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SOME REMARKS ON STOCHASTIC 
TRANSFORMATIONS

This paper discusses some basic aspects of the first author’s 
approach to stochasti c differential equations—the basic calculus, conver
gence, and the choice of operator decomposition into deterministic and 
random parts.

I. Adomian’s iterative methods for solution of stochastic operator 
equations can be viewed as determining an inverse operator in series 
form. The solution of the linear equation Ly = x, for example, with L 
a stochastic operator and x a stochastic process defined on appropriate 
probability spaces, is written y=L-։ x where L՜1 is given as a series 
if L can be given in the form L=L + R and where

i) L is non-random and possesses an Inverse L՜1 .
ii) the order of L is higher than that of R.

Let us consider briefly the simpler problem where x is a random 
variable and the operator is also a random variable. Thus consider the 
equation ay = x where a, x are a pair of numerical valued independent 
random variables. The solution is the random variable y = a՜1 x.

Because of the assumed independence of a and x, the expectation 
of y is given by<^y]> = Let us inquire into the cal
culation of in the form of a series.

Choose a constant c, — oo <^c oo. We have

(1)

This can be a useful result when we have convergence with proba
bility one. Thus \

<a֊1>
Л“0
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and

so for N < °°, we have an approximate expression for <^a ։ > in 
terms of moments of a.

Unfortunately (1) does not converge with probability one for all 
choices of the constant c. Such a case occurs for example if we have 
non-zero probabilities for both of the events a 0 and a <0.

When we consider linear operators instead of numbers, the situ
ation is quite different and a series expansion of the mean of the inverse 
of a random operator proves to be fruitful in cases which are significant 
from the point of view- of physics and other applications. Adomian 
has dealt with the stochastic (linear differential) operator L subject to 
the decomposition L = L 4՜ R and to conditions (i) and (ii).

Then, formally, ,

L֊’ = (L 4֊ /?)-’ = [L (1 + £֊> /?)]?,'= J (—1)" (£֊ ’ Ry L-i . (3)
n=0

Because of requirement (11), L՜1 R is an integral operator and under 
proper boundedness assumptions, the series given by (3) converges with 
probability one. As an example consider the equation (Z 4֊ a) y=x. We 
have Ly = x — ay or y = L~x x — L~' ay and finally

y = L՜1 x = y (—1)" (Z՜1 a)" Z՜1 x
n—0 

or
y = £՜’ X — L~l aL՜' X 4֊ Z՜1 a Z՜’ a Z՜1 x------ .

t

The first term is Z֊։ x = e (t, ') x (t) di. The second term is

(4)

J r
— Z՜1 a Z-1 x= — j e (t, t) a (-c) e (i, a) x (s) dadi 

o o
or 

t X
— J J e (<> T) e (s 7) « 0) X (i) d-;dt.

The third term is

a (?) x (□) d-[dida
000

etc. If the Green’s functions, 1. e., the e’s, are bounded in the interval,, 
if the a is bounded a.s., and x is bounded a.s., they can be taken outside 
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the Integrals as bounds with the remaining n-fold integrals yielding 
an nl in the denominator assuring convergence.

It is clear that assumption (ii) is necessary as shown by the 
example:

Ly= [a d/dt] y

where a is a random variable. An attempt to invert L using the de
composition

Ls = c ^7 +^c~a^ 
at at

where c is a constant meets exactly the same difficulties as occurred 
in the example with numbers.

Actually the situations causing difficulty are contrary to Ado- 
mian’s assumption that the coefficient of the highest order derivative 
is deterministic and greater than zero, so it cannot fluctuate through 
zero to negative values. In other words, these cases are subsumed in 
the equation Ry—x where L = ^ and L = 0 which can be solved by 
adding and subtracting Ly = x to write Ly\-\-Ry— Ly — x or Ly=x— 
— Ry + Ly and finally y^L"* x — L՜' Ry -f- y. Requirement (ii) already 
made this case a pathological case. If L has a deterministic part L whose 
order is higher than that of R, there are no difficulties and conver
gence is assured. The series representation"! is of direct use when we 
solve Lff = x with L and x statistically independent.

n
If L = 2 a, (f, w) d'/dt' then it is convenient to take 

v=0
՛ n

L= 2 <a, (t, a։) > d'fdt'
^=0 

and
a— 1

R = 2 a, (f,o») d^dt'
V =0 

where
a, =<a, ~7> + a, for v 1, 2, • ■ n — 1, a„ _>0, an = 0.

II. A question which naturally arises is whether it is necessary or 
A

optimal that L = <^L>. A do mi an lets L=2 a* 0» w) d'jdV and a,= 
V -0

.1

= <^a, -|- a, (t, w) for v = 0, !,■ • • , n — 1. Then L — y <^a,^> d'ldt*
v-0 

n—l
and R = a, (t, u։) d'ldt'. He points out that L= <^L2> is conve- 

.-o
nient rather than necessary but does not go into it further. Suppose 
* hen <L>. Then we write

Ly + (L — L) y=x
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I=r_. ֊ ■ - —■ —~------------------------—

where
L— L=R.

Since Z.=£<L>, <R> is no longer zero, an assumption made in 
Adomian’s work. If this mean value > is not to be incorporated 
into L, it is necessary to treat it like the Ry term. Thus let
Then

y = L ’ x — L՜1 Ry — L~x 9-
The same situation arises if it is difficult to get a Green s function for 
the actual L operator even if Z.= <^L^>. Then we [can split L into 
Z,։ 4- La where Z^ is easily invertible and write

y = L^1 x — Z.f ' Ry — £։_I Z, y-
Both situations make each individual yi more complicated by adding 
terms. Thus we get

y0 = £r։ x

ÿi = — L-ï\Ry» — yo

y2 — 1 Ryi L\ ' Lz yi

ya=— L^' Rya— L;x L» y»

Then
yr= - Lr։ RL֊1 x—L֊' Z, L֊1 x

9։ = ֊L-1R [—S£r> RL֊' x-L^I*x] - .

- £r* £, [- RL-* x — Zf* La £֊’ x] =

=(£,֊’ R)(L? R)(Lt' x) + (£?' R)(L;X L,)(Lrl x) + 

+ (£,֊’ £,)(£,֊’ V (^T* x) + (^rl ^F1 ^)(^T*x).

Thus we see the addition of the last three terms to ya because of 
trying to use a simple Z^ or equivalently because of not using L=<TL^> 
and it is easy to see what happens with ya, ya,---.

III. As a final remark, with y = L~'x — L~l Ry, we can clearly 
write yn+\ = £~։ x — L~x-Ryn as a method of successive approximations. 
Thus yx=L~- x L~l Ry0, ya=L~x x—Z,՜1 Ryvy։—L~* x—Z,՜1 Rya, etc. 

Then each yi is the complete answer to that degree of approximation. 
For example, the second term of y3 integrates the result of operating 
with R on the entire ya, i. e., three terms. Although the final result 
is the same, Adomian’s procedure (iterative method) is to think of y as 
a decomposition into y0 4՜ yt 4֊ ■ • • and identify yo a.s L՜1 x. If we call 

= #0 + +»• • •. yn-i as the approximation to n terms each yt is
the result of operating on only the preceding term.
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IV. The calculus is that of Lp spaces. The integral operator H in 
y = Hx is an a.s. bounded linear stochastic operator from an abstract 
set Z into itself, mapping x (f, «>) to y (t, <o)such that Ly (t, co) = x (t, co)՛ 
a. s. The a. s. boundedness of H follows from the conditions:.

f
(i) F(f, cd) = j I (t, ",) x (", co) d~. is bounded a. s. 

o
(ii) a, (f, io) = a, (t, co)—(f, cu)^> are bounded a. s. for all v- 

from 0 to n — 1.

The <a, > are continuous on T; the derivatives of a, are boun 
ded a.s. to appropriate orders; and I (t, t) and its i-th derivatives for 
0-^.k-^n—1 are jointly continuous in t, t over TxT. The set z con
sists of all real stochastic processes on T. If Zi c Z • consists of all
real stochastic processes x (t, <u) with coe2 in the probability space
(2, B, p), it follows that H :Zi՜* Zi with Hx (t, co) =y (t, cd) a.s.

The expectation <Jx (t, <o)£> of x (f, co) on Zi is given as the
almost sure Lebesgue integral over 2 for each t e T if the integral
exists, i. e.,

<xr (co) > = J X/ (co) rfp (cd) 

□
and we denote by (/J the set of all equivalence classes of real va_ 
lued random variables xt whose expectation <^x t (co) exists. Hence 
xt(u>) zL^ (yj if <xi(cd)><oo a.s.

The expectations of x* and |x</* for all k are called the A-th mo 
ment and the £-th absolute moment of the r. v. xt (co) for each tz T. 
Then Lp (Zi) for l<p-C°c denotes equivalence classes of real valued 
r. v. xt(^)z /x such that <Jxz|p><^ 00 a>s՛ for The set of random 
variables x (f1։ co), x (ta, cd), • • • of the process x (t, co) generate a linear 
vector space Vx J on R and the correlation function. Rx (tv tz) 
defines an inner product over the space given by

R* Ui. *։) = <* (G. ®) x (G, cd) >

= (x (tv cd), x (t։, co))

and the norm Jx (t, co)j = (x(G io), x (t։, co))՝/2 . The metric p (x (t1( cd)> 
x (G. (U)) = k (g, «>) —x(f2, «>)]] and we have a Hilbert space Z?(2, R)
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Ռ. Վ. ՀԱ.Ա՜8ԱՐ2ՈԻՄՑԱՆ, Я. ԱԴՈՄՅԱՆ. Մի քանի ւյիտողոտյաՏ' ստոխաստիկ Սափս- 
|սո ipjniGGbrji վերաբերյալ (ամփոփում)

Աշխատանքում դիտարկվում են ստոխաստիկ դիֆերենցիալ հավասարումների ■ Ադոս 
յանի տեսության որոշ հարցեր, այդ թվում' օպերատորների շարքերի զուգամիտության և օպե 
րատորներր ստոխաստիկ դետեր մին իստիկ մասերի վերլուծելու խնդիրներրւ

Р. В. АМБАРЦУМЯН, Дж. АДОМЯН. Несколько замечаний о стохастических 
преобразованиях (резюме)

<

В работе обсуждаются некоторые вопросы, относящиеся к подходу первого из ав
торов к стохастическим дифференциальным уравнениям, в т. ч. сходимость рядов опе
раторов и выбор разложения оператора на детерминистическую и случапную части.
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