В. М. МАРТИРОСЯН

О ЗАМЫКАНИИ, МИНИМАЛЬНОСТИ И БАЗИСНОСТИ СИСТЕМ ФУНКЦИЙ ТИПА МИТТАГ-ЛЕФФЛЕРА НА СИСТЕМЕ ЛУЧЕЙ

Ввеленне

Настоящая работа посвящена исследованию вопросов полноты, описания замыкания, минимальности и базисности определенных систем функций, порожденных целой функцией типа Миттаг-Леффлера $\mathcal{E}_{\rho}(z;\mu)$, гле

$$E_{\rho}(z; \mu) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma\left(\mu + \frac{n}{\rho}\right)} (\rho > 0, -\infty < \mu < +\infty).$$

При этом рассмотрения ведутся в пространствах $L_{2, \omega}(\Gamma) \equiv L_{2}(\Gamma; |\zeta|^{\omega} d\zeta|)(-1 < \omega < 1)$ функций, определенных на конечной сист еме лучей Γ , исходящих из начала координат.

Приведем краткий обзор связа нных с данным исследованием работ.

 1° (a). Пусть $|\lambda_k|_1^{\infty}$ (Re $\lambda_k > 0$)— произвольная последовательность комплексных чисел (среди которых могут быть и повторяющиеся) из правой полуплоскости. Следуя М. М. Джрбашяну [1], обозначим s_k кратность появления числа λ_k на отрезке $\{\lambda_j\}_1^k$. Теорема Мюнца Саса о полноте системы вкспонент в наиболее общем виде может быть сформулирована следующим образом [1—3].

Теорема. Для полноты в $L_{2}(0,+\infty)$ системы функций $\{e^{-\lambda_{k}x}x^{s_{k}-1}\}_{1}^{n}$ необходимо и достаточно условие

$$\sum_{k=1}^{\infty} \frac{\operatorname{Re} \lambda_k}{1 + |\lambda_k|^2} = + \infty.$$

М. М. Джрбашяном было получено существенное обобщение этого результата; им был установлен критерий полноты систем функций, порожденных целой функцией типа Миттаг-Леффлера E_{ρ} (z; μ) [3]. Чтобы сформулировать соответствующий результат, введем обозначения.

Обозначим через $L_{2,\,\omega}(0,\,+\,\infty)(-1<\omega<1)$ гильбертово пространство измеримых на $(0,\,+\,\infty)$ функций f с конечной нормой

$$\iint_{L_{2, \infty}(0, +\infty)} = \left\{ \int_{0}^{+\infty} |f(x)|^{2} x^{\omega} dx \right\}^{1/2} < + \infty.$$

Пусть, далее, $[\lambda_k]_1^{\infty}$ ($|\arg\lambda_k| < \pi/(2\alpha)$, $1/2 < z < + \infty$) — последовательность комплексных чисел, а $s_k > 1$ —кратность появления числа λ_k на отрезке $\{\lambda_j\}_1^k$. С втой последовательностью можно ассоциировать систему функций $\{\omega_1^*(x;\lambda_k)\}_1^{\infty}$ из L_2 , $(0, +\infty)$, положив

$$\omega_{p}^{\bullet}(x; \lambda_{k}) = E_{p}^{(s_{k}-1)}(-\lambda_{k} x; \mu) x^{s_{k}-1} (k = 1, 2, \cdots),$$

$$\rho = \frac{\alpha}{2\alpha - 1}, \quad \mu = \frac{1 + \omega + \rho}{2\alpha}.$$

Теорема (М. М. Джрбашян). Для полноты в $L_{2, \infty}(0, +\infty)$ системы функций $\{\omega_{k}^{\bullet}(x; \lambda_{k})\}^{T}$ необходимо и достаточно условие

$$\sum_{k=1}^{\infty} \frac{\operatorname{Re}^{\lambda_k^{\alpha}}}{1+|\lambda_k|^{2\alpha}} = +\infty^*.$$

Если учесть, что $E_1(z; 1) = \exp(z)$, то при $\omega = 0$, $\alpha = 1$ ($\rho = \mu = 1$), эта теорема переходит в теорему Мюнца-Саса в обобщенной формулировке.

(6) В связи с теоремой Мюнца-Саса в работе Λ . Шварца [4] были выявлены характеристические свойства функций, принадлежащих замыканию системы $\{e^{-\lambda_k x}\}_1^\infty$ в метриках $L_p(0, +\infty)$, $p \geqslant 1$, или $C[0, +\infty]$, в предположении, что λ_k вещественны, $\uparrow +\infty$ и ряд $\sum 1 / \lambda_k$ сходится. Но следует отметить, что эти свойства не дают собственно внутренней характеризации замыкания системы $\{e^{-\lambda_k x}\}_1^\infty$ в случае ее неполноты.

Впервые в работе М. М. Джрбашяна [1] (см. также [2]) было дано полное внутреннее описание замыкания системы $\{e^{-\lambda_k}, x^{\lambda_k-1}\}_1^\infty$ (Re $\lambda_k > 0$) в случае ее неполноты в L_2 (0, $+\infty$); втот результат содержит в себе, в частности, результат работы [4] в принципиально важном случае p=2.

В работе С. А. Акопяна и И. О. Хачатряна [5] было дано полное внутреннее описание замыкания системы $[w_{\rho}(x; \lambda_{k})]_{1}^{\infty}$, в случае ее неполноты в $L_{2, \infty}(0, +\infty)$.

(в) Другие обобщения сформулированных выше теорем Мюнца-Саса и М. М. Джрбашяна были получены в работах [6-10]. В них были рассмотрены вопросы замыкания и базисности систем функций вида $[e^{-\lambda_k \cdot z} \cdot z^{s_k-1}]$ и $[E_{\mathfrak{p}}^{(s_k-1)}(-\lambda_k \cdot z; \mu) \cdot z^{s_k-1}]_{\mathfrak{p}}^{\infty}$ в различных пространствах функций, определенных на системе двух лучей, исходящих из точки z=0.

В работе [11] был установлен критерий полноты на конечной системе лучей систем функций типа Миттат-Леффлера. Чтобы сформулировать этот результат введем обозначения.

Пусть $N \geqslant 2$ — целое и $L_{2, \omega}$ (Γ) ($-1 < \omega < 1$)— пространство функций f, измеримых на системе лучей Γ , где

$$\Gamma = \bigcup_{n=1}^{N} \{\zeta \colon \operatorname{Arg} \zeta = \vartheta_n\}, \ 0 \leqslant \vartheta_1 < \cdots < \vartheta_N < 2\pi$$

^{*} Всюду в этой работе под z^a подразумевается та ветвь этой функции, которая на полуоси $(0, +\infty)$ принимает положительные значения.

и имеющих конечную норму

$$\|f\|_{2,\,\infty}=\|\int\limits_{\mathbb{R}}|f(\zeta)|^2\,|\zeta|^{\infty}\,|d\zeta||^{1/2}<+\,\infty.$$

Пусть, далее

$$\max_{1 < n < N} \left\{ \frac{\pi}{\vartheta_{n+1} - \vartheta_n} \right\} < \rho \left(\vartheta_{N+1} = \vartheta_1 + 2\pi \right),$$

и при фиксированном $n (1 \leqslant n \leqslant N) \{\lambda_k^{(n)}\}_{k=1}^m$ — последовательность комплексных чисел из угловой области $\theta_n + \pi/(2\rho) \leqslant \operatorname{Arg} \lambda \leqslant \theta_{n+1} - \pi/(2\rho)$, а $s_k^{(n)}$ — кратность появления числа $\lambda_k^{(n)}$ на отрезке $\{\lambda_j^{(n)}\}_{j=1}^k$. Полагая $\mu = (1 + \omega + \rho)/(2\rho)$, рассмотрим систему функций

$$E_{\rho}^{\left(s^{(n)}-1\right)}\left(\overline{\lambda_{k}^{(n)}}z;\;\mu\right) \; z^{s^{(n)}-1} \; (k=1,\;2,\cdots;\;1\leqslant n\leqslant N). \tag{1}$$

Те орема (А. Е. Аветисян, С. А. Акопян, И. О. Хачатрян). Лля полноты в $L_{2, m}(\Gamma)$ системы функций (1) необходимо и достаточно, чтобы одновременно выполнялись условия

$$\sum_{k=1}^{\infty} (1+|\lambda_k^{(n)}|^{2\beta_n})^{-1} \operatorname{Re} \left[e^{i\eta_n} \overline{\lambda_k^{(n)}}\right]^{\beta_n} = +\infty,$$

$$\tau_{ln} = \frac{1}{2} (\vartheta_n + \vartheta_{n+1}), \ \pi/\beta_n = \vartheta_{n+1} - \vartheta_n - \pi/\rho \ (1 \leqslant n \leqslant N).$$

Следует отметить, что при доказательстве этой теоремы авторы пользуются классическим методом сведения задачи полноты к теореме единственности в определенном классе голоморфных функций, что, в свою очередь, сводит задачу к обращению интегрального преобразования М. М. Джрбашяна на системе лучей.

2°. В данной работе рассматриваются более общие чем (1) системы. Эти системы определяются следующим образом.

Пусть

$$\varphi_n > \frac{\pi}{\vartheta_{n+1} - \vartheta_n} \ (1 \leqslant n \leqslant N)$$

и $\{\lambda_k^{(n)}\}_{k=1}^{\infty}$ — последовательность комплексных чисел из угловой области $\vartheta_n + \pi/(2\rho_n) < \operatorname{Arg} \lambda < \vartheta_{n+1} - \pi/(2\rho_n)$, а $s_k^{(n)}$ — кратность появления числа $\lambda_k^{(n)}$ на отревке $\{\lambda_j^{(n)}\}_{j=1}^k$. Полагая $\mu_n = (1+\omega+\rho_n)/(2\rho_n)$, рассмотрим систему функций

$$E_{f_n}^{\left(s_k^{(n)}-1\right)}(\overline{h_k^{(n)}}z; \mu_n) z^{s_k^{(n)}-1} (k=1, 2, \dots; 1 \leqslant n \leqslant N).$$
 (2)

Для этой системы устанавливаются критерии полноты, минимальности и базисности (в ее замыкании) в метрике $L_{2,\,\,\omega}$ (Γ). В случае неполноты такой системы дается пол ное внутреннее описание ее замыкания, а в случае минимальности строится биортогональная с ней система функций.

При установлении этих результатов мы основываемся на том, что $L_{2, \infty}(\Gamma)$ представимо в виде прямой суммы пространств $H_2^{(\omega)}[\Delta_n]$ $(1 \le n \le N)$ функций F, голоморфных в угловой области

$$\Delta_n^{\circ} = \{z: \theta_{n+1} < \text{Arg } z < \theta_n + 2\pi, \ 0 < |z| < +\infty\}$$

и имеющих конечную норму

$$\|F\|_{H_{2}^{(\alpha)}\left[\begin{array}{c} \Delta_{n} \end{array}\right]}^{\bullet} = \sup_{0 < n+1 < \phi < 0_{n} + 2\pi} \left\{ \int_{0}^{+\infty} |F(re^{i\phi})|^{3} r^{\alpha} dr \right\}^{l/2} < + \infty.$$

Пользуясь этим фактом, мы сводим задачи замыкания, минимальности и базисности системы (2) в метрике $L_{2, \infty}(\Gamma)$ к соответствующим известным результатам [10] для системы

$$E_{\rho_n}^{\left(s_k^{(n)}-1\right)}(\overline{b_k^{(n)}}z; \mu_n) z^{s_k^{(n)}-1} (k=1, 2, \cdots)$$

в метрике $H_2^{(\omega)}[\Delta_n^*]$.

Введем следующие обозначения:

(a) Пусть
$$N \geqslant 2$$
— целое и $0 \leqslant \vartheta_1 \leqslant \cdots \leqslant \vartheta_N \leqslant 2\pi$, $\vartheta_{N+1} = \vartheta_1 + 2\pi$.

 Δ ля значений $n=1,\cdots,N$ обозначим через

$$\Delta_n = \{z: \, \partial_n < \operatorname{Arg} z < \partial_{n+1}, \, 0 < |z| < + \infty \},$$

$$\Delta_n^* = \{z: \, \partial_{n+1} < \operatorname{Arg} z < \partial_n + 2\pi, \, 0 < |z| < + \infty \}$$

взаимно-дополнительные угловые области на конечной комплексной плоскости С.

Пусть параметры рл определяются из условий

$$\rho_n > \frac{\pi}{\vartheta_{n+1} - \vartheta_n} (n = 1, \dots, N).$$

Обозначим через Δ (ρ_n) угловую область

$$\Delta (\rho_n) = \left\{ z: \vartheta_n + \frac{\pi}{2\rho_n} < \operatorname{Arg} z < \vartheta_{n+1} - \frac{\pi}{2\rho_n}, \ 0 < |z| < + \infty \right\}$$

и положим

$$\eta_n = \frac{\vartheta_n + \vartheta_{n+1}}{2}, \quad \frac{\pi}{\beta_n} = \vartheta_{n+1} - \vartheta_n - \frac{\pi}{\rho_n} \quad (n=1,\dots, N).$$

Очевидно, что π/β_n — вто раствор угловой области Δ (ρ_n) . Ясно также, что Δ (ρ_n) является подоблястью области Δ_n и луч $\{re^{i\tau_n}: r>0\}$ является общей биссектрисой этих угловых областей.

Обозначим также через

$$\widetilde{\Delta} (\rho_n) = \left\{ z: -\vartheta_{n+1} + \frac{\pi}{2\rho_n} < \operatorname{Arg} z < -\vartheta_n - \frac{\pi}{2\rho_n}, \ 0 < |z| < +\infty \right\},\,$$

$$\widetilde{\Delta}^* \left(\gamma_n \right) = \left\{ z: -\vartheta_n - \frac{\pi}{2\rho_n} < \operatorname{Arg} z < -\vartheta_{n+1} + \frac{\pi}{2\rho_n} + 2\pi, \ 0 < |z| < + \infty \right\},$$

взаимно-дополнительные угловые области на конечной комплексной плоскости С. Очевидно, что Δ (ρ_n) и $\widetilde{\Delta}$ (ρ_n) симметричны относительно вещественной оси. Через $\partial \widetilde{\Delta}^*$ (ρ_n) обозначим границу $\widetilde{\Delta}^*$ (ρ_n), пробегаемую в положительном относительно втой области направлении.

 \mathcal{A}_{a} лее, обозначим через $\Gamma = \bigcup_{n=1}^{N} \Gamma_{\theta_n}$ систему N лучей Γ_{θ_n} ($n=1,\cdots,N$), исходящих из точки $\zeta=0$, где

$$\Gamma_{\theta_n} = |\zeta| \cdot \operatorname{Arg} \zeta = \theta_n, \ 0 \leqslant |\zeta| < + \infty|.$$

Эта система лучей Γ разбивает плоскость C на непересекающиеся угловые области Δ_n ($n=1,\cdots,N$) и является границей их объединения.

(б) Для дальнейшего изложения нам необходимо также определить некоторые классы функций.

Полагая, что -1 < w < 1, обозначим через $L_{2,w}$ (Γ) гильбертово пространство измеримых на Γ функций f с конечной нормой

$$||f||_{2, -} = \left\{ \int_{\Gamma} |f(\zeta)|^2 |\zeta|^{\infty} |d\zeta| \right\}^{1/2} =$$

$$= \left\{ \sum_{n=1}^{N} \int_{0}^{+\infty} |f(re^{i\theta_n})|^2 r^{\infty} dr \right\}^{1/2} < + \infty.$$

Пусть далее

$$\Delta = \{z: \chi < \text{Arg } z < x, 0 < |z| < +\infty\}, 0 < x - \chi < 2\pi$$

— произвольная угловая область на комплексной плоскости С. Обозначим через $H^{(\infty)}[\Delta]$ класс функций F, голоморфных в Δ и таких, что

$$\|F\|_{H_{2}^{(m)}[\Delta]}^{1} = \sup_{z < \infty} \left\{ \int_{0}^{+\infty} |F(re^{i\varphi})|^{3} r^{\infty} dr \right\}^{1/2} < +\infty.$$
 (3)

Такие классы функций, голоморфных в угловых областях, впервые были введены и исследованы М. М. Джрбашяном и А. Е. Аветисяном [12] (см. также [13], гл. VII). Они являются естественными обобщениями на произвольные угловые области известного класса H_2 в полуплоскости (см., напр., [14]), и для них имеют место аналоги ряда важных свойств класса H_2 . В частности, справедлива следующая теорем1 (см. [13], теорему 7.5).

Теорема А. Если $f \in H^{(\omega)}[\Delta]$, то

1. Почти всюму на границе $\partial \Delta$ области Δ существуют угловыг граничные значения $F(\zeta)$ функции F, причем

$$\|F\|_{H_2^{(\omega)}[\Lambda]} = \left\{ \int_{\partial \Lambda} |F(\zeta)|^2 |\zeta|^{\omega} |d\zeta| \right\}^{1/2} < +\infty \tag{4}$$

и справедливы равенства

$$\lim_{\varphi \to \chi + 0} \int_{0}^{+\infty} |F(re^{i\chi}) - F(re^{i\varphi})|^{2} r^{\omega} dr = 0,$$

$$\lim_{\varphi \to z \to 0} \int_{0}^{+\infty} |F(re^{i\chi}) - F(re^{i\varphi})|^{2} r^{\omega} dr = 0;$$

2°. Имеет место интегральная формула

$$\frac{1}{2\pi i} \int_{\partial z} \frac{F(\zeta)}{\zeta - z} d\zeta = \begin{cases} F(z), & npu \ z \in \Delta, \\ 0, & npu \ z \in \mathbb{C} \setminus \overline{\Delta}, \end{cases}$$

где направление на $d\Delta$ совпадает с направлением положительного обхода области Δ .

В силу утверждения 1° этой теоремы в $H_2^{(\omega)}[\Delta]$ можно ввести скалярное произведение

$$(F, G) = \int_{\mathbb{R}^3} F(\zeta) \overline{G(\zeta)} |\zeta|^{\infty} |d\zeta|; F, G \in H_2^{(\omega)}[\Delta].$$
 (5)

При этом $H_{2}^{(m)}[\Delta]$ со скалярным произведением (5) является гильбертовым пространством и

$$\frac{1}{V[\bar{2}]} \|F\|_{H_2^{(\omega)}[\lambda]} \le \|F\|_{H_2^{(\omega)}[\lambda]} \le \|F\|_{H_2^{(\omega)}[\lambda]}$$
 (6)

(см. [15], теорему 2).

(в) Между пространством $L_{2, \infty}(\Gamma)$ и пространствами $H_2^{(\infty)}[\Delta_n](n=1,\dots,N)$ имеется прямая связь.

Во-первых, каждую функцию $F_n \in H_2^{(\infty)}$ [Δ_n^*] можно рассматривать как элемент пространства $L_{2,\infty}(\Gamma)$. Действительно, в силу теоремы А функция F_n однозначно определяется своими граничными значениями F_n (ζ), $\zeta \in \partial \Delta_n^*$; и поскольку $\partial \Delta_n^* \subset \Gamma$, то F_n полностью определяется заданием ее значений на Γ . А из неравенств (3) и (4) следует, что $F_n \in I_{-2,\infty}(\Gamma)$, причем в силу (6) имеем

$$\|F_n\|_{H_2^{(\omega)}, \left[\Delta_n^*\right]} \leqslant \|F_n\|_{2, \, \omega} \leqslant N \|F_n\|_{H_2^{(\omega)}, \left[\Delta_n^*\right]}. \tag{6'}$$

При этом заметим, что мы можем рассматривать сужение F_n на Γ , так как $\Gamma \subset \Delta_n^* \cup \partial \Delta_n^*$.

С другой стороны, если рассмотреть функцию

$$f(\zeta) = \sum_{n=1}^{N} F_n(\zeta), \zeta \in \Gamma,$$

где $F_n \in H_2^{(\infty)}[\Delta_n]$, то $f \in L_{2,\infty}(\Gamma)$. Оказывается, что вто представление карактерно для пространства $L_{2,\infty}(\Gamma)$. Именно, имеет место

T е p е p в p

$$f(\zeta) = \sum_{n=1}^{N} F_n(\zeta), \ \zeta \in \Gamma,$$

где $f_n \in H_2^{(-)}[\Delta_n]$. При этом

$$A_{\infty} \max_{1 \leq n \leq N} \left| \left\| F_n \right\|_{H_2^{(\infty)} \left[\Delta_n^* \right]} \right| \leq \left\| f \right\|_{2, \infty} \leq B_{\infty} \max_{1 \leq n \leq N} \left| \left\| F_n \right\|_{H_2^{(\infty)} \left[\Delta_n^* \right]} \right|, \tag{7}$$

 $a_{M} = A_{m} > 0$, $B_{m} > 0$ — константы, не вависящие от f. (см. [16], теорему 1).

Замечание. В этой теореме на $\partial \Delta_n^*$ мы рассматриваем угловые граничные значения функции $F_n \in H_2^{(n)}[\Delta_n^*]$. Это замечание относится также к утверждениям 3° теорем 1 и 2.

(г) Для удобства читателя мы здесь напомним также известные (см., напр., [17]) определения базисных и минимальных систем.

Система $\{h_k\}_1^\infty$ элементов гильбертова пространства H называется его базисом, если каждый элемент $h \in H$ единственным образом разлагается в сходящийся по метрике H ряд

$$h=\sum_{k=1}^{\infty}c_{k}\left(h\right) h_{k},$$

где $c_k(h)$ — комплексные коэф:рициенты. Базис $\{h_k\}_1^\infty$ называется базисом Рисса H, если выполняются неравенства

$$a \sum_{k=1}^{n} |c_k(h)|^2 \leqslant ||h||^3 \leqslant A \sum_{k=1}^{n} |c_k(h)|^2, \ \forall h \in H,$$

где a>0 и A>0— не зависящие от h константы. Нетрудно проверить, что система $\{h_k\}_k^m$ будет базисом Рисса пространства H в том и только в том случае, когда существует ограниченный обратимый линейный оператор $A\colon H \hookrightarrow H$ и такой, что $\{Ah_k\}_k^m$ является ортонормальным базисом H.

Aалее, система $\{h_k\}_1^\infty$ называется минимальной в H, если ни один ее член нельзя приблизить линейными комбинациями остальных. Минимальность системы $\{h_k\}_1^\infty$ необходима и достаточна для существования биортогональной с ней системы, т. е. такой системы $\{h_k\}_1^\infty \subset H$, что

$$(h_k, h_m^*) = \begin{cases} 1, & k = m, \\ 0, & k \neq m, \end{cases} (k, m = 1, 2, \cdots).$$

Напомним также, что если $\{h_k\}_1^{\infty}$ — базис H, то $\{h_k\}_1^{\infty}$ — минимальная система.

Формулировки результатов

1. Пусть для данного n ($1 \le n \le N$) $\Lambda_n = [\lambda_k^{(n)}]_{k=1}^{\infty}$ — произвольная последовательность комплексных чисел из угловой области Δ (ρ_n), среди которых могут быть числа произвольной конечной или даже бесконечной кратности.

Для произвольног $\hat{\sigma}$ целог $\hat{\sigma}$ j > 1 обозначим через $s^{(n)}$ кратность появления числа $\lambda^{(n)}$ на отрезке $|\lambda_k^{(n)}|_{k=1}^f$, а черев $p_j^{(n)}$ — кратность появления числа $\lambda^{(n)}$ во всей последонательности $\Lambda_n \equiv \{\lambda^{(n)}\}_{k=1}^f$.

Очевидно, что

$$1 \leqslant s_j^{(n)} \leqslant p_j^{(n)} \leqslant + \infty \ (j = 1, 2, \cdots).$$

. Легко видеть также, что если сходится ряд

$$\sum_{k=1}^{n} (1 + |\lambda_k^{(n)}|^{2\beta_n})^{-1} \operatorname{Re} \left[e^{i\tau_n} \overline{\lambda_k^{(n)}} \right]^{\beta_n}, \tag{8}$$

то число $p_k^{(n)}$ конечно при любом $k \gg 1$.

Введем в рассмотрение систему функций типа Миттаг-Леффлера $\mathcal{E} \equiv \{E_k^{(n)}(\zeta); \ k \geqslant 1, \ 1 \leqslant n \leqslant N\}$, положив

$$E_k^{(n)}(\zeta) = E_{\ell_n}^{\left(s_k^{(n)} - 1\right)}(\overline{h_k^{(n)}}\zeta; \mu_n) \zeta^{s_k^{(n)} - 1}(k \geqslant 1; 1 \leqslant n \leqslant N). \tag{9}$$

Из асимптотических свойств целой функции типа Миттаг-Леффлера (см. [13], лемму 3.4) следует, что функции системы (9) принадлежат пространству $L_{2,\infty}(\Gamma)$, т. е. $E \subset L_{2,\infty}(\Gamma)$.

Обозначим через $V_{2, \infty}(E)$ замыжание (т. е. замкнутую линейную оболочку) системы (9) в метрике $L_{2, \infty}(\Gamma)$. Очевидно, что $V_{2, \infty}(E)$ является замкнутым подпространством пространства $L_{2, \infty}(\Gamma)$, и полнота системы (9) в $L_{2, \infty}(\Gamma)$ означает равенство $V_{2, \infty}(E) = L_{2, \infty}(\Gamma)$.

2 (a). В этой работе мы устанавливаем следующий критерий полнсты в $L_{2, w}$ (Γ) системы (9).

Теорема 1. Следующие утверждения эквиволентны

1°. Система Е полна в L_{2. ∞} (Г);

2°. Одновременно расходятся ряжы

$$\sum_{k=1}^{\infty} (1+|\lambda_k^{(n)}|^{2\beta_n})^{-1} \operatorname{Re} (e^{i\eta_n} \overline{\lambda_k^{(n)}})^{\beta_n} = + \infty (1 \le n \le N); \tag{10}$$

3°. Класс $V_{2,m}$ (E) совпадает с множеством функций f_n которые единственным образом представимы в виде

$$f(\zeta) = \sum_{n=1}^{N} \int_{\widetilde{O}_{\Delta^{+}(p_{n})}} E_{p_{n}}(\zeta t; \, \mu_{n}) \, \varphi_{n}(t) \, dt, \, \zeta \in \Gamma, \tag{11}$$

где $\varphi_n \in H_1^{(w)}[\Delta^* (p_n)].$

Отметим, что эквивалентность утверждений 1" и 2° этой теоремы в специальных частных случаях были установлены ранее в других работах: в случае N=2 и $\rho_1=\rho_2-$ в работе автора [7], в случае N=2 и $\rho_1\neq\rho_2$ —в работе А. Е. Аветисяна [9], и в случае $N\neq 2$, но $\rho_1=\cdots=\rho_N-$ в совместной работе А. Е. Аветисяна, С. А. Акопяна и И. О. Хачатряна [11].

(6) В силу теоремы 1, если хотя бы при одном $n \ (1 \le n \le N)$ ряд (8) сходится, то система (9) не полна в $L_{2,\infty}(\Gamma)$, и, следователь-

но, порожденное ею замкнутое подпространство $V_{2, \infty}(E)$ не совпадает с $L_{2, \infty}(\Gamma)$. Чтобы описать это подпространство, введем еще один класс функций. Для этого сначала отметим, что если ряд (8) при данном n сходится, то бесконечное произведение

$$E_{\Delta(\rho_n)}(z) = \prod_{k=1}^{\infty} \frac{(e^{i\eta_n} z)^{\beta_n} - (e^{i\eta_n} \overline{\lambda_k^{(n)}})^{\beta_n}}{(e^{i\eta_n} z)^{\beta_n} + (\overline{e^{i\eta_n} \overline{\lambda_k^{(n)}}})^{\beta_n}} \times_{4},$$

$$\times_{4} = \frac{\left|1 - (e^{i\eta_n} \overline{\lambda_k^{(n)}})^{2\beta_n}\right|}{1 - (e^{i\eta_n} \overline{\lambda_k^{(n)}})^{2\beta_n}},$$

сходится абсолютно и равномерно внутри угловой области $\Delta(\rho_n)$ и определяет там аналитическую функцию $B_{\sim (\rho_n)}(z)$, которая обладает следующими свойствами:

- 1) $|B_{\sim}(\rho_n)(z)| \leqslant 1$, npu $z \in \overline{\Delta}(\rho_n)$;
- 2) функция $B_{\widetilde{\Delta}(\rho_n)}$ обращается в нуль лишь в точках последовательности $\overline{\{\lambda_k^{(n)}\}}_{k=1}^\infty$, при этом точка $z=\overline{\lambda_k^{(n)}}$ является для нее нулем кратности $p_k^{(n)}$ (см. [3]).

При условии сходимости ряда (8) обозначим через

$$H_2^{(-\omega)}[\widetilde{\Delta}^*(\rho_n); \Lambda_n]$$

класс функций ф, удовлетворяющих следующим условиям:

- 1) $\varphi \in H_2^{(-\omega)} \left[\widetilde{\Delta}^* \left(\rho_n\right)\right];$
- 2) существует мероморфная в $\widetilde{\Delta}$ (ρ_n) функция φ_{\bullet} , с возможными полюсами в точках последовательности $\{\lambda_k^{(n)}\}_{k=1}^\infty$ и такая, что

a)
$$\varphi_* B_{\widetilde{\Delta}(\rho_n)} \in H_*^{(-\omega)} [\widetilde{\Delta}(\rho_n)];$$

б) угловые граничные значения φ изнутри Δ^* (ρ_n) и угловые граничные значения φ_* изнутри $\widetilde{\Delta}$ (ρ_n) совпадают почти всюду на общей границе ∂ Δ^* (ρ_n) областей $\widetilde{\Delta}^*$ (ρ_n) и $\widetilde{\Delta}$ (ρ_n).

Грубо говоря, $H_{2}^{(-\infty)}[\tilde{\Delta}^*(\rho_n);\Lambda_n]$ — это класс тех функций φ из $H_{2}^{(-\infty)}[\tilde{\Delta}^*(\rho_n)]$, которые в определенном смысле допускают мероморфное продолжение φ_* в область $\tilde{\Delta}(\rho_n)$, с возможными полюсами в точках последовательности $\{\overline{\lambda_k^{(n)}}\}_{k=1}^{\infty}$; и это продолжение, будучи умножено на $B_{\widetilde{\Delta}(\rho_n)}$, принадлежит $H_{2}^{(-\infty)}[\tilde{\Delta}(\rho_n)]$.

Следует здесь же отметить, что класс $H_2^{(-\infty)}[\Delta^*(\rho_n); \Lambda_n]$ совпадает с замыканием в метрике $H_2^{(-\infty)}[\Delta^*(\rho_n); \Lambda_n]$ системы простейших рациональных дробей $\{(\zeta - \overline{\lambda_k^{(n)}})^{-s_k^{(n)}}\}_{k=1}^{n}$ (см. [5] или [15]).

Сформулируем теперь теорему, в которой дается полное внутреннее описание замыкания системы (9), в случае ее неполноты в $L_{2, m}$ (Γ).

Теорема 2. Если хотя бы при одном п $(1 \le n \le N)$ ряд (8) сходится, то класс $V_{2,\infty}(E)$ совпадает с множеством функций f, единственным образом представимых в вид:

$$f(\zeta) = \sum_{n=1}^{N} \int_{\widetilde{\partial} \Delta^{\bullet}(\rho_{n})} E_{\rho_{n}}(\zeta t; \mu_{n}) \varphi_{n}(t) dt, \zeta \in \Gamma, \qquad (12)$$

где $\varphi_n \in H_2^{(-\infty)} [\bar{\Delta}^*(\varphi_n)]$, если при данном п ряд (8) расходится, и $\varphi_n \in H_2^{(-\infty)} [\bar{\Delta}^*(\varphi_n); \Lambda_n]$, если при данном п ряд (8) сходится.

3. Теперь сформулируем критерий минимальности системы (9).

Теорема 3. Система (9) минимальна в $L_{2,m}(\Gamma)$ тогда и толь-ко тогда, когда одновременно сходятся ряды

$$\sum_{k=1}^{\infty} (1+|\lambda_k^{(n)}|^{2\beta_n})^{-1} \operatorname{Re} \left(e^{i\eta_n} \lambda_k^{\overline{(n)}}\right)^{\beta_n} < + \infty (1 \le n \le N).$$
 (13)

В случае, когда выполняются условия (13), мы построим систему функций

$$2 \left(\zeta; \ \overline{L_k^{(n)}} \right) \in L_{2, -\infty} \left(\Gamma \right) \ (k = 1, 2, \cdots; \ 1 \leqslant n \leqslant N),$$
 (14)

биортогональную с системой (9) в смысле

$$\int_{\Gamma} E_p^{(r)}(\zeta) \, \Omega \, (\zeta; \, \overline{\lambda_k^{(n)}}) \, |\zeta|^m |d\zeta| = \begin{cases} 1, & \text{koras } k = p \text{ if } r = n; \\ 0, & \text{koras } k \neq p \text{ if } r \neq n; \end{cases}$$
 (15)

$$k, p = 1, 2, \cdots; 1 \leqslant n, r \leqslant N$$
.

Наконец, положим

$$\lambda_{k}^{(n)}(\omega) = \left\{ |\lambda_{k}^{(n)}|^{\omega} \left[|\lambda_{k}^{(n)}|^{1-\beta_{n}} \operatorname{Re} \left(e^{i\eta_{n}} \overline{\lambda_{k}^{(n)}} \right)^{\beta_{n}} \right]^{2s_{k}^{(n)} - 1} \right\}^{1/2} \\ (k = 1, 2, \dots; 1 \leq n \leq N),$$

и сформулируем следующий критерий базисности системы (9). Теорема 4. Если одновременно выполняются условия

$$\inf_{k>1} \prod_{\substack{j=1\\ \lambda_{k}^{(n)} + \lambda_{k}^{(n)}}} \left| \frac{\left(e^{i\eta_{n}} \overline{\lambda_{k}^{(n)}}\right)^{\beta_{n}} - \left(e^{i\eta_{n}} \overline{\lambda_{k}^{(n)}}\right)^{\beta_{n}}}{\left(e^{i\eta_{n}} \overline{\lambda_{k}^{(n)}}\right)^{\beta_{n}} + \left(\overline{e^{i\eta_{n}} \overline{\lambda_{j}^{(n)}}}\right)^{\beta_{n}}} \right| > 0 \ (1 \leqslant n \leqslant N), \tag{16}$$

$$\sup_{k>1} (p_k^{(n)}) < + \infty (1 \le n \le N), \tag{17}$$

то система $\{L_k^{(n)}(v)\} E_k^{(n)}(\zeta)$: k > 1, $1 \le n \le N$] является базисом Рисса пространства $V_{2,\infty}(E)$.

Если же хотя бы одно из 2N условий (16) и (17) нарушается, то система E ни при какой расстановке членов не является базисом пространства $V_{2,\,\,\omega}(E)$.

Таким образом, если выполняются условия (16) и (17), то любая функция f, принадлежащая пространству $V_{2,m}$ (E) (т. е. замыканию в метрике $L_{2,m}$ (Γ) системы (9)) единственным образом разлагается в ряд

$$f(\zeta) = \sum_{k=1}^{\infty} \sum_{n=1}^{N} c_k^{(n)}(f) \left[\lambda_k^{(n)}(\omega) E_k^{(n)}(\zeta) \right], \tag{18}$$

который безусловно сходится к f в метрике L_2 . (Г). Но легко видеть, что из условий (16) следует также сходимость рядов (8) при всех n ($1 \le n \le N$), т. е. (13). A в втом случае, как уже было отмечено, мы построим систему $\{ 2 \ (\zeta; \, \overline{\lambda_k^{(n)}}) : k \ge 1, \ 1 \le n \le N \}$, удовлетворяющую соотношениям биортогональности (15). Следовательно, ковффициенты ряда (18) эффективно восстанавливаются по формулам

$$c_k^{(n)}(f) = \frac{1}{\lambda_k^{(n)}(\omega)} \int_{\Gamma} f(\zeta) \overline{2(\zeta; \overline{\lambda_k^{(n)}})} |\zeta|^{\alpha} |d\zeta| \quad (k \geqslant 1; \ 1 \leqslant n \leqslant N).$$

Доказательства теорем 1-4

При установлении сформулированных здесь теорем 1-4 вопросы замыкания, минимальности и базисности системы (9) в метрике $L_{2,\infty}(\Gamma)$ мы сводим к соответствующим вопросам для систем

$$E_{k}^{(n)}(\zeta) = E_{p_{n}}^{\left(s_{k}^{(n)}-1\right)}(\overline{\lambda_{k}^{(n)}}\zeta; \mu_{n})\zeta^{s_{k}^{(n)}-1} \quad (k=1,2,\cdots) \qquad (19)$$

в метрике $H_2^{(n)}[\Delta_n]$ (1 $n \leq N$). Поэтому обозначим также через

$$V_2^{(m)}(E^{(n)}; \Delta_n)$$

замыкание в метрике $H_2^{(\omega)}[\Delta_n]$ системы функций $E^{(n)} \equiv \{E_k^{(n)}(\zeta)\}_{k=1}^\infty$ $(1 \leqslant n \leqslant N)$. Отметим при этом, что из асимптотических свойств целой функции типа. Миттаг-Леффлера (см. [13], лемму 3.4) следует включение $E^{(n)} \subset H_2^{(\omega)}[\Delta_n]$.

 \mathcal{A} оказат ельства теорем 1 и 2. Пусть $\{Q_j\}_1^*$ — некоторая последовательность линейных комбинаций элементов системы \mathcal{E} :

$$Q_{j} = \sum_{n=1}^{N} \sum_{k=1}^{m_{j,n}} a_{k,j}^{(n)} E_{k}^{(n)} \ (j=1,2,\cdots).$$

Так как система E распадается на N подсистем $E^{(n)}$, то каждое Q_j представимо в виде

$$Q_{j} = \sum_{n=1}^{N} Q_{j,n} \ (j = 1, 2, \cdots), \tag{20}$$

где $Q_{j,\ n}$ — линейная комбинация влементов подсистемы $E^{(n)}$:

$$Q_{i,n} = \sum_{k=1}^{m_{j,n}} a_{k,j}^{(n)} E_k^{(n)}.$$

При втом $\{Q_{j,n}\}_{j=1}^{\infty} \subset H_2^{(w)}[\Delta_n]$, поскольку функции системы $E^{(n)}$ принадлежат классу $H_2^{(w)}[\Delta_n]$.

Пусть, далее, $f \in L_{2,\,\omega}(\Gamma)$. По теореме В справедливо представ-

ление вида

$$f=\sum_{n=1}^N F_n, \ F_n\in H^{(m)}_{\lambda}[\Delta_n^*].$$

Отсюда и из (20) получаем

$$f-Q_j=\sum_{n=1}^N (F_n-Q_{j,n}) \ (j=1,2,\cdots),$$

причем очевидно, что $F_n - Q_{j,n} \in H_2^{(n)}[\Delta_n^*]$ $(1 \le n \le N)$. Следовательно, справедливы неравенства

$$A_{m} \max_{1 < n < N} \{ \|F_{n} - Q_{j, n}\|_{H_{2}^{(m)}[\cdot a_{n}]} \} \leqslant \|f - Q_{j}\|_{b, m} \leqslant$$

$$\leqslant B_{m} \max_{1 < n < N} \{ \|F_{n} - Q_{j, n}\|_{H_{2}^{(m)}[\cdot a_{n}]} \}, \ j = 1, 2, \cdots.$$
(21)

Отсюда, во-первых, следует, что каждую функцию $f \in L_{2,\infty}(\Gamma)$ можно аппроксимировать в метрике $L_{2,\omega}(\Gamma)$ линейными комбинациями влементов системы E тогда и только тогда, когда для всех n $(1 \leqslant n \leqslant N)$ каждую функцию $F_n \in H_2^{(\omega)}[\Delta_n]$ можно аппроксимировать в метрике $H_2^{(m)}[\Delta_n^*]$ линейными комбинациями влементов системы $E^{(n)}$. Иначе говоря, система E полна в $L_{2,\infty}(\Gamma)$ тогдя и только тогда, когда для всех n $(1 \leqslant n \leqslant N)$ система $E^{(n)}$ полна в $H_2^{(\omega)}[\Delta_n^*]$; и поскольку система $E^{(n)}$ полна в $H_2^{(\omega)}[\Delta_n^*]$ в том и только в том случае, когда расходится ряд (8) (см. [10], теорему 1), то эквивалентность утверждений 1° и 2° теоремы 1 доказана.

С другой стороны, из неравенств (21) вытекает, что последовательность $\{Q_j\}_{n}^{\infty}$ сходится по метрике $L_{2,\infty}(\Gamma)$ к функции f тогда и только тогда, когда при каждом n ($1 \le n \le N$) последовательность компонент $\{Q_{j,n}\}_{n}^{\infty}$ сходится в топологии $H_2^{(\infty)}[\Delta_n]$ к соответствующей компоненте F_n функции f. Таким образом, класс $V_{2,\infty}(E)$ совпадает с множеством функцией f, представимых в виде

$$f = \sum_{n=1}^{N} F_n, \ F_n \in V_2^{(w)} \ (E^{(n)}; \ \Delta_n^{\bullet}), \tag{22}$$

причем в силу теоремы B такое представление единственно. Отсюда уже следует утверждение теоремы 2, так как класс $V^{(\bullet)}(E^{(a)}; \Delta_a^{\bullet})$ совпадает с множеством функций F_a , представимых в виде

$$F_n(\zeta) = \int_0^{\infty} E_{\rho_n}(\zeta t; \mu_n) \varphi_n(t) dt, \zeta \in \Delta_n^*,$$

$$F_n(\zeta) = \int_{\partial \Delta^*(\rho_n)} E_{\rho_n}(\zeta t; \, \mu_n) \, \varphi_n(t) \, dt, \, \zeta \in \Delta_n^*,$$

тде $\phi_n \in H_2^{(-\infty)}[\widetilde{\Delta}^*(\rho_n)]$ (см. [13], теорему 7.7, или [10], теорему 1). Таким образом, теоремы 1 и 2 полностью доказаны.

Доказательство теоремы 3. Предположим, что при некотором $n=n_0$ ($1 \leqslant n_0 \leqslant N$) ряд (8) расходится. Тогда система $E^{(n_0)}$ (т. е. система (19) при $n=n_0$) не минимальна в метрике $H_2^{(m)}$ [$\Delta_{n_0}^*$] (см. [10], теорему 3). Иначе говоря, существует элемент системы $E^{(n_0)}$, который можно приблизить в метрике $H_2^{(m)}$ [$\Delta_{n_0}^*$] линейными комбинациями остальных элементов этой системы. В силу неравенств (6') этот же элемент можно приблизить линейными комбинациями остальных элементов системы $E^{(n_0)}$ уже в метрике L_2 , ω (Г). Поскольку $E^{(n_0)}$ является подсистемой системы E, то отсюда уже вытекает, что в данном случае система E не минимальна в L_2 , ω (Г). Таким образом, выполнение условий (13) необходимо для минимальности в L_2 , ω (Г) системы E.

Обратно, предположим, что условия (13) выполняются. Построим систему функций (14), биортогональную с системой E в смысле (15). Отсюда уже будет следовать минимальность системы E в $L_{2,\infty}$ (Γ).

При условии

$$\sum_{k=1}^{n} (1+|\lambda_k^{(n)}|^{2\beta_n})^{-1} \operatorname{Re} (e^{i\eta_n} \overline{\lambda_k^{(n)}})^{\tilde{s}_n} < + \infty$$

в работе [10] была построена система функций

$$\{\Omega_{\rho_n}^*(\zeta;\,\overline{\lambda_k^{(n)}})\}_{k=1}^* \subset H_2^{(-\omega)}[\Delta_n],\tag{23}$$

биортогональная с системой (19) в следующем смысле:

$$\frac{1}{2\pi i} \int_{\partial \Delta_n} E_p^{(n)}(\zeta) \, \Omega_{p_n}^{\bullet}(\zeta; \, \overline{\lambda_k^{(n)}}) d\zeta = \begin{cases} 1, & k = p, \\ 0, & k \neq p, \end{cases} (k, p > 1). \tag{24}$$

Исходя из систем (23), построим нашу систему (14). Для значений $k \ (k=1,\ 2,\ \cdots)$ и $n \ (1\leqslant n\leqslant N)$ положим

$$\Omega\left(\zeta;\overline{\lambda_{k}^{(n)}}\right) = \begin{cases}
-\frac{1}{2\pi i} |\zeta|^{-\alpha} e^{-i\theta_{n}} \overline{\Omega_{\rho_{n}}^{*}(\zeta;\overline{\lambda_{k}^{(n)}})}, \zeta \in \Gamma_{\theta_{n}}, \\
\frac{1}{2\pi i} |\zeta|^{-\alpha} e^{-i\theta_{n+1}} \overline{\Omega_{\rho_{n}}^{*}(\zeta;\overline{\lambda_{k}^{(n)}})}, \zeta \in \Gamma_{\theta_{n+1}}, \\
0, \zeta \in \Gamma \setminus \{\Gamma_{\theta_{n}} \cup \Gamma_{\theta_{n+1}}\}.
\end{cases}$$

В силу такого определения, очевидно, будем иметь

$$\frac{1}{2(\zeta; \overline{\lambda_{k}^{(n)}})} |\zeta|^{\omega} |d\zeta| = \begin{cases}
\frac{1}{2\pi i} \Omega_{\rho_{n}}^{*}(\zeta; \overline{\lambda_{k}^{(n)}}) d\zeta, & \text{при } \zeta \in \partial \Delta_{n}, \\
0, & \text{при } \zeta \in \Gamma \setminus \partial \Delta_{n}.
\end{cases} (25)$$

С другой стороны, из (23) вытекает принадлежность функции $\Omega(\zeta; \overline{\lambda_{\lambda}^{(n)}})$ классу $L_{2,\infty}(\Gamma)$.

Теперь убедимся в соотношениях биортогональности (15). Для этого, воспользовавшись (25), напишем равенство

$$\int_{\Gamma} E_{p}^{(r)}(\zeta) \, \overline{\Omega\left(\zeta; \, \overline{\lambda_{k}^{(n)}}\right)} \, |\zeta|^{\alpha} \, |d\zeta| = \frac{1}{2\pi i} \int_{\partial \lambda_{n}} E_{p}^{(r)}(\zeta) \, \Omega_{\rho_{n}}^{\bullet}\left(\zeta; \, \overline{\lambda_{k}^{(n)}}\right) \, d\zeta \tag{26}$$

и рассмотрим три возможных случая: 1) $n=r,\ k=p;\ 2)\ n=r,\ k\neq p;$ 3) $n\neq r.$

В первых двух случаях ввиду (24) и (26) будем иметь:

$$\int_{\Gamma} E_{p}^{(r)}(\zeta) \ \overline{2(\zeta; \lambda_{k}^{(n)})} \ |\zeta|^{\infty} \ |d\zeta| =$$

$$= \begin{cases} 1, & \text{при } n = r \text{ и } k = p, \\ 0, & \text{при } n = r \text{ и } k \neq p, \end{cases} (k, p = 1, 2, \dots; 1 \leqslant n, r \leqslant N).$$
(27)

Рассмотрим теперь случай $n \neq r$.

В этом случае имеем включение $\Delta_n \subset \Delta_r$, и поскольку $E_p^{(r)}(\zeta) \in H_2^{(w)}[\Delta_r]$, то

 $E_{\rho}^{(r)}(\zeta) \in H_2^{(\omega)}[\Delta_n]. \tag{28}$

Имеєм также

$$\Omega_{\rho_n}^*(\zeta; \overline{\lambda_k^{(n)}}) \in H_2^{(-\omega)}[\Delta_n]. \tag{29}$$

Из (28) и (29) следует, что

$$\frac{1}{2\pi i}\int_{\partial \Delta_n} E_p^{(r)}(\zeta) \, \Omega_{\varrho_n}^*(\zeta; \, \overline{\lambda_k^{(n)}}) \, d\zeta = 0 \, (n \neq r; \, k, \, p = 1, \, 2, \, \cdots),$$

(см. [15], лемму 2). Отсюда на основании (26) получаем

$$\int_{\Gamma} E_p^{(r)}(\zeta) \, \overline{\Omega(\zeta;\lambda_k^{(n)})} \, |\zeta|^{\omega} \, |d\zeta| = 0 \ (n \neq r; \ k, \ p = 1, 2, \cdots).$$

Эти равенства вместе с (27) дают (15). Теорема 3 доказана.

A оказательство теоремы 4. Сначала напомним, что, как было установлено в процессе доказательства теорем 2 и 3, каждая функция $f \in V_{2, \infty}(E)$ представима в виде

$$f = \sum_{n=1}^{N} F_n, \ F_n \in V_2^{(n)}(E^{(n)}, \ \Delta_n). \tag{22'}$$

При этом имеют место неравенства (см. теорему В)

$$\frac{A_{\infty}^{2}}{N} \sum_{n=1}^{N} \|F_{n}\|_{H_{2}^{(\omega)}\left[\Delta_{n}^{*}\right]}^{2} \leq \|f\|_{L_{\infty}}^{2} \leq B_{\infty}^{2} \sum_{n=1}^{N} \|F_{n}\|_{H_{2}^{(\omega)}\left[\Delta_{n}^{*}\right]}^{2}. \tag{7'}$$

Теперь предположим, что условия (16) и (17) выполняются. Тогда при каждом n ($1 \le n \le N$) система $\{\lambda_n^{(n)}(\omega) E_n^{(n)}(\zeta)\}_{n=1}^{\infty}$ является базисом Рисса пространства $V_2^{(m)}(E^{(n)}; \Delta_n)$ (см. [10], теорему 5). Иначе говоря, каждая функция $F_n \in V_2^{(m)}(E^{(n)}; \Delta_n)$ единственным образом разлагается в ряд

$$F_n(\zeta) = \sum_{k=1}^{n} c_k^{(n)}(F_n) [f_n^{(n)}(\omega)] E_k^{(n)}(\zeta)], \qquad (20)$$

безусловно сходящийся к F_n по метрике $H_2^{(-)}[\Delta_n]$, причем выполняются неравенства

$$\alpha \sum_{k=1}^{n} |c_{k}^{(n)}(F_{n})|^{2} \leqslant \|F_{n}\|_{H_{2}^{(\omega)}\left[\Delta_{n}^{*}\right]}^{2} \leqslant A \sum_{k=1}^{n} |c_{k}^{(n)}(F_{n})|^{2},$$

где a>0 и A>0 не зависят от F_n .

Отсюда на основании (22') и (7') заключаем, что каждая функция $f \in V_{2,\infty}(E)$ разлагается в безусловно сходящийся по метрике $L_{2,\infty}(\Gamma)$ ряд

$$f(\zeta) = \sum_{n=1}^{N} \sum_{k=1}^{n} c_{k}^{(n)}(f) \{ \lambda_{k}^{(n)}(\omega) E_{k}^{(n)}(\zeta) \}, \tag{31}$$

где

$$c_k^{(n)}(f) = c_k^{(n)}(F_n) \ (k = 1, 2, \dots; 1 \le n \le N)$$

и при этом

$$\frac{\alpha}{N} \cdot \sum_{n=1}^{N} \sum_{k=1}^{\infty} |c_k^{(n)}(f)|^2 \leqslant \|f\|_{2, \omega}^2 \leqslant AB_{\omega}^2 \sum_{n=1}^{N} \sum_{k=1}^{\infty} |c_k^{(n)}(f)|^2.$$

Наконец, поскольку из (16) следует (13), то система E минимальна в $L_{2, \infty}(\Gamma)$. Значит разложение функции $f \in V_{2, \infty}(E)$ в ряд вида (31) единственно.

Таким образом, при условиях (16) и (17) систєма $\{\lambda_k^{(n)}(\omega), E_k^{(n)}(\zeta), k=1, 2, \cdots; 1 \leq n \leq N\}$ является базисом Рисса пространства $V_{2, \omega}(E)$.

Обратно, предположим, что система E при некоторой расстановке членов является базисом пространства $V_{2,\infty}(E)$. Обозначим эту расстановку через σ .

Из базисности системы E вытекает, что она минимальна в $L_{2, a}$ (Γ) и, следовательно, выполняются условия (13). Ввиду этого каждая система $E^{(n)}$ ($1 \le n \le N$) минимальна в $H^{(n)}$ [Δ_n^*] (см. [10], тео рему 3).

Убедимся теперь, что при каждом n_0 ($1 \le n_0 \le N$) система $E^{(n_0)}$ является базисом пространства $V_2^{(\omega)}$ ($E^{(n_0)}$; Δ_n^{\bullet}) при расстановке σ ее членов.

Пусть $F_{n_0} \in V_2^{(n_0)}$ ($E^{(n_0)}$; $\Delta_{n_0}^*$). Поскольку $E^{(n_0)}$ является подсистемой системы E и имеют место неравенства (6'), то F_{n_0} принадлежит замыканию в метрике $L_{2,\infty}$ (Γ) системы $E^{(n_0)}$, и, в частности, $F_{n_0} \in V_{2,\infty}$ (E). Следовательно, F_{n_0} разлагается в ряд

$$F_{h_o}(\zeta) = (\sigma) \sum_{n=1}^{N} \sum_{k=1}^{\infty} c_k^{(n)} (F_{n_o}) E_k^{(n)}(\zeta), \tag{32}$$

 $\mathcal{L}_{2,\infty}$ (Г). Значок (\mathfrak{I}) означает, что члены ряда расставлены в порядке \mathfrak{I} .

Однако из минимальности системы E следует, что коэффициенты $c_{L}^{(n)}(F_{n_0})$ ряда (32) определяются из формул

$$c_k^{(n)}(F_{n_0}) = \int_{\Gamma} F_{n_0}(\zeta) \overline{\Sigma(\zeta; \lambda_k^{(n)})} |\zeta|^n |d\zeta| (k \geqslant 1; 1 \leqslant n \leqslant N).$$
 (33)

Но поскольку F_{n_0} принадлежит замыканию в метрике $L_{2, m}$ (Γ) системы $E^{(n_0)}$, то некоторая последовательность $\{P_I\}_1^{\infty}$ линейных комбинаций влементов системы $E^{(n_0)}$ сходится к F_{n_0} в метрике $L_{2, \infty}$ (Γ). Ввиду (15) будем иметь

$$\int_{\Gamma} P_{j}\left(\zeta\right) \frac{\Omega\left(\zeta; \overline{\lambda(n)}\right)}{\Omega\left(\zeta; \overline{\lambda(n)}\right)} \, \left|\zeta\right|^{\alpha} \left|d\zeta\right| = 0 \, \left(j \geqslant 1, \, k \geqslant 1, \, n \neq n_{0}\right)$$

и устремив здесь $j \to +\infty$, на основании (33) получим

$$c_k^{(n)}(F_{n_0}) = 0 \ (k = 1, 2, \dots; n \neq n_0, 1 \leq n \leq N).$$

Следовательно, каждая функция $F_{n_0} \in V_2^{(n_0)}(E^{(n_0)}; \Delta_{n_0})$ разлагается в ряд

$$F_{n_0}(\zeta) = (\sigma) \sum_{k=1}^{n} c_k^{(n_0)}(F_{n_0}) E_k^{(n_0)}(\zeta), \qquad (32')$$

сходящийся к F_{n_e} по метрике $L_{2,\infty}(\Gamma)$. Ввиду неравенств (6') этот ряд сходится к F_{n_e} и по метрике $H_{L}^{(n_e)}[\Delta_{n_e}]$ и поскольку система $E^{(n_e)}$ минимальна в $H_{2}^{(n_e)}[\Delta_{n_e}]$, то разложение F_{n_e} в ряд вида (32') единственно. Иначе говоря, система $E^{(n_e)}$ при расстановке з является базисом пространства $V_{2}^{(n_e)}(E^{(n_e)}; \Delta_{n_e})$. Следовательно, при каждом n (1 < n < N) выполняются условия

$$\inf_{\substack{k>1\\ \lambda_{j}^{(n)}+\lambda_{k}^{(n)}}} \left| \frac{(e^{i\eta_{n}} \overline{\lambda_{k}^{(n)}})^{\beta_{n}} - (e^{i\eta_{n}} \overline{\lambda_{j}^{(n)}})^{\beta_{n}}}{(e^{i\eta_{n}} \overline{\lambda_{k}^{(n)}})^{\beta_{n}} + (e^{i\eta_{n}} \overline{\lambda_{j}^{(n)}})^{\beta_{n}}} \right| > 0,$$

$$\sup_{k>1} |p_{k}^{(n)}| < +\infty$$

(см. [10], теорему 5). Отсюда вытекают условия (16) и (17). Теорема доказана.

Пользуясь случаем, приношу глубокую благодарность академику АН Армянской ССР М. М. Джрбашяну за внимание к работе.

Институт математики АН Армянской ССР

Поступила 26.VI.1980

վ. Մ. ՄԱՐՏԻՐՈՍՅԱՆ. Ճառագայրների համակարգի վրա Միաագ-Լեֆլերի տիպի սիստեմների փակույթի, մինիմալության ու թագիսության մասին *(ամփոփում)*

Ներկա աշխատանքում ստացվել են Հառագայիների համակարգի վրա Միտագ-Լեֆլերի տիպի սիստեմների լրիվության, մինիմալության ու բազիսության հայտանիշները։ Այդպիսի սիստեմի ոչ լիիվ լինելու դեպբում տրվել է նրա փակույթի լիակատար ներքին նկարագրությունը, իսկ մինիմալության դեպբում կառուցվել է նրա հետ բիորթոգոնալ սիստեմը։

V. M. MARTIROSIAN. On the closure, minimality and basisness of systems of Mittag-Leffler type on a system of rays (summery)

In the paper criteria of fullness, minimality and basisness on the system of rays are established for function systems of Mittag-Leffler type. In case the system is not full, a description of its closure is given, and in case of minimality the biorthogonal system is constructed.

ЛИТЕРАТУРА

- 2. М. М. Джрбашян. Характеристика замкнутых линейных оболочек двух семейств неполных систем аналитических функций, Матем. сборник, 114 (156), № 1, 1981 3—84.
- 3. М. М. Джрбашян. О замкнутости системы типа Миттаг—Леффлера, ДАН СССР. 219, № 6, 1974, 1302—1305.
- L. Schwartz. Etude des sommes d'expenenentielles, Paris, 1942; Strasburg, 1953.
 С. А. Акопян, И. О. Хачатрян. О замыкании незамкнутых систем функций типа Миттаг—Леффлера, Изв. АН СССР, сер. матем., 40, № 1, 1976, 96—114.
 - 6. М. М. Джрбашян, В. М. Мартиросян. Теоремы типа Винера—Поли и Мюнца—Саса, ДАН СССР, 225, № 5, 1975, 1001—1004; Изв. АН СССР, сер. матем., 41, № 4, 1977, 868—894.
 - 7. В. М. Мартиросян. О замкнутости систем функций типа Миттаг—Леффлера и систем простейших рациональных дробей, ДАН Арм. ССР, 62, № 5, 1976, 269—274.
- В. М. Мартиросян. Базисность некоторых систем аналитических функций и решение интерполяционной задачи в области угла, ДАН Арм. ССР, 63, № 5. 1976, 278—283.
- 9. А. Е. Аветисян. О пополнении одной неполной системы функций, Изв. АН Арм. ССР, «Математика», XV. № 2, 1980, 96—109.
- В. М. Мартиросян. О замыкании, минимальности и базисности систем функций типа Миттаг—Асффлера в угловых областях, Изв. АН Арм. ССР, «Математика». XVI, № 2, 1981, 85—102.
- А. Е. Аветисян, С. А. Акопян, И. О. Хачатрян. О замкнутости систем функций типа Миттаг—Леффлера на произвольной конечной системе лучей, Изв. АН Арм. ССР, «Математика», XIII, № 5—6, 1978, 389—395.
- М. М. Джебашян, А. Е. Аветисян. Интегральные представления некоторых классов функций, аналитических в области угла, ДАН СССР, 120, № 3, 1958, 457—460; Сиб. матем. ж., 1, № 3, 1960, 383—426.
- М. А. Джербашян. Интегральные преобразования и представления функций в комплексной области, «Наука», М., 1966.
- 14. К. Гофман. Банаховы пространства аналитических функций, ИИЛ, М., 1963.
- 15. В. М. Мартиросян. Замыкание и базисность некоторых биортогональных систем и решение кратной интерполяционной задачи в угловых областях, Изв. АН Арм. ССР, «Математика», XIII, №№ 5—6, 1978, 490—531.
- В. М. Мартиросян. О замыкания, минимальности и базисности систем простейших рациональных дробей на системе лучей, Изв. АН Арм. ССР, «Математика», XV, № 4, 1980, 276—291.
- 17. И. Ц. Гохберг, М. Г. Крейн. Введение в теорию линейных несамосопряженных операторов, «Наука», М., 1967.