Մարեմատիկա

XIV, No 3, 1979

Математика

=

С. В. ХРУЩЕВ

АЛЬТЕРНАТИВА БРЕННАНА ДЛЯ МЕР С КОНЕЧНОЙ ЭНТРОПИЕЙ

§ 1. Введение

Всякий ли субнормальный оператор имеет нетривиальное инвариантное подпространство? Этот вопрос, получивший недавно утвердительный ответ в работе Scott a Brown'a [1], привел к изучению пространств H^p (μ), являющихся замыканием семейства многочленов P в L^p (μ), где μ — неотрицательная мера на плоскости C с компактным носителем, а p 1. C помощью спектральной теоремы сформулированный ныше вопрос сводится к вопросу о существовании инвариантных подпространств у оператора z умножения на z (z (z) $\equiv z$, z (C) в E (E). Отбросим неинтересный случай E E (E), E (E) — единичная нагрузка в точке E. Очевидно, что оператор E имеет инвариантное подпространство, если E (E), E (E) или, если существует точка E такая, что функционал E E (E), E E ограничен в E (E). В результате мы приходим к следующей альтернативе, которую справедливо назвать альтернативой Бреннана, так как E. Вгеппап внес большой вклад в исследование этой возможности. Пусть E

Определение. Альтернатива Бреннана с показателем p справедлива для меры μ , короче $\mu \in (B_p)$, если либо $H^p(\mu) = L^p(\mu)$, либо существует точка $\xi \in \mathbb{C}$ такая, что функционал $\varphi \to \varphi(\xi)$, $\varphi \in \mathbb{P}$ ограничен в $H^p(\mu)$.

Как уже отмечалось выше, с проблемой субнормальных операторов связана альтернатива (B_2) , и хотя Scott Brown доказал, что всякий субнормальный оператор имеет нетривиальное инвариантное подпространство, все же остается неясным— для всякой ли меры μ справедливо включение $\mu \in (B_2)$. Brennan [2] доказал, что $\mu \in (B_p)$ для любой меры μ , если p>2. С другой стороны, нетрудно показать, что справедливость альтернативы Бреннана с показателем p=1 влечет ее справедливость при всех p. Дейстнительно, если H^p $(\mu) \neq L^p$ (μ) , то существует функция g, $g \in L^p$ (μ) , q=p/(p-1) такая, что

$$\int \varphi g d\mu = 0 \tag{1}$$

для любого полинома \mathfrak{P} . Рассмотрим неотрицательную меру $\mathfrak{P}=\{A, B\}$ Из (1) следует, что $A \in \mathcal{H}^1$ (\mathfrak{P}). Так как по предположению (B_1) совпадает с множеством всех неотрицательных мер с компактным носителем, то найдется точка ; и постоянная C, C>0 такие, что

Следовательно, функционал $\phi \to \phi$ (3) ограничен в H^p (μ).

В этой работе мы будем иметь дело с мерами μ , абсолютно непрерывными относительно обычной меры Лебега dS на плоскости-Речь пойдет об уточнении недавнего результата Бреннана [3], который доказал, что $\mu \in (B_1)$, если $\mu = \int dS$ и $f \in L^{1-\alpha}(dS)$ для какого-нибудь ϵ , $\epsilon > 0$.

Teopema. Пусть $\mu = fdS$, носитель меры μ компактен и

$$\int f(\log^{-} f)^{p} dS < -\infty, p \ge 1.$$

Toraa $\mu \in (B_p)$.

Профессор Бреннан сообщил мне, что он может получить докавательство этой теоремы с помощью другого метода.

§ 2. Доказательство теоремы

 Λ емма 1. Если теорема верна при p=1, то она верна и при любом $p,\ p\geqslant 1$.

Доказательство. Пусть p>1 и $H^p(\mu) = L^p(\mu)$. Тогда су шествует функция g, $g \in L^q(\mu)$, удовлетворяющая условию (1). Проверим, что для меры v=|g|fdS справедливы все предпосылки нашей теореты. Имеем

$$\int |gf| \log^{\gamma} |gf| dS \leq \int (|g| \log^{\gamma} |g|) |f| dS + \int |g| \cdot f^{\gamma} \cdot f^{\gamma} \log^{\gamma} f dS \leq$$

$$\leq \operatorname{Const.} \int |g|^{q} f dS + |g|_{q} \left(\int f (\log |f|) dS \right)^{1/p} \leq +$$

Так как мы предположили справедливость теоремы при p=1, то (B_1) , откуда легко следует, что $\mu \in (B_n)$ (см. введение).

Перейдем к рассмотрению случая p=1. Условимся символом у бозначать интеграл Коши меры у:

$$\dot{v}(z) = \left(\frac{dv(\zeta)}{z}\right).$$

Хорошо известно, что $v \in L_{loc}$ (LS) для любой конечной меры v на плоскости. Пусть 0 < d < 2, v конечная борелевская мера на плоскости. Тогда

$$U_d^{\vee}(z) = \int \frac{d^{\vee}(\zeta)}{|\zeta - z|^{2-d}}$$

- потенциал Рисса порядка d меры v.

Предположим, что все функционалы значений в точке разрывны в $H^1(\mu)$. Мы докажем, что тогда $H^1(\mu) = L(\mu)$. Для этого достаточно показать, что

$$g(L^{\infty}(\mu), \int g d\mu = 0, \, \tau(\mathbf{P} = > g = 0.$$

Итак, пусть (μ) и $(-\mu) = 0$ для любого многочлена ϕ . Известное равенство (см. [4], стр. 49)

$$\bar{\partial} \hat{\mathbf{v}} = - \bar{\mathbf{v}},$$

справедливое в смысле теории обобщенных функций, позволяет нам доказывать, что $g_{!!} = 0$ почти всюду по мере Лебега dS.

Пусть

$$\lambda > 0$$
 и $E_{\lambda} = \{\zeta : |g_{1}(\zeta)| \leqslant \lambda\}.$

Бреннан показал, что множество E. является в некотором смысле "толстым".

Определение. Измеримое множество E на плоскости называется "толстым", если для всякой точки $\in \mathbb{C}$ почти всякая окружность с центром в точке с пересекает E по множеству положительной дуговой меры.

Из [3] можно извлечь следующую теорему.

Теорема (Brennan [3]). Пусть μ — произвольная неотрицатель ная мера на плоскости с компактным носителем и пусть для всякого $\xi \in \mathbb{C}$ функционал значения в точке ξ не является ограниченным в $H^{p}(\mu)$, $1 \le p < \infty$. Тогда если $g(L^{q}(\mu), q = p(p-1))$ и $\int \varphi_{S} d\mu = 0$ для любого многочлена ξ то при всяком $\xi = |g\mu(\xi)| \le \lambda$ является толстым.

Доказательство этой теоремы короткое и мы приведем его для удобства читателей. Пусть (C) и пусть (C) ограниченное замкнутое множество положительной меры на полуоси $(0, -\infty)$ такое, что длина (C) (C)

$$\varphi(\bar{z}) = \frac{1}{S(X^*)} \int z dS. \tag{2}$$

Подставляя в (1)
$$\frac{\varphi(\zeta) - \varphi(z)}{\zeta - z}$$
 вместо φ , получим, что $\varphi(z) = \frac{\varphi(z)}{g\mu(z)}$,

если $g_{1}(z) \neq 0$. Следовательно

$$\varphi(z) = \frac{1}{S(X^*)} \int_{X^*} \frac{\varphi g \mu(z)}{g \mu(z)} dS(z) = \int_{C} \varphi(z) g(z) d\mu(z) \frac{1}{S(X^*)} \int_{X^*} \frac{dS(z)}{g \mu(z)(z-z)}.$$

Внутренний интеграл есть непрерывная функция как свертка локально суммируемой функции z^{-1} и ограниченной $1/gu \mid X^*$. Итак

$$|\varphi(\xi)| \leq \text{Const. } \|\varphi\|_{L^p} = \|g\|_{L^p(u)}.$$

Преобразования Коши у кооечных мер у обладают некоторой "непрерывностью". Поэтому есть надежда, что множеству E должны принадлежать и точки плоскости, близкие к нему. Точнее, если для какой-либо точки — С удастся расположить на E семейство вероятностных мер $(v_k)_{k>0}$ так, чтобы

$$\widehat{g}_{1}(\xi) = \lim_{\alpha \to 0+} \widehat{g}_{1} d\nu,$$

то, очевидно, $\xi \in E$. Следующая лемма Карлесона [5] (см. также [6], стр. 170) позволяет сформулировать критерий существования такого семейства () Положим $\Delta (\xi, \delta) = \{ \xi : |\xi - \xi| < \delta \}$.

Лемма Карлесона. Пусть μ — конечная комплексная мера с компактным носителем на плоскости и пусть $U^{\mu \dagger}(\varepsilon) < +\infty$. Предположим, что $(v_{\delta})_{\varepsilon=0}$ — семейство вероятностных мер, такое, что носитель меры v_{δ} лежит в Δ (ε, δ) для каждого $\delta, \delta > 0$ и что

$$\lim_{\delta \to 0+} \int_{\Delta(\xi, 2\delta)} U_1^{*\delta d} |u| = 0. \tag{*}$$

Тогда

$$\mu(z) = \lim_{z \to 0} \int_{C} \mu \, dv_{n}.$$

Доказательство этой леммы приводится для полноты изложения Оригинальное доказательство близкого результата см. в [5].

$$\hat{\mu}(\xi) - \int_{|z-\xi| < \delta}^{\hat{\mu}} d\nu_{\delta} = \int_{|z-\xi| < 2\delta}^{\hat{\mu}} d\nu_{\delta}(\zeta) \int_{|z-\xi| > 2\delta}^{\hat{\mu}} \left\{ \frac{1}{z-\xi} - \frac{1}{z-\zeta} \right\} d\mu(z) + \int_{|z-\xi| < 2\delta}^{\hat{\mu}} d\nu_{\delta}(\zeta) \int_{|z-\xi| < 2\delta}^{\hat{\mu}} \frac{d\mu(z)}{z-\xi} - \int_{|z-\xi| < 2\delta}^{\hat{\mu}} d\nu_{\delta}(\zeta) \int_{|z-\xi| < 2\delta}^{\hat{\mu}} \frac{d\mu(z)}{z-\xi}.$$

Первый интеграл в правой части предыдущего равенства по модулю не превосходит интеграла

$$I_1(\delta) = \int_{|z-z|} \hat{v}_{\delta}(z) - \frac{1}{\xi - z} d|\mu|.$$

Так как $|v_{\delta}(z)| \le \frac{\mathrm{Const}}{|z-\xi|}$ при $|z-\xi| > 2 \delta$ и $|z-\xi| > 2 \delta$ и поточечно, то по теореме Лебега $\lim_{\delta \to 0+} I_{1}(\delta) = 0$. Второй интеграл меньше

интеграла $\frac{1}{2} = \frac{1}{2}$, который стремится к нулю при $\frac{1}{2} = 0 + 1$. По-

следний интеграл стремится к нулю по условию. 🕙

Предположим, что нам удалось расположить для каждого \circ , >0 на множестве $E \cap \Delta$ (ε , ε) вероятностную меру ε так, чтобы выполнялось условие (*). Тогда лемма Карлесона позволяет заключить, что ε ε , если, конечно, $U_{\varepsilon}^{(p)}(\varepsilon) < +\infty$. Так как последнее имеет место для почти всех ε , ε ε ε ε , то для завершения доказательства теоремы достаточно осуществить указанный выше выбор мер ε для почти любой точки ε плоскости. Следующая лемма принадлежит Бреннану [3].

Лемма Бреннана. Пусть E "толстое" множество и 4>0. Для любого ξ , $\xi \in \mathbb{C}$ существует вероятностная мера \mathfrak{A} на множестве $\Delta(\xi, \delta) \cap E$ такая, что для любой невозрастающей неотрицательной функции h на полуоси $(0, +\infty)$ справедливо перавенство

$$\int h\left(\left|z-z\right|\right)dn\left(z\right) \leqslant \frac{2}{\delta} \int h\left(x\right)dx. \tag{3}$$

Доказательство. Можно считать, что $\xi = 0$. Пусть $\pi -$ отображение, которое каждому r, r > 0 сопоставляет первую точку пересечения окружности с центром в нуле и радиуса r с некоторым замкнутым подмножеством E, мера которого сколь угодно близка к мере множества E. Мера $v_n -$ есть нормированный образ линейной меры Лебега на отрезке (0, 6) при отображении π . Подробности см. в [3] или в [6], стр. 169-170.

Мы докажем теперь, что семейство построенных мер (v_i) >0 обладает свойством (*), если только мера p удовлетворяет условиям теоремы. Для этого нам потребуется оценка функций распределения потенциалов U_1^{**} . Лемма Литтлвуда, использовавшаяся также в [3], позволяет это сделать без труда.

Лемма Литтлвуда. Пусть и—вероятностная мера на плоскости и — 2. Тогда

$$\left(\int_{C} |U_{i}|^{p} dS\right)^{1/p} \leqslant K_{p} \left(\sup_{C} |U_{i}|^{p} \left(\mathbb{I}\right)\right)^{1/q}$$

и $\lim_{p\to+\infty}K_p<+\infty$.

До сазательство этой леммы основано на технике интерполяции. Его можно найти в книге Карлесона [7] на стр. 83—84. Стоит, однако, предупредить чигателя, что в [7] эта лемма не сформулирована, а доказывается как часть одной специальной теоремы. Кроме того, так как эта лемма в [7] используется в грубой форме, то и заключительная оценка проведена с искусственным загрублением. Тем не менее доказательство леммы с помощью рассуждений из [7] восстанавливает ся без труда.

Комбинирун лемму Литтлвуда с неравенством (3), получим

$$\left(\int |U_1^{q_\delta}|^p \ dS\right)^{1/p} \leqslant K_p \left(\frac{2}{\delta} \int \frac{dx}{x^{2-q}}\right)^{1/q} = K_p \left(\frac{1}{q-1}\right)^{1/q} \cdot \left(\frac{1}{\delta^{2-q}}\right)^{1/q}.$$

Отсюда для y, y > 0

$$S(\{\xi; U_{1}(\xi) > y\}) \leqslant \frac{1}{y^{p}} \int \{U_{1}^{\xi}\}^{p} dS \leqslant \frac{K_{p}^{n}}{y} \left(\frac{K_{p}^{n}}{q-1}\right)^{n-1} dA$$
 (4)

 λ емма 1. Существует постоянная C,C>0 такая, что иля $y,y> \frac{C}{C}$ справедливо неравенство

$$S(\{\varepsilon: U, (\varepsilon) > y\})$$
 Const δ^2

гле k и Const - абсолютные положительные постоянные.

Доказательство. Положим в $(4)\frac{1}{q-1}=\frac{v}{Ae}$, где A- пока произвольное положительное число. Элементарные вычисления показывают, что

$$\left(\frac{K_{\sigma}}{y^{\frac{1}{6}}(q-1)}\right)^{1/q-1} = \exp\left\{\frac{y^{\frac{1}{6}}}{Ae}\log\frac{K_{\rho}}{Ae}\right\}.$$

Выберем теперь константу A так, чтобы $A > K_p$ для всех p, p = 3, т. е. для $q = \frac{p}{p-1} \le 3/2$. Но $1 < q \le 3/2$ в том и только в том случае, если $\frac{1}{q-1} \ge 2$. Значит, если положить постоянную C равной 2Ae, то окажется возможным выбрать q так, что $\frac{1}{q-1} = \frac{y}{Ae}$ и одноврешенно $A > K_p$. Отсюда

$$S\left(\left\{z: U_{1}^{v_{0}}\left(z\right)>y\right\}\right) \leqslant \frac{A^{\frac{1}{2}}}{y^{r_{0}}}e^{-\frac{A^{\frac{1}{2}}}{A^{r_{0}}}} \leqslant \operatorname{Cost} \left(z^{3}\right) d^{-kv_{0}}. \quad \bullet$$

Приступим к проверке условия (*) для почти всех = EC. Не уменьшая общности, можно считать, что

$$\int \frac{f \log^+ f}{|\zeta - \overline{\zeta}|} dS(\zeta) < + \infty.$$
 (5)

Положим $G = \Delta (\xi, 2\delta) \cap \left\{ \begin{array}{c} C \\ \end{array} \right\}$. Ясно, что

$$\int_{\Delta(\xi, 2\delta)} U_1^{2\delta} d\mu \leq \frac{C}{\delta} \int_{\Delta(\xi, 2\delta)} d\mu + \int_{\delta} U_1^{2\delta} d\mu.$$

Ввиду (5), первое слагаемое в правой части предыдущего неравенства есть o(1) при $\delta \to 0$.

Лемма 2. Пусть h— неотрицательная функция на плоскссти, а а — положительное число. Тогда

$$\int h f dS \leq a \int f \log f dS + \int h e^{-h} dS.$$

Доказательство. Если $h = a \log f$, то $hf = af \log f$. Если же $\frac{1}{h}h$ $h > a \log f$, то f < e и hf = he . Следовательно,

$$hf \leq af \log f + he^{-h}$$

Мы воспользуемся этой леммой с $h = U_1^{**}$, а постоянную a подберем позднее. Положим

$$G_n = \left\{ \xi \in G: \frac{C_n}{\delta} < U_1^{\vee_\delta} \leq \frac{C(n+1)}{\delta} \right\}.$$

Из леммы 1 следует, что

$$S(G_n) \ll \text{Const} \ c^2 e^{-kcn}$$
.

Кроме того, $G = UG_n$. Поэтому

$$\int_{0}^{\infty} U_{1} e^{\frac{1}{a} \frac{C(n+1)}{a}} dS \leq \sum_{n=1}^{\infty} \frac{C(n+1)}{a} e^{\frac{1}{a} \frac{C(n+1)}{a}} \cdot \delta^{2} e^{-kCn} =$$

$$= C \delta \sum_{n=1}^{\infty} (n+1) \exp \left| C\left(\frac{n+1}{a^{2}} - kn\right) \right| \cdot$$

Если теперь выбрать $a=\frac{4}{4}$, то мы видим, что

$$\int_{G}^{\infty} U_{1}^{\circ i} e^{i \overline{a}} dS = O(i).$$

Отсюда

$$\int_{G} U_{1}^{s_{0}} f dS \leqslant \frac{4}{\kappa^{0}} \int_{S(s_{0}, 2\delta)}^{s_{0}} f \log^{s_{0}} f dS + O(s_{0}).$$

Это завершает доказательство теоремы.

Ленинградское отделение Математического института АН СССР им. В. А. Стеклова

Пост упила 15.IV.1979

Ս. Վ. ԽՐՈՒՇՉՈՎ, Բոենանի ալտեոնատիվը վեռջավոր Լնտոոպիայով շավմերի նամար Համփոփում)

Արտար և (a) f (a) d s. որտեղ f (a) 0, d s-p (երեզի չափն է հարքության վրատեր գևարտում տեղի ունի հանյալ պնդումներից մեկը և միայն մեկը.
Արտ և H^p (v.) L P (v.), կամ գոյություն ունի z C կետ այնպես, որ $z \to z$ (z)
Вունկցիոնալը սահմանափակ t H^p (v.) տարածությունում, որտեղ H^p (v.) - և թազմանդամենրի խակույթն t L^p (v.) տարածությունում։

S. V. KCHRUSHEV. The Brennan alternative for measures with finite entropy (summary)

The following theorem is proved.

Let $d\mu(s) = f(s) ds$ where f(s) = 0, ds is the planar Lebesque measure.

If $| f(\ln f)^{\mu} da < +\infty$, $1 - p - +\infty$ then either $H^{+}(p) - L^{-}(p)$ or there is a point $z \in C^{1}$ such that the functional z = -z (z) is bounded in $H^{-}(p)$, where $H^{\mu}(p)$ is the closure of polinomials in the $L^{\mu}(x)$ space.

ЛИТЕРАТУРА

- 1. S. W. Brown. Some invariant subspaces for subnormal operators, preprint, 1978.
 - 2. J. E. Brennan. Invariant subspaces and rational approximation, J. of Functional Analysis, 7, 1971, 285-310.
 - 3. J. E. Brennan. Point evaluations, invariant subspaces and approximation in the mean by polynomials, preprint 1978, to appear in J. Functional Analysis.
 - 4. L. Schwartz. Theorie des distributions, vol 1, Paris, Actualities Scient. et Indust., 1951.
 - 5. L. Curleson. Mergeljan's theorem on uniform polynomial approximation, Math. Scand., 15, 1965, 167-175.
 - 6. J. Brennan. Invariant subspaces and weighted polinomial approximation. Arkiv for Mat., 11, 1973, 167-189.
 - 7. Л. Карлесон. Избранные проблемы теории исключительных множеств, М., Изд. "Мир", 1971.