А. А. ВАГАРШАКЯН

О НЕКОТОРЫХ ОБОБЩЕНИЯХ ТЕОРЕМЫ МЮНЦА—CACA

В настоящей статье мы будем рассматривать систему функций $\{e^{-ik^l}\}_{k=1}^{\infty}$, где Re $i_k>0$, $k=1,2,\cdots$. Через $C_0\left(E\right)$ обозначим пространство непрерывных функций, определенных на E и стремящихся к нулю при $x\to\infty$, $x\in E$. В известной теореме Мюнца-Саса (см. [1]) утверждается, что для полноты вышеприведенной системы в пространстве $C_0\left[0,\infty\right)$ необходима расходимость ряда

$$\sum_{k=1}^{\infty} \frac{1 + \operatorname{Re} \lambda_k}{1 + |\lambda_k|^2} = \infty$$

и достаточна расходимость ряда

$$\sum_{k=1}^{\infty} \frac{\operatorname{Re} \lambda_k}{1 + |\lambda_k|^2} = \infty.$$

Тот случай, когда некоторые λ_n в последовательности $\{\ell_n\}_{n=1}^\infty$ встречаются несколько ряз, был рассмотрен М. М. Джрбашяном [5]. До сих пор не получено условие, необходимое и достаточное для полноты системы Мюнца в пространстве C_0 [0, ∞). Отметим, что наилучшее необходимое условие получено А. М. Седлецким [4].

В настоящей статье обобщается теорема Мюнца-Саса в двух направлениях. В первом параграфе мы рассматриваем вопрос о полноте системы $e^{-\lambda}$ $\downarrow_{k=1}$ в пространстве C_0 (E), где λ_k — действительные числа, причем inf $\lambda_k > 0$, а E — счетное замкнутое множество. Во втором параграфе рассматривается вопрос о полноте системы

$$\left(\frac{e^{-kt}}{(1+t)^{\alpha}}\right)_{k=1}^{\infty} \tag{1}$$

в пространствах $C_0[0,\infty)$ и $L_p[0,\infty)$, где $\alpha>0$ и $\mathrm{Re}_{-k}>0$, k=1, $2,\cdots$. При некоторых ограничениях на α получены необходимые и достаточные условия для полноты системы (1) в $C_0[0,\infty)$ и $L_p[0,\infty)$.

1. Имеет место следующая

Теорема 1. Пусть множество E содержит бесконечно много точек и удовлетворяет следующему условию: для любой точки $x \in E$, или $(x, \infty) \cap E = \emptyset$, или существует такая точка $y \in E$, $x \leq y$, что $(x, y) \cap E = \emptyset$. Пусть $\{\iota_k\}$ — действительные числа и inf $\iota_k > 0$. Тогда для полноты системы $\{\iota_k\}$ — в пространстве

 $C_u(E)$ необходимо и достаточно, чтобы $|e^{-k}|$ содержала бесконечно много функций.

Доказательство. Так как множество E содержит бесконечно много точек, то пространство $C_{\rm c}$ (E) бесконечномерно и, следовательно, для полноты системы $\{e^{-ik}\}$ в $C_{\rm o}$ (E) необходимо, чтобы она содержала бесконечно много функций.

Докажем достаточность. Пусть система $\{e^{-k}\}$ содержит беско нечно много функций. В случае, когда I_k не $\to +\infty$ система $\{e^{-k}\}$ полна в $C_0[0,\infty)$ и, следовательно, она полна в $C_0(E)$. Теперь рассмотрим случай, когда $I_R \to \infty$. Достаточно доказать, что для любой конечной меры $I_R \to E$ из условий

$$\int_{E} e^{-\lambda_{k} t} \mu(dt) = 0, k=1, 2, \cdots$$
 (2)

следует, что $\mu \equiv 0$. Обозначим $x_0 = \inf\{x/x \in E\}$. Так как E — замкнутое множество, то $x_0 \in E$. По условию теоремы существует $y_0 \in E$ такое, что $x_0 < y_0$ и $(x_0, y_0) \cap E = \emptyset$. Тогда в силу (2) имеем

$$e^{-\lambda_k x_0} \mu\left(\{x_0\}\right) + \int_{[y_0, \infty) \cap E} e^{-\lambda_k t} \mu\left(dt\right) = 0.$$

Следовательно

$$|\mu(\{x_0\})| = \left| \int_{(y_0, \infty) \cap E} e^{-\lambda_k (t - x_0)} \mu(dt) \right| \leq e^{-\lambda_k (y_0 - x_0)} |\mu|. \tag{3}$$

Правая часть неравенства (3) при $h_k \to \infty$ стремится к нулю. Поэтому $\mu\left(\{x_0\}\right) = 0$.

Заметим, что множество E, которое удовлетворяет условиям теоремы, является вполне упорядоченным множеством. Применяя трансфинитную индукцию легко убедиться, что $\mu \equiv 0$. Теорема доказана.

Множество $E \subset [0, \infty)$ не удовлетворяет условиям теоремы 1, если оно состоит из конечного числа точек, или содержит монотонно убывающую последовательность.

Теорема 2. Пусть множество E содержит монотонно убывающую последовательность. Тогда существует последовательность $l_k \to \infty$, такая, что система e^{-k} не полна в пространстве C_0 (E).

Доказательство. Сначала рассмотрим случай, когда E содержит последовательность $\{x_n\}_{n=1}$, которая монотонно убывая стремится к нулю. Выберем из этой последовательности подпоследовательность $\{x_n\}_{n=1}^\infty$, которая удовлетворяет следующим условиям: $x_n = x_1$

$$x_{p_{2n}} < \frac{\ln \frac{4}{3}}{\ln 8} x_{p_{2n-1}}, n = 1, 2, \cdots,$$
 (4)

$$x_{p_{2n+1}} < \frac{\ln \frac{4}{3}}{(2n^2+3) \ln 2} x_{p_{2n}}, \ n=1, 2, \cdots.$$
 (5)

Рассмотрим следующие функции:

$$\varphi_n(t) = \exp \{-x_{p_{2n+1}}t\} - \frac{1}{2}\exp \{-x_{p_{2n+2}}t\}, n = 1, 2, \cdots$$

Мы имеем

$$\varphi_n\left(\frac{\ln\frac{4}{3}}{x_{p_{2n+1}}}\right) = \frac{3}{4} - \frac{1}{2}\exp\left\{-x_{p_{2n+2}} \frac{\ln\frac{4}{3}}{x_{p_{2n+1}}}\right\} > \frac{1}{4}.$$

Далее, в силу (4) имеем

$$\varphi_n\left(\frac{\ln 8}{x_{p_{2n+1}}}\right) = \frac{1}{8} - \frac{1}{2} \exp\left\{-\frac{\ln 8}{x_{p_{2n+2}}} - \frac{\ln 8}{x_{p_{2n+1}}}\right\} < -\frac{1}{4}$$

Теперь рассмотрим функцию

$$f(t) := \sum_{k=1}^{\infty} 4^{-k^2} \varphi_k(t).$$

Пусть n > 1 — некоторое целое число. Тогда в силу (5)

$$f\left(\frac{\ln\frac{4}{3}}{x_{p_{2n+1}}}\right) = 4^{-n^2}\,\varphi_n\left(\frac{\ln\frac{4}{3}}{x_{p_{2n+1}}}\right) + \sum_{k=1}^{n-1}4^{-k^2}\,\varphi_k\left(\frac{\ln\frac{4}{3}}{x_{p_{2n+1}}}\right) + \\ + \sum_{k=n+1}^{\infty}4^{-k^2}\,\varphi_k\left(\frac{\ln\frac{4}{3}}{x_{p_{2n+1}}}\right) \geqslant 4^{-n^2-1} - \left(\sum_{k=1}^{n-1}4^{-k^2-n^2-1} + \frac{1}{3}\left(4^{-n^2-1} + 4^{-(n+1)^2+1}\right) > 0.$$

Аналогичным образом получается оценка

$$f\left(\frac{\ln 8}{x_{p_{2n+1}}}\right) = 4^{-n^2} \varphi_n \left(\frac{\ln 8}{x_{p_{2n+1}}}\right) + \sum_{k=1}^{n-1} 4^{-k^2} \varphi_k \left(\frac{\ln 8}{x_{p_{2n+1}}}\right) + \sum_{k=n+1}^{n-1} 4^{-k^2} \varphi_k \left(\frac{\ln 8}{x_{p_{2n+1}}}\right) \le -4^{-n^2-1} + \sum_{k=1}^{n-1} 4^{-k^2-n^2-1} + \sum_{k=n+1}^{n} 4^{-k^2} < 0.$$

Из приведенных оценок следует, что функция f(t) обращается в нуль в интервалах

$$\left(\frac{\ln \frac{4}{3}}{x_{p_{2n+1}}}, \frac{\ln 8}{x_{p_{2n+1}}}\right), n = 1, 2, \cdots$$

Обозначим эти нули через $\{i_n\}_{n=1}^\infty$. Очевидно, что $i_n \to \infty$. На пространстве $C_0(E)$ рассмотрим линейный функционал

$$L(g) = \sum_{n=1}^{\infty} 4^{-n^2} \left(g(x_{\rho_{2n+1}}) - \frac{1}{2} g(x_{\rho_{2n+2}}) \right).$$

Заметим, что L(g)— непрерывный функционал. На функциях e^{-t} он обращается в нуль

$$L(e^{-\lambda_k t}) = \sum_{n=1}^{\infty} 4^{-nt} \varphi_n(\lambda_k) = f(\lambda_b) = 0, k = 1, 2, \cdots$$

Следовательно, система $\{e^{-i_k l}\}_{k=1}^{\infty}$ не полна в C_0 (E).

Если монотонно убывающая последовательность $\{x_k\}_{k\to 1}\subseteq E$ не стремится к нулю, т. е. $\lim_{k\to\infty} x_k = x_0 > 0$, то тогда мы строим функцию

f(t) для последовательности $|x_k - x_0|_{k=1}$ и в дальнейших рассуждениях вместо f(t) рассматриваем функцию $e^{-x_0 t} f(t)$.

 2° . Обозначим через $H_p^{(k)}$, $1 \leqslant p \leqslant \infty$, $k=1,2,\cdots$, пространство аналитических функций f(z), определенных на единичном круге и таких, что $f^{(k)}(z)$ принадлежит пространству Харди H_p в круге. Аналогично определяется пространство аналитических функций f(z), определенных на правой полуплоскости $\{z/\text{Re }z>0\}$ и таких, что $f^{(k)}(z)$ принадлежит пространству Харди H_p в полуплоскости. В последнем случае мы скажем, что $f\in H_p^{(k)}(0,\infty)$.

Теорема 3. Пусть — некоторая последовательность различных точек в правой полуплоскости. Для того чтобы система

$$\left\{\frac{e^{-\lambda_k t}}{(1+t)^a}\right\}_{k=1}^{\infty},\tag{6}$$

иде x > 1, не была полна в пространстве $C_0[0,\infty)$ необходимо и достаточно, чтобы

$$\sum_{k=1}^{\infty} \frac{\operatorname{Re} \lambda_k}{1 + |\lambda_k|^2} < \infty \tag{7}$$

u

$$\int \frac{\ln d\left(ix, \left(\lambda_k\right)\right)}{1+x^2} dx > -\infty, \tag{8}$$

vae $d(ix, \{k_k\}) = \inf_{\lambda} |ix - k_k|$.

 \mathcal{A} оказательство. Заметим, что для неполноты системы (6) в пространстве $C_0[0,\infty)$ необходимо и достаточно, чтобы существо вала конечная мера $\mu = 0$ такая, что

$$\int_{0}^{\infty} \frac{e^{-\lambda_{k} t}}{(1+t)^{\alpha}} \, \mu \, (dt) = 0, \ k = 1, 2, \cdots.$$

Рассмотрим функцию

$$f(\lambda) = \int_{0}^{\infty} \frac{e^{-\lambda t}}{(1+t)^{\alpha}} \, \mu(dt). \tag{9}$$

Докажем, что $(1+\lambda)^{-2} f(\lambda) \in H_1^{(1)}(0, \infty)$. Имеем

$$\left(\frac{f(\lambda)}{(1+\lambda)^2}\right)' = -2\frac{f(\lambda)}{(1+\lambda)^3} + \frac{f'(\lambda)}{(1+\lambda)^2}.$$
 (10)

Так как $f(\lambda)$ ограниченная функция, то первое слагаемое в (10) при надлежит $H_1(0, \infty)$. Далее

$$\int_{-\infty}^{\infty} \left| \frac{f'(x+iy)}{(1+x+iy)^2} \right| dy \leqslant \int_{-\infty}^{\infty} \frac{|f'(x+iy)|}{1+y^2} dy \leqslant \int_{-\infty}^{\infty} \frac{1}{1+y^2} \times \left(\int_{0}^{\infty} \frac{1}{(1+t)^{2\alpha}} e^{-xt\mu} (dt) \right) dy \leqslant$$

$$\leqslant \pi |\mu| \max_{t>0} \frac{t}{(1+t)^2} < \infty, \ x > 0.$$

Так как $(1-A)^{-2}$ не имеет нулей, то нули функции f(A) удовлетво ряют тем же условиям, что и нули функции из класса $H^{(1)}(0, \infty)$. В работе С. А. Виноградова и Н. А. Широкова [2] доказано, что нули $|z_k|_{k=1}^\infty$ функции f(k) удовлетворяют следующим условиям:

$$\sum_{k=1}^{\infty} 1 - |z_k| < \infty \tag{11}$$

И

$$\int_{0}^{2\pi} \ln d \left(e^{i\theta}, \left\{z_{k}\right\}\right) d\theta > -\infty, \tag{12}$$

где $d(e^{i\theta}, \{z_k\}) = \inf |e^{i\theta} - z_k|$. Из приведенного результата легко следует, что нули $\{i_k\}_{k=1}^{\infty}$ аналитической функции $f \in H_1^{(1)}(0, \infty)$ удовлет воряют условиям (7) и (8).

Теперь докажем достаточность. Пусть — последовательность в правой полуплоскости, которая удовлетворяет условиям (7) и (8).

Заметим, что если $f(\lambda)$ — аналитическая функция, определенная в правой полуплоскости и $f \in H_2$ (0; ∞), j=0, 1, k, причем k > 2+2, то она допускает представление (9) с конечной мерой μ . Действительно, так как $f \in H_2$ (0, ∞), то в силу теоремы Р. Пэли и Н. Винера функции $f(\lambda)$ допускает представление

$$f(\lambda) = \int e^{-\lambda t} g(t) dt,$$

где $g(t) \in L_2(0, \infty)$. Далее, так как $f(z) \in H_2^{(k)}(0, \infty)$, то $t^k g(t) \in L_2(0, \infty)$. Ясно, что f(t) допускает представление (9) с конечной мерой μ , если сходится интеграл

$$\int_{0}^{1} (1+t) |g(t)| dt \leq 2^{n} \int_{0}^{1} |g(t)| dt + \int_{1}^{\infty} (1+t)^{2} |g(t)| dt \leq 2^{n} \left(\int_{0}^{1} |g(t)|^{2} dt \right)^{1/2} + \left(\int_{1}^{\infty} \frac{(1+t)^{2n}}{t^{2n}} dt \right)^{1/2} \left(\int_{1}^{\infty} |t^{k} g(t)|^{2} dt \right)^{1/2}.$$

Так как $k > \alpha + 2$, то правая часть приведенного неравенства конечна. В работе Б. И. Коренблюма [3] доказано, что если $\{z_k\}_{k=1}^{\infty}$ — последовательность в единичном круге, удовлетворяет условиям (11) и (12), то существует функция $f(z) \in \bigcap_{k=0}^{\infty} H_2^{(k)}$, которая обращается в нуль в точках $\{z_k\}_{k=1}^{\infty}$. Из приведенного результата Б. И. Коренблюма следует, что если $\{\lambda_k\}_{k=1}^{\infty}$ — последовательность в правой полуплоскости, которая удовлетворяет условиям (7) и (8), то существует функция $f(\lambda) \in \bigcap_{k=0}^{\infty} H_2^{(k)}(0,\infty)$, которая обращается в нуль в точках $\{\lambda_k\}_{k=1}^{\infty}$. Но мы уже заметили, что $f(\lambda) \in \bigcap_{k=0}^{\infty} H_2^{(k)}(0,\infty)$ допускает представ-

Но мы уже заметили, что $f(\lambda) \in \bigcap_{k=0}^{H_1^{k+1}}(0,\infty)$ допускает представление (9) с конечной мерой μ .

Теорема 4. Пусть $\{k_k\}_{k=1}^m$ — последовательность в правой полуплоскости. Для того чтобы система

$$\left\{\frac{e^{-\lambda_k t}}{(1+t)^{\alpha}}\right\}_{k=1}^{\infty},$$

име $x>1+rac{1}{q},\ 1\leqslant q<\infty$, не была полна в пространстве L_q $(0,\infty)$, необходимо и достаточно, чтобы

$$\sum_{k=1}^{\infty} \frac{\operatorname{Re} \lambda_k}{1 + |\lambda_k|^2} < \infty$$

11

$$\int_{-\infty}^{\infty} \frac{\ln d \left(ix, \{\lambda_k\}\right)}{1+x^2} dx > -\infty.$$

Доказательство. Рассмотрим функции f(t), допускающие представление

$$f(\lambda) = \int_{0}^{\infty} \frac{e^{-\lambda t}}{(1+t)^{\alpha}} g(t) dt, \qquad (13)$$

где $g(t) \in L_p(0,\infty)$, $\frac{1}{p} + \frac{1}{q} = 1$. Как и в теореме 3 для доказатель ства необходимости достаточно заметить, что производная функции

ства необходимости достаточно заметить, что производная функции $(1+\lambda)^{-2}f(\lambda)$ принадлежит пространству $H_1(0,\infty)$. Действительно если x>0, то имеем

$$\int_{-\infty}^{\infty} \left| \left(\frac{f(x+iy)}{(1+x+iy)^2} \right)' \right| dy \leqslant 2 \int_{-\infty}^{\infty} \frac{|f(x+iy)|}{[(1+x)^2+y^2]^{3/2}} dy + \int_{-\infty}^{\infty} \frac{|f'(x+iy)|}{(1+x)^2+y^2} dy \leqslant$$

$$\leqslant 2 \left(\int_{-\infty}^{\infty} \frac{dy}{(1+y^2)^{3/2}} \right) \left(\int_{0}^{\infty} \frac{|g(t)|}{(1+t)^{\alpha}} dt \right) + \int_{-\infty}^{\infty} \frac{|f'(x+iy)|}{1+y^2} dy \leqslant$$

$$\leqslant 2 \left(\int_{-\infty}^{\infty} \frac{dy}{(1+y^2)^{3/2}} \right) \left(\int_{0}^{\infty} |g(t)|^p dt \right)^{1/p} \left(\int_{0}^{\infty} \frac{dt}{(1+t)^{\alpha q}} \right)^{1/q} +$$

$$+ \pi \left(\int_{0}^{\infty} |g(t)|^p dt \right)^{1/p} \left(\int_{0}^{\infty} \frac{t^q}{(1+t)^{\alpha q}} dt \right)^{1/q} .$$

Так как $\alpha > 1 + \frac{1}{q}$, то правая часть вышеприведенного неравенства конечна.

Докажем достаточность. Как и в теореме 3 достаточно доказать, что если f(z) — аналитическая функция, определенная в правон полуплоскости и $f^{(j)}(z) \in H_2(0, \infty)$, $j=0,1,\cdots$, k, для некоторого числа k > 0, то $(1+z)^{-1} f(z)$ допускает представление (13), где $g(t) \in L_p(0,\infty)$. Пусть $f^{(j)}(z) \in H_2(0,\infty)$, $j=0,1,\cdots$, k. Тогда f(z) допускает представление

$$f(z) = \int_{0}^{\infty} e^{-zt} h(t) dt,$$

где $t^{j}h(t) \in L_{2}(0, \infty), j = 0, 1, \cdots, k$. Мы имеем

$$\frac{f(z)}{1+z} = \int_{0}^{\infty} e^{-(z+1)t} dt \int_{0}^{\infty} e^{-zx} h(x) dx = \int_{0}^{\infty} e^{-zx} \left(\int_{0}^{x} e^{-x+t} h(t) dt \right) dx.$$

Следовательно, для того чтобы $(1+z)^{-1}f(z)$ допускала представление (13), достаточно, чтобы сходился интеграл

$$\left(\int_{0}^{\infty} (1+x)^{2p} \left(\int_{0}^{x} e^{-x+t} |h(t)| dt\right)^{p} dx\right)^{1/p} = \left(\int_{0}^{\infty} (1+x)^{2p} e^{-xp} \times \left(\int_{0}^{x} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} = \left(\int_{0}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{0}^{1} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \le 2^{n} \max_{0 < x < 1} \int_{0}^{x} e^{t} |h(t)| dt + \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{0}^{1} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} + \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{0}^{x} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{\infty} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{\infty} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{\infty} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{\infty} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{\infty} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{\infty} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{\infty} e^{t} |h(t)| dt\right)^{p} dx\right)^{1/p} \cdot \left(\int_{1}^{\infty} e^{-x} e^{-x}$$

Так как первые два слагаемых в правой части вышеприведенного неравенства конечны, то остается оценить последний интеграл:

$$\int_{1}^{x} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} e^{t} |h(t)| dt \right)^{p} dx \leq \int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} \frac{e^{t}}{t^{k}} t^{k} |h(t)| dt \right)^{p} dx \leq$$

$$\leq \int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} \frac{e^{2t}}{t^{2k}} dt \right)^{p/2} \left(\int_{1}^{x} t^{2k} |h(t)|^{2} dt \right)^{p/2} dx \leq$$

$$\leq \left(\int_{1}^{\infty} t^{2k} |h(t)|^{2} dt \right)^{p/2} \left(\int_{1}^{\infty} (1+x)^{2p} e^{-xp} \left(\int_{1}^{x} \frac{e^{2t}}{t^{2k}} dt \right)^{p/2} dx.$$

3аметим, что функция $t^{-2k} e^{2i}$ стремится к бесконечности, и кроме

$$\frac{d}{dt}\left(\frac{e^{2t}}{t^{2k}}\right) = \frac{2e^{2t}}{t^{2k+1}}(t-k) > 0, \ t > k.$$

Следовательно, функция t^{-2k} e^{2t} монотонно возрастает при t>k. Поотому существует число $M<\infty$ такое, что

$$\int_{1}^{\infty} (1+x)^{ap} e^{-xp} \left(\int_{1}^{x} \frac{e^{2t}}{t^{2k}} dt \right)^{p/2} dx \leq M \int_{1}^{\infty} \frac{(1+x)^{ap}}{(k-\frac{1}{2})^{p}} dx.$$

Легко заметить, что если $k > a + \frac{1}{2} + \frac{1}{p}$, то последний интеграл сходится. Теорема доказана.

Замечание 1. Теоремы 3 и 4 верны и в случае, когда в последовательности $\{\lambda_k\}_{k=1}^\infty$ имеются повторяющиеся члены. В этом случае, следуя обозначениям М. М. Джрбашяна, вместо системы (6) нужно рассматривать систему

$$\left\{\frac{t^{s_k-1}e^{-\lambda_k t}}{(1+t)^{\alpha}}\right\}_{k=1}^{\infty},$$

где s_k — число появления λ_k в множестве $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$.

Замечание 2. Теорема 3 верна, если вместо системы (6) рассматривать систему

$$\{e^{-\lambda_k t} h(t)\}_{k=1}^{m},$$
 (14)

где h(t) — непрерывная функция на $[0, \infty)$ и удовлетворяет неравенствам

$$\frac{A}{(1+t)^m} \leqslant h(t) \leqslant \frac{B}{1+t}, \ 0 < t < \infty,$$

где A, B, m — некоторые положительные числа. Теорема 4 верна, если вместо h(t) рассматривать систему (14), где h(t) — измеримая функция на $[0, \infty)$ и почти всюду удовлетворяет неравенствам

$$\frac{A}{(1+t)^m} \leqslant h(t) \leqslant \frac{B}{(1+t)^a},$$

где A, B, m — положительные числа, а $a > 1 + \frac{1}{q}$.

Институт математики АН Армянской ССР

Поступила 11.ХІІ.1976

Ա. Ա. ՎԱՂԱՌՇԱԿՅԱՆ. Մյունց-Սասի թեուեմի ուրջ ընդհանթացումների մասին (ամ-

Հոդվածում բերվում են Մյունը-Սասի Թեորեմի երկու ընդհանրացումը։

A. A. VAGARSHAKIAN. On some extensions of Müntz-Szäsz theorem (summary)

Two extensions of Müntz-Szäsz theorem are given.

ЛИТЕРАТУРА

- 1. Н. Винер, Р. Пэли. Преобразование Фурье в комплексной области, М., 1964.
- 2. С. А. Виноградов, Н. А. Широков. Нули аналитической функций с производной из H^1 , Зап. науч. семинаров ЛОМИ, III, т. 30, 1972.
- 3. Б. И. Коренблюм. О функциях, голоморфных в круге и гладких вплоть до границы, ДАН СССР, 200, № 1, 1971.
- 4. А. М. Седлецкий. К проблеме Мюнца—Саса для пространства C [0, 1]. Труды Моск. энергетического института, т. 260, 1975.
- 5. М. М. Джрбашян. О полноте и замыкании неполной системы функций е
 ДАН СССР, 141, № 3, 1961.