_{\Gamma_{\epsilon}} \left[\pi^{+} \left[g_{2} \left(\lambda \right) F \left(\lambda \right) \right] + \sum_{k=1}^{-1} \frac{\zeta_{-k-1}}{(\lambda - i)^{k}} \right] d\lambda \right| = o \left(1 \right) \left| \xi \right|^{\alpha_{+} + 1\beta \kappa + \frac{1}{\beta}}, \zeta \to -0.$$
 (39)

Для $F(\lambda)$, допускающих представление (9), справедлива формула (35), следовательно, учитывая (36), условие (39) примет вид

$$\left| \int_{\Gamma_{\xi}} \left[\sum_{k=1}^{-\tau} \frac{\zeta_{-k-\tau}}{(\lambda - i)^k} - \sum_{k=1}^{m} \frac{c_{m-k}}{(m-k)!} (\lambda - i)^k \right] d\lambda \right| =$$

$$= o(1) |\xi|^{a_+ + l\beta\pi + \frac{1}{\rho}}, \; \xi \to -0.$$
(40)

Пусть сначала $m \gg -\gamma + 1$. В этом случае для выполнения (40) необходимо и достаточно, чтобы

$$\zeta_{-\gamma-k} = \frac{c_{m-k}}{(m-k)!}, k=1,\dots,-\gamma,$$
 (41)

$$c_{m-1}=0, k=-\gamma+1, \cdots, m.$$
 (42)

Тогда решение (22) запишется так:

$$\Phi^{+}(\lambda) = g_{1}^{-1}(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{-1} \Phi_{0}^{+}(\lambda) \left(\frac{\lambda}{\lambda - i}\right)^{m} \pi^{+} \left[g_{2}(\lambda) G(\lambda)\right]. \tag{43}$$

При выполнении условий (42) формула (43) определит решение (22) в R_ρ^+ , причем можно проверить, что для втой Φ^+ (λ) (41) также выполняются. Следовательно (42) необходимы и достаточны, чтобы решение (22) в R_ρ^+ существовало. Если ψ_1 —прообраз Фурье функции g_2 (λ) \times \times G (λ), то условия (42) имеют вид (10). Теорема 1 доказана.

Пусть теперь $m=-\gamma$. В этом случае условие (40) выполняется тогда и только тогда, когда

$$\zeta_{m-k} = \frac{c_{m-k}}{(m-k)!}, \ k = 1, \cdots, m.$$
 (44)

Но формула (43), которая в этом случае примет вид (11), определяет функцию Φ^+ (λ), которая удовлетворяет условиям (44) и является решением (22) в R_p^+ . Теорема 2 доказана.

Теперь рассмотрим последний случай $m < -\gamma$.

Для выполнения условий (40) в этом случае необходимо и достаточно, чтобы функция

$$\left\{\sum_{k=1}^{-1}\frac{\zeta_{-1-k}}{(\lambda-i)^k}-\sum_{k=1}^m\frac{c_{m-k}}{(m-k)!(\lambda-i)^k}\right\}$$

имела следующий вид:

$$\sum_{k=1}^{-1} \frac{\zeta_{-1-k}}{(\lambda-i)^k} - \sum_{k=1}^m \frac{c_{m-k}}{(m-k)!(\lambda-i)^k} = \left(\frac{\lambda}{\lambda-i}\right)^m \frac{P_{-1-m-1}(\lambda)}{(\lambda-i)^{-1-m}}.$$

Здесь $P_{-\gamma-m-1}(\lambda)$ — полином степени — $\gamma-m-1$. Из этого следует что уравнение (22) в R_p^+ всегда разрешимо и однородное уравнение имеет — $\gamma-m$ линейно независимых решений. Общее решение определяется по формуле (12). Теорема 3 доказана.

2. В случае, когда уравнение (1) решается в пространстве $L^1(0,\infty)$ или $L^\infty(0,\infty)$ в силу леммы 2 условия (33) при $\gamma>0$ и (3) при $\gamma<0$ следует заменить на

$$\left|\frac{1}{|x|^{s_{+}+l\beta\pi}}\pi^{+}[g_{2}(x+ix^{2})F(x+ix^{2})]-c\right|=o(1), x\to -0$$
 (45)

при ү≥0

$$\left| \frac{1}{|x|^{n} + i\beta x} \left[\pi^{+} \left[g_{2} \left(x + i x^{2} \right) F \left(x + i x^{2} \right) \right] + \sum_{k=1}^{-7} \frac{\zeta_{-7-k}}{(x + i x^{2} - i)^{k}} \right] - c \right| = o(1), \ x \to -0,$$
(46)

при γ < 0 в случае L^1 (0, ∞); и

$$\left|\int_{\Gamma_{\varepsilon}} \pi^{+} \left[g_{2}(\lambda) G(\lambda)\right] d\lambda\right| \leq M \cdot |\xi|^{\alpha_{+} + i\beta_{E}}, \ \xi \to -0, \tag{47}$$

при ү≥0,

$$\left| \int_{\Gamma_{\varepsilon}} \left[\pi^{+} \left[g_{2} \left(\lambda \right) F \left(\lambda \right) \right] + \sum_{k=1}^{-7} \frac{\zeta_{-\gamma-k}}{(\lambda-i)^{k}} \left| d\lambda \right| \leq M \cdot |\xi|^{\alpha++\beta\alpha}, \; \xi \to -0, \quad (48)$$

при $\tau < 0$ в случае $L^{\infty}(0, \infty)$. Все остальные рассуждения вполне аналогичны рассуждениям пункта 1.

§ 4. Случай симметрического ядра

Рассмотрим случай, когда ядро уравнения (1) симметрическое: $k(t) = \overline{k}(-t)$. В этом случае символ уравнения $1 - K(\lambda) - \lambda$ действительная функция. При этом условии факторизацию (5) можно уточнить. Рассмотрим представление символа (5*):

$$1-K(\lambda) = \left(\frac{\lambda}{\lambda+i}\right)^{\frac{1}{4}(\alpha_1+\alpha_2)+\delta} \left(\frac{\lambda}{\lambda-i}\right)^{\frac{1}{4}(\alpha_1+\alpha_2)-\delta} \psi(\lambda) \left(\frac{\lambda-i}{\lambda+i}\right)^{\alpha} \frac{\Phi_0^{-}(\lambda)}{\Phi_0^{+}(\lambda)}.$$

Здесь $\psi(\lambda)$ — функция (6), $\delta = -i\beta\pi + \frac{i}{2\pi}\log[b/a]$, $i\beta\pi = \frac{1}{4}(\alpha_1 - \alpha_2)$, a, b, a_1 и a_2 определяются из представления (4). Так как $1-K(\lambda)$ — действительная функция, то $\alpha_1 = \overline{\alpha}_1$, $\alpha_2 = \overline{\alpha}_2$.

Перейдем к комплексно сопряженной функции

$$1 - K(\lambda) = \left(\frac{\lambda}{\lambda - i}\right)^{\frac{1}{4}(\alpha_1 + \alpha_2) - i\beta \pi - \frac{1}{2\pi} \overline{\log[b/a]}} \left(\frac{\lambda}{\lambda + i}\right)^{\frac{1}{4}(\alpha_1 + \alpha_2) + i\beta \pi + \frac{i}{2\pi} \overline{\log[b/a]}} \times$$

$$\times \psi(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{-\pi} \frac{\Phi_1^{-}(\lambda)}{\Phi_1^{+}(\lambda)}. \tag{49}$$

Здесь $\Phi_{i}^{\pm}(\lambda) = \overline{[\Phi_{0}^{\pm}(\lambda)]^{-1}}$, $\Phi_{i}^{\pm}(\lambda)$ аналитически продолжимы в D^{\pm} и не обращаются в втих областях в нуль. Равенство (49) можно переписать в виде

$$1 - K(\lambda) = \left(\frac{\lambda}{\lambda + i}\right)^{\frac{1}{4}(\alpha_1 + \alpha_2) - i \vartheta \pi - \frac{l}{2\pi} \overline{\log[b/a]}} \left(\frac{\lambda}{\lambda - i}\right)^{\frac{1}{4}(\alpha_1 + \alpha_2) + i \vartheta \pi - \frac{l}{2\pi} \overline{\log[b/a]}} \times \times \psi(\lambda) \left(\frac{\lambda - i}{\lambda + i}\right)^{-x} \frac{\Phi_1^{-}(\lambda)}{\Phi_1^{+}(\lambda)}$$

$$(50)$$

(были использованы соотношения:

$$\begin{split} \exp\left[\beta\left(\log\frac{\lambda}{\lambda+i}-i\,\frac{\pi}{2}\right)^2\right] &= \exp\left[\beta\left(\log\frac{\lambda}{\lambda+i}+i\,\frac{\pi}{2}\right)^2\right] \\ &+i\,\frac{\pi}{2}\right)^2\left]\left(\frac{\lambda}{\lambda+i}\right)^{-2\pi i\beta}\,e^{-\beta\pi^2}\,, \\ \exp\left[-\beta\left(\log\frac{\lambda}{\lambda-i}-i\,\frac{\pi}{2}\right)^2\right] &= \exp\left[-\beta\left(\log\frac{\lambda}{\lambda-i}+i\,\frac{\pi}{2}\right)^2\right] \\ &+i\,\frac{\pi}{2}\right)^2\left[\left(\frac{\lambda}{\lambda-i}\right)^{2\pi i\beta}\,e^{\beta\pi^2}\,. \end{split}$$

Для действительной функции $1-K(\lambda)$ представления (5*) и (50) должны совпадать. Следовательно, $(b/\alpha)>0$ и $\kappa=0$. Окончательно представление (5*) примет вид

$$1-K(\lambda) = \left(\frac{\lambda}{\lambda+i}\right)^{\frac{1}{4}(\alpha_0+\alpha_0)+\delta} \left(\frac{\lambda}{\lambda-i}\right)^{\frac{1}{4}(\alpha_0+\alpha_0)-\delta} \psi(\lambda) \frac{\Phi_0^-(\lambda)}{\Phi_0^+(\lambda)}, \quad (51)$$

причем Re 8 = - Вп. Факторизация символа типа (5) имеет вид

$$1 - K(\lambda) = \left(\frac{\lambda}{\lambda + i}\right)^{\frac{1}{4}(\alpha_1 + \alpha_2) + \delta + \lambda} \left(\frac{\lambda}{\lambda - i}\right)^{\frac{1}{4}(\alpha_1 + \alpha_2) - \delta - \lambda} \varphi(\lambda) \times \left(\frac{\lambda - i}{\lambda + i}\right)^{-\lambda} \frac{\Phi_0^{-}(\lambda)}{\Phi_0^{+}(\lambda)}, \tag{52}$$

TAE

$$k = \left\lceil \frac{\alpha_1 + \alpha_2}{4} + i\beta \pi \right\rceil + 1.$$

Следовательно, полученные результаты в данном случае примут следующий вид:

1. Пусть
$$1 или $p = 1$, ∞ и $\left[\frac{1}{4}(a_1 + a_2)\right] \neq \frac{1}{4}(a_1 + a_2)$.$$

Предполагается, что $m = \left[\frac{1}{4}(\alpha_1 + \alpha_2) + \frac{1}{p}\right] + k$.

Tе о рема 1'. Уравнение (1) с правой частью, допускающей представление (9), имеет решение принадлежащее L^p (0, ∞), при $\left[\frac{1}{4}(a_1+a_2)+\frac{1}{p}\right]>0$ тогда и только тогда, когда выполнены $\left[\frac{1}{4}(a_1+a_2)+\frac{1}{p}\right]$ условий

$$\int_{0}^{\pi} t^{k} e^{-t} \psi_{1}(t) dt = 0, k = 0, 1, \dots, \left[\frac{z_{1} + \alpha_{2}}{4} + \frac{1}{p} \right] - 1,$$

гле $\psi_1(t)$ — прообрав Фурье функции $g_2(\lambda)$ $G(\lambda)$. Однородное уравнение не имеет нетривиальных решений.

Теорема 2'. При $\left[\frac{1}{4}(\alpha_1+\alpha_2)+\frac{1}{p}\right]=0$ существует единственное решение уравнения (1) в классе $L^p\left(0,\infty\right)$ при правой части, допускающей представление (9). Это решение определяется, как прообраз Фурье функции

$$\Phi^{+}(\lambda) = g_{1}^{-1}(\lambda) \left(\frac{\lambda}{\lambda + i}\right)^{m} \Phi_{0}^{+}(\lambda) \pi^{+} [g_{2}(\lambda) G(\lambda)].$$

2. Пусть $p=1, \frac{1}{4} (a_1+a_2)=\left[\frac{1}{4} (a_1+a_2)\right]$. Теорема 1' останется в силе при замене m на m-1 и $\left[\frac{a_1+a_2}{4}+\frac{1}{p}\right]$ —на $\frac{1}{4} (a_1+a_2)$.

3. Пусть $p=\infty$, $\frac{1}{4}(\alpha_1+\alpha_2)=\left[\frac{1}{4}(\alpha_1+\alpha_2)\right]$. Теоремы 1' и 2' останутся в силе при замене m на m-1 и $\left[\frac{\alpha_1+\alpha_2}{4}+\frac{1}{n}\right]$ — на $\frac{1}{4}(\alpha_1+\alpha_2)$ —1.

Случай, когда $\alpha_1 + \alpha_2 = 0$ не рассматриваєм, так как в этом случае символ не вырождается (см. [1]).

Пример.

Рассмотрим уравнение

$$\varphi(t) - \int_{0}^{\infty} k(t-s) \varphi(s) ds = ce^{-\delta t}, t > 0, \qquad (53)$$

rge 6 > 0

$$k(t) = (1-e^{-tt})\frac{1}{t^2} - \frac{6}{t^4} + \left(\frac{6}{t^4} - \frac{6i}{t^2} - \frac{3}{t^2}\right)e^{it}$$

Тогда

$$1-K(\lambda) = \begin{cases} \lambda, & 0 < \lambda \leq 1 \\ -\lambda^3, & -1 \leq \lambda \leq 0 \end{cases}, \quad 1-K(\lambda) = 1, \ |\lambda| > 1.$$

Найдем решения этого уравнения, принадлежащие L^{-} (0, ∞). Так как $\alpha_1 = 3$, $\alpha_2 = 1$, то $i\beta\pi = \frac{1}{4}(\alpha_1 - \alpha_2) = \frac{1}{2}$ и

$$m-1=\frac{1}{4}(\alpha_1+\alpha_2)+\left[\frac{1}{4}(\alpha_1+\alpha_2)+i\beta\pi\right]=2.$$

Для функции $F(\lambda)$ — преобразования Фурье функции $ce^{-\delta t}$, справедливо представление (9):

$$F(\lambda) = \frac{c}{\lambda + i\delta} = \left(\frac{\lambda}{\lambda - i}\right)^2 \frac{c_1}{\lambda + i\delta} + \frac{c_2}{\lambda - i} + \frac{c_3}{(\lambda - i)^3},$$

где

$$c_1 = c\left(1 + \frac{3}{\delta^2}\right), c_2 = -\frac{3c}{\delta^2}, c_3 = \frac{ic}{\delta}\left(\frac{3}{\delta} - 1\right),$$

$$\pi^{+}\left[g_{2}\left(\lambda\right)G\left(\lambda\right)\right]=\frac{g_{2}\left(-\delta i\right)c_{1}}{\lambda+i\delta}.$$

В данном случае $\frac{1}{4}$ ($\alpha_1 + \alpha_3$)=1, следовательно, в силу 3, уравнение (53) имеет в L^- (0, ∞) единственное решение, которое определяется как прообраз Фурье функции

$$\Phi^{+}(\lambda) = g_1^{-1}(\lambda) \left(\frac{\lambda}{\lambda + i}\right)^2 \Phi_0^{+}(\lambda) \frac{g_2(-\delta i) c_3}{\lambda + \delta i}.$$

Ерованский политохнический институт им. К. Маркса

Поступила 31.VIII-1981

Ա. Հ. ԲԱԲԱՅԱՆ. Վիներ-Հոպֆի հավասարման հատուկ դեպք *(ամփոփում)*

Այխատանցում հետազոտվում է Վիևեր-Հոպֆի ինտեգրալ հավասարումը $L_p\left(0,\infty
ight)$ 1 ցասերում։

Zudwampdwb $1-K(\lambda)$ upddage, abpol zpzwhwigard arbh shakimi abwswamrdbbpe' $1-K(\lambda)\sim |\lambda|^{\alpha_1},\ \lambda \to -0$

$$1 - K(\lambda) \sim |\lambda|^{\alpha_1}, \ \lambda \to +0$$

number at 1 - at prompted phot to

Գանված են համասեռ հավասարման բոլոր լուծումները և նույնպես լուծման պայմանները ոչ համասեռ հավասարման համար, աջ մասի վրա որոշ սահմանափակումների դեպրում։

A. O. BABAYAN. Degenerative case of Wiener-Hopf equation (summary)

The paper investigates the Wiener-Hopf equation in $L^p(0, \infty)$, $1 classes. It is assumed that the <math>1 - K(\lambda)$ symbol of the equation admits the following behaviour at zero;

$$1 - K(\lambda) \sim |\lambda|^{\alpha_1}, \ \lambda \to -0,$$

$$1 - K(\lambda) \sim |\lambda|^{\alpha_0}, \ \lambda \to +0,$$

where $\alpha_1 - \alpha_2$ is the real number. Conditions making the non-homogeneous equation solvable and all solutions of homogeneous integral equation have been found.

ЛИТЕРАТУРА

- 1. М. Г. Крейн. Интегральные уравнения на полупрямой с ядром, зависящим от разности аргументов, УМН 13, вып. 5, 1958, 3—120.
- 2. Ф. Д. Гахов, Ю. И. Черский. Особые интегральные уравнения типа свертки, Изв. АН СССР, сер. матем., 20, № 1, 1956, 3—52.
- 3. Н. Е. Товмасян. Особый случай интегрального уравнения Винера—Хопфа, Сибирский матем. журнал, XIX, № 4, 1978, 902—922.
- Н. К. Карапетяну. Интегральные уравнения Винера—Хопфа с символом, имеющим нуль аробного порядка, Дифф. уравнения, т. XIII, № 8, 1977, 1471—1479.
- 5. З. Прёсдорф. Некоторые классы сингулярных уравнений, М., 1972.
- 6. М. И. Хайкин. Однородное уравнение Винера—Хопфа в классе функций умеренного роста, Изв. вувов, матем., 8, 1978, 91—103.