
ՀԱՅԿԱԿԱՆ ՍՍՀ ԳԻՏՈԻ1>ՅՈԻՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ
ИЗВЕСТИЯ А КАДЕМИИ НАУК армянской ССР

Ս-աբհմաաիկա X. № 5. 1975 Математика

D. A. EDINJIKLIAN

ON SOME FORMAL REPRESENTATIONS OF ALGORITHMS
DEFINED BY GRAPH SCHEMES WITH MEMORY*

§ 0. Introduction. In this paper we shall consider some problems
relating to the transformation of graph schemes with memory. The
general concept of algorithmic schemes used here is based on the
notions of the logical scheme (A. A. Ljapounov [8, 9], Ju. I. lanov [5],
L. A. Kaluznin [7], R. I. Podlovchenko [11, 12]; the concepts concerning
the use of memory locations and of the classes of basic algorithms are
founded on the notions introduced by A. P. Ershov [2, 3]; the
definition of graph scheme with memory and the set of parallel defi­
nitions are same as in [15]. The general direction of investigations is in
some aspects similar to that of the papers [1], [4], [6], [10], [13], [14].

In [15] definitions were given for the notion of normal closure for
a given set of algorithms, and for graph schematic closure. The normal
closure of a given set is the set of algorithms which can be obtained
rom algorithms of a given set, plus some standard algorithms and the
operations of Composition, Branching and Repetition of algorithms,
including the adjoining and dropping of fictitious veriables. The graph
schematic closure of a given set of algorithms is the set of those algo­
rithms which are specified by graph schemes with memory constructed
on the base of the algorithms belonging to the given set. It was
proved that graph schematic closure and normal closure are equal for
every given set of algorithms.

However, the method of obtaining the given graph schemes in the
corresponding normal expression in [15] is essentially dependent on the
interpretation of the schemes under consideration.

In the present paper we shall show that the analogous theorems
can be obtained on a purely formal level, independently of the inter­
pretations of graph schemes with memory defined in formal terms. In
order to do this, the notion of normal closure has been slightly changed,
for example, by rejecting the operation of the dropping of fictiti ous
variables which cannot be given in formal terms. However, the whole
concept of normal closure remains unchanged.

We shall prove that for every graph scheme with memory given
in formal terms these exists an algebraical expression using the ope­
rations of normal closure and such that for every interpretation of ele­
mentary symbols in the given graph scheme, the same algorithm as des­
cribed by our graph scheme will be expressed. For this purpose we shall

I wish to thank my advisor, I. D. Zaslavskil, for his help and encouragement
in the preparation of this paper.

On some formal representations 415

consider the notion of generalized graph scheme having some interest
in itself, and we shall prove some theorems about standard forms of
these schemes.

The transformations of graph schemes considered here may be
useful in studying practical algorithmic languages.

§ 1. Basic definitions. In the interest of economy, we shall omit
some of the definitions, and the proofs of some of the lemmas, which
are similar to those of [15]. Such references will be noted by the sym'
bol [15], followed by the page number. Eg. [15: 139].

We shall consider the following types of variables:
1) Algorithmic functor variables flt f2, f3,---,
2) Algorithmic predicate veriables p3, pt, p3,---,
3) Object variables x։, x„, x3, •••.
The dimensions of an algorithmic functor variable f2* (2;+1) and of

an algorithmic predicate variable p2t(2/+1) is k.
Def. 1. Let us define /•’-terms and P-terms inductively as follows:
1) Every fi is an F-term of corresponding dimension.
2) Every pi is a P-term of corresponding dimension.
3) I is an F-term of dimension one.
4) D is an F-term of dimension zero.
5) T is a P-term of dimension zero.
6) L is a P-term of dimension zero.
7) If F։,---, Tm+i are /•-terms of dimensions m, n, •••, n

respectively, then Comp (Fj,---, Fhi) is an F-term of dimension n.
8) If F։ is a P-term of dimension m and F2,Fm+i are F-terms

of dimension n, then Comp (F։,• • Fm + i) is a P-term of dimension n.
9) If Fj is a P-term of dimension n and F2 and T3 are F -terms

of dimension n, then Br (F։, F2, F3) is an F-term of dimension n.
10) If F1։ F2 and F3 are P-terms of dimension n, then Br (F1։ F2,

F3) is a P-term of dimension n.
11) If F3 is a P-term of dimension n, and F2,•••, Fn+i are F-terms

of dimension n, then Rep (/, F։,•••, F,։+i), where (1 < i < n) is an
F-tcrm of dimension n.

12) If F is an F-term or a P-term of dimension n, then Adj (z, F)
(O^i^n) is correspondingly an F-term or a P-term of dimension n +1.

Def. 2. An expression of the form [F1։••••, Fn] is called an .4-term
of dimension n, iff every Ti (1 i ֊'C r) is an F-term of dimension n.

Def. 3. An expression of the form a«--C is called a generalized
memory transformation row iff either a is a functor skeleton variable
([15: 173]) and C is an X-term or a is a predicate skeleton variable
([15: 173]) and C is a P-term.

Def. 4. A system (possibly empty) of generalized memory trans­
formation rows is called a generalized memory transformation table.

Def. 5. A quadruple of objects consisting of a skeleton scheme S,
([15: 174]), a generalized memory transformation table S, a system of

416 D. A. Edinjiklian

input variables IFj and a system of output variable 172 will be called a
generalized memory transformation scheme of dimension n, denoted by
(E, E, IP'j, IF։) iff the table 2 is matched ([15:^178]) with the scheme 2
and every ,/4-term or P-term in the right side of the rows of 2 has a
dimension n and all the object variables in each of the systems W1։ W։
are distinct pairwise and their index set is a subset of (l,---, nj.

Def. 6. A pair of objects is called a generalized graph scheme of
dimension n in M, denoted by (4r, L), iff the first member of the ordered
pair is a generalized memory transformation scheme U-' of dimension
n and the second is a matched table of algorithms L ([15: 182]) in the
constructive set M ([15: 179]).

Def. 7. The value of an F-term or a P-term R in the state P
([15: 185]) of a generalized graph scheme by P(R) is defined inductive­
ly as follows:

1) If the F-term R has the form then P(R) is defined
iffl P(P(xJ),---, P(xn)) and its value is £ (P (x։), • • •, P(xn)).

2) If the P-term R has the form P2n(2։+]), then P(R) is defined
iffl P(P(x1),---, P(xfl)) and its value is P(P(x1),---, P(x„)).

3) If the F-term R has the form I, then P(R) is defined and its
value is P(xi).

4) If the F-term R has the form D then P(R) is undefined and
has no value.

5) If the P-term R has the form T, then P(R) is defined and its
value is true.

6) If the P-term R has the form L, then P(R') is defined and its
value is false.

7) If the F-term or the P-term R has the form Comp (71։ • • ■, Tm+i)
of dimension n, then P (R) is defined iff every 1 Ti (PfxJ,-• •, P(xn))
(1 C։Cm 4-1) and if 7, (Pfxj),-P(xn)) = a- then ! 7\ (a1։- • •, a.n)
and its value is 7\(a1։■■■, am).

8) If the F-term or the P-term R has the form Br (Tv Ts, T3) of
dimension n, then P(R) is defined iff either (։) ! 7\ (P(x1),-• •, P(xn))
and has the value true with ! T2 (Pfo), • • •, P (xn)) or (ff) 1 T3 (P (x։), • • •
•••, P(x„)) and has the value false with ! 7։(P(x1),-• P (xn))-P (R)
in the first case is Tt (PfxJ,-• •, P(x«)) and in the second case
ri(P(x1),---> P(x„]).

9) If the P-term R has the form Rep (k, 7J։ •••, 7n+i), then P(R)
is defined iff it is possible to construct a natural number and a
system of objects a^J (1 f n) and Further for f = 0 we
have ap = P(Xl) (l<։<n), I T^a™, •••, a™) and 71(a[%-.., a<’))
is true, whereas for f>0 we have a]0՝ = P(x։)(l<։<n), 1 7 (a'J)։ . ..

((l<f<n), (O^y<f)), ap+i)=7Hb (a'B,-.., a0))
((1 < i < n), (0 < j < f)); 1 7j (a(/J, • • •,) (0<; < f); 7։ (aj», • • •, ctf)
is false (0 t — 1); and 7։(a<9,---, a[‘>) is true. The value of"/?
in this case will be

On some formal representations 417՜

10) If the P-term or the P-term R has the form Adj (i, T), then
P (R) will be defined iff P* (T) is defined, where P* is a memory
state such that P*=P, P* (xj) = P(xj), when (l</<r);and P*(x/) =
= P(xj*i) when j>i. If P(P) is defined, Jthen the value P(P) is
P*(P).

The assertion “P(R) is defined“ will be denoted by !P(P).
Note՛. In what follows, we shall use the P-terms I'm, where

(14/Cm), which are defined recursively as (z) /1 = I, (ii)/*+1 =
=Adj (1, In) (0■< 1 k), (Hi) Jn+i = Adj (1, In)(k^.l < n). It is easy
to see that if P — (a, (a1։---, am)) then P(Im) = aj.

Def. 8. A memory state P of a generalized graph scheme G of
dimension n is said to be amenable to G and denoted by !!G(P) if one
of the following conditions holds:

(i) P is a starter.
(ii) P is a skeleton functor variable such that if P is[7'1, •••, Tn\

then 1P(7։), lP(r։),---, lP(r„).
(Hi) P is a predicate skeleton variable such that if P is Q, where

Q is a P-term, then 1P(Q).
Def. 9. For any memory state P of a generalized graph scheme G

of dimension n amenable to G, a direct successor memory state Q of
G, denoted by P |— Q, is assigned as follows:

0

(։) If P 5 is a starter, with {P} — (P, 4), we have Q = 4, and
Q (xi) = P (xi) (1 < i < n).

(ii) If P is a functor skeleton variable with (Pj = (P, 4) and
P*-[7i,--՛, Tn] then Q = 4, and for every Q(xt)= P(Ti).

(iii) If P is a predicate ’skeleton variable with {P| =(P, 4, ri) and
P *--*■ R> where P is a P-term, then Q = I 4 'S *rue and

I if P (P) is false
Q (xi) = P (xt) (1< i < n).

Def. 10. A generalized graph scheme G of dimension n is called
regular iff G is equivalent ([15 :188]) to itself.

Def. 11. A generalized memory transformation scheme (S, E, Wlt
Wt) of dimension n is called strongly regular iff for every algorithmic
table L in the constructive set M, if ((E, S, Wlt IF։),£) is a genera­
lized graph scheme of dimension n, then it is regular.

Def. 12. Two generalized memory transformation schemes Tj and
'Tj of dimensions n and m respectively are said to be D-equivalent iff
for every algorithmic table L, in the conslructive set M, if (UTj, L) and
(IFjj, L) are generalized graph schemes, then they are equivalent.

Def. 13. A generalized functor graph scheme G ([15:179]) in M of
dimension n with input variables x1։ •••, xt and output variable r is

418 D. A. Edinjiklian

said to specify a functor U in M of dimension t iff for every a։, •••
•••» at in M, the value of t/(a1։•••>■' at) is obtained as follows:

(/) An initial memory state P of G is constructed such that
P = 77and P(xt) = at (l^iXf) (For object variables other than x1։ •••
•••, xt, P(xi) is taken arbitrary).

(zz) The generalized graph scheme is applied ([15:188]) to the
state P, and if a terminal state Q is arrived at, then Q (r) is the value
of U(a1։- • -,at).

Def. 14. A generalized predicate graph scheme ([15:179]) G in M
of dimension n with input variables xJ։---, xt is said to specify

a predicate P in M of dimension t iff for every altat in M, the
value P(alt •••, at) is obtained as follows:

(/) An initial memory state P of G is constructed such that P=H
and P(xt) = at (1 -C i t).

(it) The generalized graph scheme is applied to the state P, and
if a terminal state Q is arrived at, then the value of P(av at) is
either true or false depending on whether Q is Or or Op respectively.

Def. 15. An F-term R of dimension n is said to realize an algo­
rithm U with respect to L iff U is specified by the generalized graph
scheme ((((H, ^), (?1, O*)), ?1~[R, ^,•••,7:]), (x1։---։ x„),(x։)), L).

Def. 16. A P-term R of^dimension n is said to realize an algorithm
P with respect to L iff P is specified . by the generalized predicate
graph scheme ((((//, nj, (HJ։ oj1։ o>։)), (ILj^-P), (x1։--, x«), ()), L).

2. Substitution: Let T = (S, E, W2) be a generalized memory
transformation scheme of dimension n, with the skeleton scheme
S = (5l,՛-՛, 5*). Let T be a* system consisting of some of its skeleton
functor and predicate variables, and let E be a subscheme of ՝1 gene­
ralized by T ([15: 194]).

Let E* be a generalized memory transformation scheme of dimension
m D-equivalent to E in which the systems of input "and output
variables coincide with the corresponding systems of the generalized
memory transformation scheme E. The operation of substitution of a
generalized memory transformation scheme E* into a generalized trans­
formation scheme *F instead of subscheme E will be defined as follows:

(i) By appropriate renaming ([15:195]) of skeleton and algorithmic
variables of the transformation scheme E we obtain a transformation
scheme E = (S, E, IF1։ IF2) that differs from E* only by the name of the
variables, and such that all its skeleton functor and predicate variables
and algorithmic variables are distinct from the skeleton and algorithmic
variables of ՝F.

(ii) From the ske leton scheme S of the generalized memory
transformation scheme ® we eliminate all the terms whose first mem­
ber is contained in T, in each of the remaining skeleton Terms
([15:173]) »S we perform the following replacements: If the second mem­

On some formal representations 419

ber of the term 5 occurs in T։ we replace it by the second member of
the (unique) skeleton term of the scheme E whose first member is uj;
if the third member of 5 occurs in T, we shall replace it by the se­
cond member of the skeleton term of the scheme E whose first mem­
ber is «J.

(Hi) From the skeleton scheme E of the generalized memory trans­
formation scheme E we eliminate all the initial terms; in each of the
remaining skeleton terms we replace each stop o>' by the second member
of the term Si, and each stop a՝J by the third member of sr

(iv) We construct a skeleton scheme E* which is a union of the
skeleton scheme obtained from E by the transformations indicated in
step 2 and the skeleton scheme [obtained from E by the transformation
indicated in step 3.

(v) The generalized memory transformation table E* is constructed
as follows:

a) If m = n, then E* is the union of the generalized memory

transformation tables E and E of the generalized memory transfor­
mation schemes 'F a and E*.

b) If m > n, then a generalized memory transformation table E' of
dimension n is obtained by cancelling in E all the rows whose left
sides are not contained in T. Let us construct a generalited memory
transformation table E of dimension m, such that each row <Pz*—[T1։ •••
•••> T,,] in E' is replaced by <?i [T', 7՜^] where every F-term
T'y (n + 1 <^j m) is /•£,, and every F-term T'k (1 •< k ֊C n) is Adj (m—1,

Adj (m — 2>֊֊֊, Adj (n, ?»))•••). And thus E* is the union of the
generalized transformation tables E end E.

c) Similarly for n > m.

(vi) We construct a system of objects ՝F* = (£*, S*,IF1։ IFS) where
Wj. and W2 are the systems of input and output variables of the generalized
memory transformation scheme ^F.

It is easy to see that is a generalized memory transformation
scheme of dimension max (m, n)

Theorem 1. (On substitution). Let *F be a strongly regular gene­
ralized memory transformation scheme of dimension n, T a system consi­
sting of some of its skeleton functor and predicate variables, X a sub­
scheme of ’F generalized by T, X* a generalized transformation scheme of
dimension m, D-equivalent to X with the system of input and output va­
riables of X* coinciding with the systems of input and output vari­
ables of X. Let ՝F* be the result of substituting the generalized memory

420 D. A. Edinjiklian

transformation scheme for the subscheme of X into the generalized
memory transformation scheme 4’. Then 'F* will be D-equivalent to 4՛.

Proof: Let L be any algorithmic table in the constructive set M
such that (4’, L) and (4՜*, L) are generalized graph schemes of corres­
ponding dimensions. The proof that the generalized graph schemes
(4՜, L) and (4r*, L) are equivalent, is carried in a similar way, as in
[15:198—200]. Thus 4՜ and 4’* are D-equivalent.

§ 3. In this last section, with the aid of a series of lemmas we
shall prove the main theorem of this paper.

Lemma 1. For any strongly regular generalized memory transfor­
mation scheme ՝F it is possible to construct a D-equivalent one-sided
([15:179]) generalized memory transformation scheme 4՜, of the same
dimension. Proof: The proof is carried in a way similar to the proof of
lemma 6.3 of [15:232-233].

Lemma 2. For every one-sided pseudopredicate([15:233]) strong­
ly regular generalized memory transformation scheme *F = (E, S, IF1։
IF2) which does not contain any predicate skeleton variable in 2 it is
possible to construct a D-eguivalent generalized memory transformation

scheme, 4f = (S', S', U%) of the same dimension as 4’ such that S'
has the form ((v։, fy), (fy, wj).

Proof: The proof is carried in a way similar to the proof of lemma
6.4 of [15:234 — 235].

Lemma 3. For any generalized memory transformation scheme 4՜
of dimension n that satisfies the conditions of lemma 2, it is possible
to construct a primitive ([15:233]) generalized memory transformation
scheme 4՛ of dimension n which is D-equivalent to 4' and has the
same systems of input and output variables as 4".

Proof: The proof is carried in a way similar to the proof of lem­
ma 6,5 of [15:235 — 236].

Lemma 4. For any one-sided pseudopredicate strongly regular
generalized memory transformation scheme 4" without cycles [15:234] it
is possible to construct a primitive generalized memory transformation
scheme 4՜ D-equivalent to 4՞ that has the same dimension and the same
systems of input and output variables as 4T.

Proof: The proof is carried in a way similar to the proof of lemma
6.6 of [15:236—241].

Lemma 5. For any primitive strongly regular generalized functor
memory transformation scheme 4' = (E, 3, HZ,) of dimension n it
is possible to construct a generalized functor memory transformation
scheme 4՜՜ of dimension s, where s is the maximum index of the object
variables in (J I?7,, which is D-equivalent to 4" and has a skeleton
scheme of the form ((//, «ÊJ, (<t>1։ u>j)).

Proof: Let 4՜ be a primitive strongly regular generalized functor
memory transformation scheme of dimension n, which has the form

On some formal՜ representations 421

H։), (H։, ®։, *,). (®n ®1), <“»)). (Hl —B, «v-[t;,---, n),
0J — -[T\,-• -, 77,]), V?i, !₽։), where Wx and IP7 are systems of pair-
wise distinct variables. Since 4՛ is generalised functor-memory transfor­
mation scheme, we have Uj = H, <o1= Ot and w3 = Ok, the system W,
will consist of one variable, denoted by xi, and will be either
em pty or have variables which are denoted by X,,,•••, x*z(f<$In).

Case 1: Suppose ITj is empty and there exists at least a functor algo­
rithmic variable (/^-term), call it To, of dimension 0. Then the required
generalized memory transformation scheme lT' is (((//, <Pj), (<bv “i))>

[77, •••, 77]), W1։ W2), where 77 = Adj (0, Comp(Br(B, 77,77),

70, •••, 7’0)---)(l C 7-^ Z), which has dimension I.
Case 2: Suppose W2 is empty and there isj no functor algorithmic

variable of dimension 0 in IF. Then 5՜' of dimension I fis (((/7, d\),
(*1, “i))> {%—[!<.■■■, A՜1, Adj (/—jl,-•-,r Adj (0, £>)-..)], Wv IF,).

Let us show that is /^-equivalent to ՝F. From the construction
of ՝F/, it is obvious that for any algorithmic table L in a constructive
set M and for any initial memory state P . of the generalized graph
scheme (9՞', Z), ('I՜', Z) is inapplicable to P. Hence '₽/ is strongly
regular.

Subcase 1: Suppose IF is a generalized memory transformation sche­
me such that for every algorithmic table Z in a constructive set M (W, L)
is a generalized graph scheme, and for every initial memory state P in
M ('F, Z) is» inapplicable to P. Hence IF is strongly regular and Z)-equi
valent to *F'.

Subcase 2= Suppose Z is an algorithmic table in a constructive set
M such that (IF, Z) is a generalized graph scheme and there exists an
initial memory state P in M such that (W, Z) is applicable to P. It is
obvious that *F and T' are not D-equivalent. In this case let us show
that IF is not strongly regular.

(։) if is empty, then IF is not strongly regular, since W2 is
empty and Wt is non-empty.

(։i) If Z is non-empty, let us construct a constructive set Af* from
M such that Af* = AfU[a*}, where a*&AZ Let us construct an algorith­
mic table Z* in Af* from Z by “replacing every algorithm U of di­
mension i(i<.n) in Z by an algorithm Z/* of the same dimension in M*
as follows:

r*) =
U (r1։ •••, r*), if there exists no i

such that n = a*;
undefined, otherwise.

Hence (V, Z*) is a generalized graph scheme.
The initial memory state P is also applicable to ('Jr, Z*) in M. Let

P be an initial memory state such P* (x/) = a* (1 < i -C n), then P* is
inapplicable to (’F, Z*), since Z is non-empty. Hence ('P, Z*) is not re­
gular since is empty, and thus IF is not strongly regular.
3-694

422 D. A. Edinjiklian

Hence the only case that <F is strongly regular is in subcase
1 which is /^-equivalent to *F'.

Case 3: Suppose IFX is not empty, and let xs is an object vari­
able in U W, with maximum index. Then the required generalized me­
mory transformation scheme V' of ,'dimension s, D-equivalent to ’F is
constructed as follows: (((//, ®x), o>։))), [T\,• - •, T՛,]), Wi։ Wt),
where for every Ti — Comp (Br (B, Ti, Ti), !»,•••, Is).

It is easily seen that *F and 'I'' are /^-equivalent.
This completes the proof of the lemma.
Lemma 6. For any premitive strongly regular generalized predi­

cate memory transformation scheme *F = (S, 3, Wlt HZj of dimension
n, it is possible to construct a generalized predicate memory transfor­
mation scheme ՝F/ of dimension s, where s is the maximum index of the
object variable in U which is /^-equivalent to W and has a ske­
leton scheme of the form ((//, nx), (IIj, oj1։ w։)).

Proof: Let <F be a primitive strongly regular generalized predicate
memory transformation scheme of dimension n, which has the form (((’j։, HJ»
(n։, ?1, <p։), (<Pi> “1)> (<P2> l“s))> (ni — B, T1 — [T, • • T„], — [Tu • ■ •
••••» 7"])» ^i» ^։)> where Wr and IF2 are systems of pairwise distinct
variables. Since 'F is a generalized predicate memory transformation
scheme, we have »i=H, and each of the stops <ux and w։ is equal either
to Ot or Op and Wt is empty.

Case 1: Suppose Wa is empty and there exists at least a functor
algorithmic variable (F-term), call it TQ, of dimension 0 in *F. Then the
required generalized transformation scheme of dimension 0 is
(((#, nj, (IT,, w1։ u)j)), (Hx «--* Comp(Br (B, Comp (Rlt 7r--, Tn),

n
Comp (R2, Tn)), To,---, To)), IF1։ W2) where Rt (i = 1, 2) is
either Adj (n — I,---, Adj (0, T)---) or Adj (n — 1, Adjfn—2, • • •
---, Adj (0, L))---) in the cases a>i = Or or = Of respectively. It
is clear that IF' is /^-equivalent to T.

Case 2: Suppose is empty and there is no functor algorith­
mic variable with dimension 0 in *F. Then two subcases arise:

Subcase 7: Suppose V is a generalized predicate memory transfor­
mation scheme such that lF does not contain D, and for an empty
algorithmic table Z, in a constructive set M, (T, L) is a generalized
graph scheme. Then W' is /^-equivalent either to (((//, (H1։ aj1։ □»,)),
(n։~T), W1։ W2) if B is Adj (n —I,---, Adj (0, T)) or to (((fl, IIJ,
(1I1։ <4, «>,)), (11, —L), IFj, IFg) if B is Adj (n — I,---, Adj (0, L)-).

Subcase 2: Suppose *F is a generalised predicate memory transfor­
mation scheme, such that either T contains the F-term D, or for an
empty algorithmic table L, ('F, L) is not a generalized graph scheme-
Then the required generalized predicate memory transformation scheme
of dimension 0 is (((fl, IT,), (II,, mJ), (H, — Comp (Adj (0, T), D)),
^1» ^»)-

On some formal representations 423

We show that is /^-equivalent to IF' by a similar method as in
case 2 of lemma 5.

Case 3: Suppose IF։ is not empty. Let xt be an object variable
in. IF, with maximum index. Let us construct P-termsj Ri (/=1,2), such
that each has one of either forms Adj (n — 1,---, Adj (0, T) • • •) or
Adj (n — 1, -•-, Adj (0, L)) • • •) in case jh = Or or «j(= Of respec­
tively. The required generalized predicate memory transformation
scheme ’P' of dimension s is constructed as follows: (((//, Hi),
(IIj, Wj, uj2)), (TI1 --- Comp (Br (B, Comp (Rlt Tv Tn), Comp (7?3,

4- -,4)), w„ W3).
It is evident that ՝F/ is /^-equivalent to *F. This completes the

proof of the lemma.
Lemma 7: For any one-sided pseudpredicate strongly regular ge­

neralized memory transformation scheme 'F, it is possible to construct
a one-sided strongly regular generalized memory transformation scheme

*F without cycles which is /^-equivalent to 'F and has the same di­
mension as 'F.

Proof: Let IF = (E, 3, Wv IF2) be a one-sided strongly regular
generalized memory transformation scheme of dimension n that has a
skeleton scheme E = (■$!,•••, 5/,).

We shall carry out the proof by induction on the number of in­
verse predicate skeleton variables occurring in IF. If this number is
equal to zero, the assertion of the lemma is evident, since in this case
IF is a generalized memory transformation scheme without cycles and

we can write *F = T.
Now let us assume that *F has inverse predicate skeleton vari­

ables. Let q be the smallest length of a cycle for the inverse predicate
skeleton variables occurring in IF, We shall denote by «a the
first members, by ₽1։ •••, J3* the second members, and by -fa,---, f/i
the third members of skeleton terms «S^,• • -, Sa.

Since ’F is a one-sided pseudopredicate generalized memory trans­
formation scheme, we have Pr=a/+i for (1 <1 ih — 1), and moreover
«i, will be a starter and Pa will be a stop. Let a* be an 7inverse f predi­
cate skeleton variable whose cyclehas length q. By denoting the number
k — <7 + 1 by Z, we can write the cycle of the variable a* in the form
(a/,---, a*).

Let us denote by X a subscheme of 'F generated by the system of
skeleton variables («։,•••, a*).

Now we shall construct a generalized memory transformation scheme
/^-equivalent to X such that by substituting it for X in 'F we obtain
a generalized memory transformation scheme with a smaller number of
inverse predicate skeleton variables as compared to W,

In the skeleton scheme X let us permute the skeleton terms in such
a way that the initial terms precede all the others, whereas the skele-

_. D. A. Edinjikllan
 — — —■■ _ ~**^ • —

ton terms which are not initial are located in the same order as in >.;•
the resulting generalized memory transformation scheme (evidently
/^equivalent to X) will be denoted by X". The skeleton scheme of X' will
be Rl։ R„ ’ > R<i> S‘> <&»»•’••» <S*’ where ^1» Rd are initial
terms (d>l) and Si,---, ֊5» are skeleton terms Si,---, 5* that have
been transformed in accordance with the definition of a subscheme. Let
us denote the first, second and third member of each term Si by a,,
and T/. Hence, in accordance with the definition of a subscheme, all
the «/ will coincide with a/ and each of the variables ?z, 7/ will either
coincide with ?/, 7/ or it will be a stop. Moreover, 7* coincides with a/.

It is easy to see that X' is one-sided. Since a4 is an inverse
variable with smallest length of cycle in 4r, the generalized memory
transformation scheme X' will have only one inverse predicate skeleton
variable a*.

Let us construct a generalized memory transformation scheme &
that can be obtained from X' by the following transformation:

1) The group of initial terms Rlt---, Rd in the skeleton scheme X'
is replaced by the initial term (H, a,).

2) The skeleton term S* •— (a*, ?*, a-i) in the skeleton scheme of X' is
replaced by the skeleton term (a*, Or, Op).

3) In all the skeleton terms other than S։ all the stops are re­
placed by the stop Or­

ii is clear that A is a one-sided generalized memory transformation
scheme. By construction, A is a pseudopredicate generalized memory
transformation scheme without cycles. Since all the object variables
contained in A belong to the system of its input variables, it follows
that A is a strongly regular generalized memory transformation scheme.
Hence according to lemma 4 we can construct a primitive generalized
memory transformation scheme A'D-equivalent to A which have the form
(((M n։), (n1։ «p., ?։), (?1, <4), (<₽„ <»,)), (H, —r;, — [Tx, • • - , Tn],
<P։«—• [7’1,•••, Tn]), (x։, •••, xn), (x,---, x„)), where each of the stops
u>x and ioj is either Or or Op-

Lei us construct a generalized memory transformation scheme A"
by replacing the system of output variables of A' by an empty system
of variables. Hence A" will be a primitive strongly regular generalized
predicate memory transformation scheme of dimension n. Hence by
Iemma 6 it is possible to construct a generalized memory transformation
scheme A* of dimension n which is D-equivalent to A" and have the
form (((//, HJ, (ni։ uj, lOj)), (n — PJ, Xn), ()). For any
algorithmic table L adjoined to X' such that (X', L) is a generalized
graph scheme, it is easy to verify that the predicate U specified by
(A*, L) and realized by the P-term Rx has the following property: for
any state P of the generalized graph scheme (X\ L) such that we

On some formal representations 425

have U (P (x։),*• •, P (xrt)) — P iff it is possible to construct a state
Q of the graph scheme (>-', L) such that PtQ and Q= moreover
U (P (x։), • • •» P (x„)) — T iff it is possible to construct a finite
sequence of states Pt of the generalized graph scheme (/■', L)
such that Pjj— Ps |— • • • • HPt; Pi — P; Pt is a stop and P/ =7= a' for any

(>.՛, 4) (V,4j
i such that 2 < i < t.

We can say that the P-term Pj recognizes for a given state P
and a given algorithmic table L whether or not the graph scheme
(/-'» L) “performs“ a cycle by operating over the state P, or whether
it “drops out“ the cycle.

Let every Gz(l-Cr-Cn) denotes the F-term Br (/?։, Ti, Ti). Then
if is easy to verify that the algorithms 16 (1<՜ ։-C n) realized by the
F-terms Ci in L have the property that for any finite non-empty se­
quence of states Pi‘‘‘> Pt of (V, L) that satisfies the conditions

a) Pi H P, I-------h P< (/>1), b) Px = a;,(X.4) (k', 4) (X',4)

c) Pt = a-'t or Pt is a stop, d) Pt = a't for 1 < i< t,

we have Pt (xj) = Vj (Px (xx),՛ • •> Px (x„)) (1 < n).
We can say that the F-terms Cj,՛-*, Cn describea transformation

performed by the cycle contained in the generalized memory transfor­
mation scheme X'.

Let us also construct F-terms Di,---, Dn such that

£>/ = Rep (z, Rv Cu---, Cn) (l<z<n).

Now we can construct a generalized memory transformation scheme
X* as follows:

1) Let ew be all the functor and predicate skeleton
variables occurring in X. Let us consider skeleton variables eb s2, • • •
•• • > ew(si » •••« su>։ that differ from one another and from all the
variables s/, we shall select these variables in such a way that sz and
e/ are functor (predicate) variable if £/ is a functor (predicate) vari­
able. We shall also consider a functor skeleton variable t? and predi­
cate skeleton variable & which are distinct from all the variables e/, • ••
8z, ez .

2) We construct skeleton terms Pj, R2, -•-, Rd that can be
obtained from Rlt Ri։---, Rd by replacing all the a/ by sb

3) We construct skeleton terms Si, -•-, Sk-i by replacing all the
e; by and all stops by a/ in each term S,.

4) We construct the skeleton terms S* = (a«, 0, y), U—^i, f]> “»)
and Pr=(’], a;).

426 D. A. Edinjiklian

5) We construct skeleton terms Si, Si+i, S*-i that can be
obtained fromS/,---, Sa-i by replacing all the s, by 3”.

6) We construct, the skeleton term S* =(։* , pA).
7) We construct the skeleton scheme E* of the generalized me­

mory transformation scheme >.* as follows:

R՝dt s't, • ••, st., u, r, si, •••, sr_b si’).
8) We construct the generalized memory transformation table 3*

of '>֊* by adjoining to the generalized transformation table of /., firstly
all possible rows of the form e,--»[7'1,- • •, T„\and s< —.[7’1, ...,
where s< — [7i, •••> T^] and secondly, the rows >) - - [Dn • • •, Z)n] and
6--Adj (n — !»•••» Adj (9, L)-• •).

9) We construct the generalized memory transformation scheme
}*=(£*, S*, (xu (xlt-• •, x„)).

It is easy to see that /.* is D-equivalent to >■ and is a one-sided
scheme without cycles.

It Is evident that >■* and >. satisfy all the conditions of ^theorem 1;
and hence the generalized memory transformation scheme 'J-՛* obtained
as a result of the substitution of X.* for subscheme X in ’F will be
jD-equivalent to 'F. In accordance with the definition of substitution,
the skeleton scheme of 'Ir* will be

(Si, Sj, S/,, Sj, S/+lS;_p S;,U,~V, S", •••

?;•>.
where each symbol of the form * denotes a skeleton term z trans­
formed in accordance with the operation of,Substitution of a generalized
memory transformation scheme into a generalized memory transfor­
mation scheme. Let us permute the skeleton terms in the skeleton scheme-
of U;* by arranging them in the folliwing order:

(s„ s„•••, s;_։, s;, -., s;_b u, p, St՝,

St+i, ■ • ■, S>_i, St, S»+j,• • •, Sa).
As a result we obtiain a generalized memory transformation scheme

W* which is evidently D-equivalent to ’F and is one-sided, and the

inverse predicate skeleton variable in V* being by one smaller than in
T. By the inductive assumption it is possible to construct a one-sided

generalized memory transformation scheme 4՛' without cycles which is
Z)-equivalent to V. This completes the proof of the lemma.

Theorem 2: For every strongly regular generalized functor or
predicate memory transformation scheme (E, 2, W\, IF») of dimension
n it is possible to construct a corresponding D-equivalent generalized

On some formal representations 427

memory transformation scheme (E, 3, H^j, lFa) of dimension t, where
it is the maximum index of the object variables in U W2, such that

((H, n,)։ (II, ciij, cuj)) if (E, S, U71։ UZ։) is a generalized
predicate memory transformation

, scheme,
{{H, 4>j), (4>։, t»j)) if E, UZj, li^,) is a generalized

Junctor memory transformation
scheme,

and consists of a single row, and has only those functor and pre­
dicate variables which (֊, 3, UZJ։ U72) contains.

Proof: Let be a generalized functor or predicate memory
transformation scheme of dimension n. According to lemma 1 it is pos­
sible to construct a one-sided generalized memory transformation scheme
Vj of the same dimension, P-equivalent to ։F. Next, according to lem­
ma 7 we can construct a one-sided generalized memory transformation
scheme ’Fj of the same dimension as VF1։ without cycles, which is
ZXequivalent to Since is a generalized functor or predicate me­
mory transformation scheme and VF։ is O-equivalent to ։F, any super­
fluous stop which is produced in constructing ՝F2 is replaced by the
stop Ok of ՝F if *F is a generalized functor memory transformation
scheme, or by a stop Or if is a generalized predicate memory trans­
formation scheme. Hence we obtain a one-sided pseudopredicate gene­
ralized memory transformation scheme IF, of dimension n, without
cycles, O-equivalent to IF. By virtue of lemma 3 we can construct a
primitive generalized memory transformation scheme ՝F, of dimension n
O-equivalent to 'F. Thus by lemma 5 or 6 we get the required genera­
lized memory transformation scheme IF, of dimension t. This completes
the proof of the theorem.

Lemma 8: For every strongly regular generalized functor memo­
ry transformation scheme V of dimension n, with input variables
(*;,,• ՛՛, it is possible to construct a strongly regular gene­
ralized functor memory transformation scheme W of dimension n, such
that for every algorithmic table L in M matched with ։F and lF' the
generalized graph scheme (V, L) specifies the same algorithmic functor
as (’F, L) and the systems of input and output variables of *F'
is (xj,---, xt) and (xj respectively.

Proof: Suppose IF = (E, 3, IF1։ IF,) is a generalized functor me­
mory transformation scheme of dimension n, where l^r1 = (xj,,- • •, xJt) and
W2 is xi.

Let us construct the required generalized functor memory trans­
formation scheme of dimension n as follows:

1) Let cpj, be functor skeleton variables which are not con­
tained in Let us construct a skeleton scheme E' obtained from E by
replacing the initial skeleton term (H, tj) of E by (H, (cj>;, rj) and
each terminal term (d>.-, 0*) by (d\, $2), (cj?2, Ok)՛

428 D. A. Edinjikllan

2) Let us construct a generalized memory transformation table =■'
obtained from 3 by adjoining to it the rows;

4 •••> 'IF՝՛ •••> 4՛՜1. /2- #+։.
I^,-֊, tf-', 4^+' a and

^‘--[4 in, •••, /:]•

3) Let if; is (xv • • •, X/) and W2 is (x։).
Then the required generalized functor memory transformation

scheme is (S, 3', W\, lFa). It is evident that (IF', L) specifies the same
functor as (5r, £)•

Lemma 9: For every strongly regular generalized predicate me­
mory transformation scheme ։F of dimension n, it is possible to con­
struct a strongly regular generalized predicate memory transformation
scheme *F' of dimension n such that for every algorithmic table L in
M matched with *F and lF/ the generalized predicate graph scheme
(՝F/, A) specifies the same predicate as (Ur, L) and the system of input
variables in *F' is (x։, •••, xt), where t (/> 0) is the number of input
variables in ML

Proof: Suppose ’1՜ = (-, 3, Wlt IF2) is a generalized predicate
memory transformation scheme of dimension n, where IFj^fxy,,-• •, xjt)
and IF, is empty.

Let us construct the required generalised memory transformation
scheme as follows:

(i) Let <J>p be a functor skeleton variable which is not contained
in Let us construct a skeleton scheme from - by replacing the
initial skeleton term {H, fj) of E by {H, <b;), (<!>;, tj).

(ii) Let us construct a generalized memory transformation table
3' from 3 by adjoining to it the row

pn, •••> /'*-՛> i'n, i^i> i^, •••> pn, i^,

tf+2, 4՜’, in, iJnt+l, i'„i+i, •••» zj].

(iii) Let IFi is (x1։---, x<) and IF2 is ().
Then the required generalized predicate memory transformation

scheme is (E'։ S', lFp IF^). It is evident that (’F', L) specifies the
same predicate as (IF, L).

Theorem 3: For every strongly regular generalized functor
{predicate) memory transformation scheme ՝F of dimension n it is
possible to construct an F-term {P-term) T such that {i) for every
algorithmic table L in M matched with the term T realizes with
respect to L the same functor {predicate) which is specified by (?', L)
and {ii) every functor or predicate variable contained in T is also
contained in IF.

On some formal representations 429
«- • ■- - ֊ - -- ~

Proof: Case (i) Suppose ’F = (-, =■, Wl} U^2) is a strongly
regular generalized functor memory transformation scheme of dimension
n. According to lemma 8, it is possible to construct a strongly regular
generalized functor transformation scheme *FX = (S', 3', W’, IF*) of di­
mension n, where W\ and IF’ are xt) and (xx) respectively, and
t is the number of variables in IFj such that for every algorithmic
table L in M matched with lF and W։, (՝F1, L) specifies the same functor
as ("F, A). Next according to theorem 2, we can construct a generalized
memory transformation scheme of dimension A D-equivalent to *FX
and having the form (((//, 4>x), (4>x, wx)), (<PX —- [7X,• • •, 7/,]) IF)),
where A is the number of variables in IF) U W’2. ՛

The required F-term is Br (Comp (Adj (0,•••, Adj (0, T)---),
7X»՛", 7<), 7X, ^i)> is non-empty and Comp (7X, R) if W1 is
empty, where R is a functor algorithmic variable of dimension zero if is
contained is ՝F, otherwise R is D.

Cjase (ii): Suppose ’F = (S, H, IFX, W2) is a strongly regular
generalized predicate memory transformation scheme of dimension n.
According to lemma 9 it is possible to construct a strongly regular
generalized predicate transformation scheme Wx=(Ep S', Wv WJ of di­
mension n where is {xlt--՝,xt), and 0 is՜, the number of object
variables in W1 such that for every algorithmic table L in M matched
with lF and lFx (lFJ։ L) specifies the same predicate as (4r, L). Next
according to theorem 2 we can construct a strongly regular generalized
predicate transformation scheme 'Fj of dimension t, A>-equivalent to lFx
and having the form (((//, ita)> («x, U)i» “։))> (Ki<՜՜* Then the
required P-term of dimension t is R-

This complets the proof of the theorem.
Def. 17. The depth of an F-term or P-terms is defined inductively

as follows: • ։ • «
1) Every /•-term of the form f2"(2i+i), D or I has the depth zero.
2) Every P-term of the form P2«<2Z4-j), T. .or L has the depth zero.
3)Every F-term or P-term of the form Comp (Tv •••, Tm) has m

y tk -r 1 depth, where A;(l k. m) is the depth of 7*.
*=1 .1 .

4) Every F-term or P-term of the form Br (7X, Ts, Ta) has 3
2 it +1 depth, where f* (K. A<3) is the depth of 7*.
>֊֊i -•

5) Every F-term of P-term of the form Adj (r, T) has the same
depth as T.

tn

6) Every F-term of the form Rep (։, Tv Tm) has y tn -j- 1

depth, where t* (l-^Zr^m) is the depth of 7*.
Def 18. The depth of an /1-term. [7X։• ■ •, 7n] is defined as max

(A»'.”» M where is the depth of the F-term 7/.

430 D. A. Edinjiklian

Def. 19. The depth of a generalized memory transformation
scheme is said to be k (k>0) iff these exists an 4-term or P-term in '1'
whose depth is k and every .4-term or P-term in U’ has a depth m
such that m^.k.

Theorem 4: For every strongly regular generalized memory
transformation scheme *F of dimension n it is always possible to con­
struct a generalized memory transformation scheme 'F' of dimension
m (m^-n) and depth zero, which is D-equivalent to IF.

Proof: Let 'F = (E, S, Wt,) be a strongly regular generalized
memory trasformation scheme of dimension n with depth k. The proof
is by induction on the depth of 'F. If k — 0, then ’F' is 'F.

Now let us assume that &>0. For every skeleton variable a in
the skeleton scheme E of 'F such that (a *— 5)£S, B is P-term or
4-term of depth k in *F, let us construct a subscheme X of dimension
n with depth k generated by [a}. Let us construct a generalized memo­
ry transformation scheme X* of dimension m with the same input and
output variable as X with depth kt (4։ k), D-equivalent to X as
follows:

Case 1: Suppose a is a predicate skeleton variable, then without
loss of generality let us assume that 'F.has the form (((v։, a), (v։, a),•••

(*<» a)> (“> o։i. «h))- (« B)՛ («!> ••> xn), (x:, •xj).
Let us specify predicate skeleton variables "1։ 14 and a functor

skeleton variable 4>։, that differ from one another and from all the
skeleton variables of *F and X.

Les P be a P-term defined as follows:
(B' if B = Adj (f։,Adj (4, B')---) where Z<jn— 1 and B

22 _ J does not have the form Adj (zj+i, 5");
IB otherwise.

Now let us construct the required generalized memory transfor­
mation scheme X* as follows:

(i) If R has the form Br (Tv Tit T}), then X* = (((uv kJ, (vit
(vt, kJ, (14, k., kJ, (k„ 04, wj, (k,, Wj, wj), (14«-- PJ, k,*--»

TJ, k։ PJ, (xj,---, xj, (x։,---, x„)), where P/ (l<z<3) is ob­
tained from Ti by adjoining all those object variables from x,,-՛-, xn
which Ti does not contain.

(ii) If R has the form Comp (P1։ P։,---, Tm), then X*= (((v1։ O),
(v., (vt, <DJ, % kJ, (kp ojp WJ), (14 — P‘, — [4,
■՛■» ^j])> (xi>՜՜՜» x„), (xv • • •, xj)," here s is the number of all
distinct object variables in Px, F,,-՛-, Tm andxx,---, xn, and every

is obtained from T/, by adjoining all the object variables
from xx,---, xj which Tj does not contain, if x, is the (j— 1) — th
position of P1։ otherwise is A; and T\ if obtained from Fx by
adjoining all those object variables from Xp---, xs which Fx does not
contain.

On some formal representations 431

It is easy to see that the constructed generalized memory trans­
formation scheme a* has the depth kL ՀԼ k and is D-equivalent to a.

Case 2: Suppose x is a functor skeletpn variable. Then without
loss of generality we can assume that the subscheme a has the form
(((«p ’•). («»» ’)>•••» a)» (“> °'i))> (° — T’n])» xn),
(xj,-՛-, Հո))- Since B is an /4-term of depth k, we can assume without
loss of generality that T,,,----, Trp are all the F-terms in
[Fp--, ?”] which have depth k.

1) Let us specify functor skeleton variables Փո•••, Փո+ւ that
differ from one another and from all the skeleton variables a and V.

2) Let us construct a generalized memory transformation scheme
A with dimension 2n and depth k as follows: a = (((v։, Փյ),(v<, Փ։),

(Փւ, փ»),-- •> (փ«. փ«րւ)> (փ«+։> «ւ))> (փւ — [4>- • •., T*, l£\-- -
•••> 4Դ •••> -MV-. ^nl-\ T‘t,

Փ«-[/։„. --. 4]. Փ-+։-[&+1, 4+2> •••- 4. հո,•••«•.
(x1։•••»*/>)> ■*!»’••> xn)), where for every i (l<։-<n) 77=Adj(2n—
—1, Adj (2n—2,- •, Adj (n, T,))--).

It is obvious that A is /^-equivalent to

3) Let us construct subschemes)T/ p) from A generated

by (Փրք}. Then every Ar/ will have the form (((*Հ, (ՓԴ-«'
[4.- • •> 4+'+’>- ՚ •> 4Դ (*ւ». • ■ •. .4 (xv • ■ • Xn))

(except a։ which contains t initial skeleton terms), where vr/ and
աք/(1Հ/Հ^) are respectively initial and terminal skeleton variables
which differ from one another and " from" all the՜՜ initial and terminal
skeleton variables of a.

4) We define F-terms

L' if Trt = Adj (sp Adj (s2, " Adj (s,, L'))---) where
Brt= c+l<2n and L' does not have the form Adj(se+։, £"),

. Trt otherwise, . • ••՛
where

5) We specify functor skeleton variables'<p^z} ,••• •, (m > n)
and predicate skeleton variables "ir() that differ- from one another and

from a and Ar/. Let us construct generalized memory transformation

scheme as follows:

(i) If Lrt has the form Comp (sn • ■ s-m) then Հ, — (((urp
(rf‘ ’. (ՀՂ’„ մ1’), (Հ"<, Հ,)), [Al0,■ ■ ■ ■, £J°], ■ • •

432 D. A. Edinjiklian

n>W) («i»**"» xn), (xu-■ x„)), where s is the
maximum index of the object variables in 5X and xx, • • •, xj,; Lr, is
obtained from by adjoining all those variables from xv--,xs which
s does not contain, and every ((1՝< i < s), (1 < j < m)) is obtained
from 5/n by adjoining all those variables from *„•••, xs which S/+։
does not contain, such that x< is in the /'* position in S1։ otherwise
L\n is i‘.

(ii) If Tri has she form Br (Sv Sa, S3), then X^=(((y'/։ if'),
(if/), <?P, <#'’)> (<Pf')» ’»<<))» •?;, <|f/)
• • • , L1^], rf1 —* ’ • •» x")» (•*>•••, x«)), where

5J, Lg) and L<’) are obtained respectively from Sx, 5, and S3 and
adjoining all those object variables from x։,---, xzn which 51։ S։ and
5, does not contain and every other ^ ((!</<2), (1 .< k < 2n)) has
the form I*n .

(iii) If Lrt has the form Rep (c, 5X, •••, St) (!</<« +1) then

Xr>(((vw, *№), (*i‘\ <4f, «f'’), (<piri>, if'։))։ (if'’ — ^, qf'>—
■’[5j,•••, 5/n+i]), (x1։ •••, xB), xv•••, x«)), where every .S(f<A-^
<2n+l) is ^7* and every is obtained from 5* by adjoi­
ning all those object variables from x։,•••■, xjn which S* does not con­
tain.

It is easy to see that the generalized memory transformation schemes

Xr/ and lri (1 p) are /^-equivalent. By՛ substituting every

Xr/ (1 -C i < p) in X for- the subscheme Xr/ we obtain the required ge­
neralized memory transformation scheme X* with depth kt<^k and di­
mension q >- m.

For every subscheme X in ’F with depth k, we substitute its
D-equivalent generalized memory transformation scheme X* in ՝F. We
obtain a generalized memory transformation scheme Tp of depth
kt (k3<^k) and dimension q D-equivalent to 1F. By repeating the same
constructions for M\, we construct a generalized transformation scheme
’Fj with depth k։ (kt < 4J; By continuing this process h times (A-CA)
we get our required generalized memory transformation scheme with
depth zero and dimension m (m > n), which is D-equivalens to the ori­
ginal generalized memory transformation scheme T. This completes the
proof of the theorem.
.American Univ ersity of Beirut,

Yerevan State University Received 15.V.1974

On some formal representations 433

•S. Ա. ԷՂԵՆՋ^ԼՅԱՆ. 2իշողու]»յոէն ունեցող ղրաֆ.սխեմաների միջոցուէ սանմանւլած ալգո­
րիթմների որոշ ֆորմալ պատկերացումների մասին Համփմփում)

Դիտարկվում են հիշողություն ունեցող գրաֆ-սխեմաների միջոցով որոշված ալգորիթմների
պատկերացումները բազմատեղանի ֆակտորների ու պրեգիկէնտն երի կոմպոզիցիայի, ճյուղա­

վորման և կրկնման գործողությունների վրա հիմնված որոշ-/հանրահաշվական լեզվի միջոցով։
Ապացուցվում է թեորեմա այն մասին, որ ամեն մի ալդորիթվի համար, Որը ֆորմալ նկարա­
գրված է հիշողություն ունեցող ինչ-որ մի (ոչ մեկնաբանված) գրաֆ-սխեմայի միջոցով, միշտ՛

հնարավոր է կառուցել նրան պատկերացնող արտահայտությունը' նշված լեզվի մեջ։
Այս թեորեմայի ապացուցման համար սահմանվում է ընդհանրացված գրաֆ-սխեմայի •

գաղափարը և հիմնավորվում են այսպիսի գրաֆ֊ սխեմ աների պատկերացման հնարավորու­
թյունները որոշ ստանգարտ ձևերում։ * ’ ■ • ’

• • >

Т. А. ЭДИНДЖИКЛЯН. О некоторых формальны* представлениях
алюрифмов, определяемых граф-схфмами с памятью (резюме)

i ’Рассматриваются представления алгорифмов; определяемых граф-схемами с
памятью, в алгебраическом языке, построением на. основе операций композиции, раз­
ветвления и повторения многоместных функторов и предикатов. Доказывается теоре­
ма о том, что для всякого алгорифма, формально описанного некоторой (неинтерпре-
тированной) граф-схемой с памятью,- возможно ^построить представляющее его вы­
ражение в указанном языке. Для доказательства атой теоремы вводится понятие обоб­
щенной граф-схемы и устанавливается, возможность представления таких граф-схем
в определенных стандартных формах.

»1 . г " ...
REFERENCES.'

; ' '» * * -Г*>. I 1 2 3 4 5 6 7 8 9 10 11 12.

1. Е. Ashcroft and Z. Manna. The translation of „GOTO" Programs to „WHILE"
Programs, Information Processihg ‘71; North •’Holland publ. company 1972,
150-155. .

2. A. P. Ershov. Operator algorithms I.' Basic՝ notions, ’Problemy Kibernet, № 3,
I960, 5—48 (Russian). (f

3. A. P. Ershov. Operator algorithms. II. (A descrlpfiotl of the ■ fundamental con­
structions of programming), Problemy KiberaeL № 8..J962, 211—233 (Russian).

4. A. P. Ershov. Operator algorithms. III. (On lanov’s operator-schemes) Problemy
Kibernet., № 20, 1968, 191-200 (Russian).

5. Ju. I. lanov. On logical schemes of algorithms, Potlemy Kibernet, № 8, 1962.
235-241 (Russian). ’ 'f '' • <

6. V. E. Itkln. Logico-Termal equivalence of / program schemes, Kibernet, № 1,
1972, 5—27 (Russian). ;

7. L. A. Kaluznin. On the algorithmisatiqn <of,. mathematical problems, Problemy
Kibernet., № 2, 1959, 51—67 (Russian).

8. A. A. Ljapunov. Logical program-schemes, Pfoblerhy Kibernet., № 1, 1958, 46—
74 (Russian). >,■

9. A. A. Ljapunov. The algebraic treatment՛of programming Problemy Kibernet.,
№ 8, 1962, 235—241 (Russian). • ■<.-,«> 1.«.»,.»t .

10. D. C. Luckham, D. M. R. Park, and H. S. Paterson. On formalized computer
programs. Computer and System Sciences, June 1970.

11. R. I. Podlovchenko. On a system of concepts of programming, Dokl. Akad. Nauk
SSSR, 132, 1960, 1287-1290 (Russian).

12. R. I. Podlovchenko. Transformations of program schemes and their use in pro­
gramming, Problemy Kibernet., № 7, 1962, 161—188 (Russian).

434 D. A. Edlnjlkllan

13. R. I. Podlovchenko, G . N. Petroeetan, V. E. Khatchatrtan. The interpretation
of algorithmic schemes and different relations of equivalence between the
schemes, Izvestia AN Arm SSR, series Mathematica, vol. VII, № 2, 1972,
140—151 (Russian).

14. J. D. Rutledge. On lanov’s program schemata, J. Assoc. Comp. Mach., 11, 1964,
1-9.

15. I. D. Zatlavtkll. Graph schemes with memory, translation of Trudy Math. Inst.
Steklov, 72, 1964, 99—192. (Amer. Math. Soc. Trans. (2), vol. 98, 1971).

