Մաթեմաարկա

IX, No 5, 1974

Математика

В. Г. БОЛТЯНСКИЙ, Э. А. МИРЗАХАНЯН

ПОСТРОЕНИЕ СТЕПЕНИ ОТОБРАЖЕНИЯ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

Теория степени отображения в гильбертовом пространстве была первоначально развита Лере и Шаудером [1]. Свое дальнейшее развитие и приложения она нашла в работах Браудера [2], М. А. Красносельского [3], Р. Л. Фрум-Кеткова [4] и других авторов.

В заметке [5] были кратко изложены результаты, позволяющие распространить идеи Лере и Шаудера на класс K_0 отображений гильбертова пространства, введенный в [6], [7]. Здесь дается подробное

изложение результатов заметки [5].

Предложение 1. Пусть $f: M \to H$ — отображение класси K_0 и $X \subset M$ — компактное множество. Тогда для любого числа s > 0 существуют такое конечномерное подпространство $L \subset H$, такое, содержащееся в M открытое множество $U \supset X$ и такое число $\delta > 0$, что если $x, y \in U$, и угол между вектором x - y и подпространством L не меньше $\pi/2 - \delta$, то выполнено соотношение

$$||f(x) - f(y) - \lambda_f(x)(x - y)|| \leqslant \varepsilon ||x - y||, \tag{1}$$

где i.f (x) — терминальная производная отображения f.

Доказательство. Так как функция $\lambda_f(x)$ непрерывна, то для любой точки $x_0 \in X$ существует такая окрестность $V(x_0) \subset M$ точки x_0 , что $|\lambda_f(x) - \lambda_f(x_0)| < \varepsilon/2$ при $x \in V(x_0)$. Далее для любой точки $x_0 \in X$ существует такое конечномерное подпространство $L(x_0) \subset H$, такая окрестность $W(x_0) \subset M$ точки x_0 и такое число $\delta(x_0) > 0$, что если $x, y \in W(x_0)$ и угол между вектором x - y и подпространством $L(x_0)$ не меньше $\pi/2 - \delta(x_0)$, то выполнено соотношение

$$||f(x)-f(y)-h_f(x_0)(x-y)|| \leqslant \frac{\varepsilon}{2}||x-y||.$$

Для каждой точки $x_0 \in X$ выберем такое положительное число $r(x_0)$, что $2r(x_0)$ -окрестность точки x_0 содержится в множестве $V(x_0) \cap W(x_0)$, и обозначим $r(x_0)$ -окрестность точки x_0 через $U(x_0)$.

Множества $U(x_0)$ ($x_0 \in X$) образуют открытое покрытие компактного множества X. Следовательно, существует такое конечное мно-

жество точек $x_1, x_2, \cdots, x_s \in X$, что $X \subset U_s$ где

$$\widetilde{U} = U(x_1) \cup U(x_2) \cup \cdots \cup U(x_n).$$

Положим

$$\delta = \min \left(\delta(x_1), \delta(x_s), \dots, \delta(x_s), \frac{\pi}{3} \right).$$

Тогда, если (при некотором $k=1, 2, \cdots$, s) мы имеем $x, y \in W(x_k)$ и угол между вектором x-y и подпространством $L(x_k)$ не меньше $\pi/2-\delta$, то выполнено соотношение

$$\|f(x) - f(y) - \lambda_f(x_k)(x - y)\| \leq \frac{\varepsilon}{2} \|x - y\|. \tag{2}$$

Обозначим через r наименьшее из чисел $r(x_1)$, $r(x_2)$,..., $r(x_s)$. Далее. через r обозначим такое положительное число, что 9r < r и при втом r-окрестность U множества X содержится в U. Так как множество X компактно, то существует такое конечномерное подпространство L, что множество X содержится в r-окрестности подпространства L. При этом можно предполагать, что подпространство L содержит все подпространства $L(x_1), \dots, L(x_s)$. Мы покажем, что L, U и δ являются искомыми.

Пусть x, $y \in U$, причем x = y и угол между вектором x = y и подпространством L не меньше $\pi/2 = \delta$. Пусть, далее, x = y = z + w, где $z \in L$, $w \perp L$. Тогда

$$||w|| > ||x - y|| \cos \delta > ||x - y|| \cos \frac{\pi}{3} = \frac{1}{2} ||x - y||.$$
 (3)

Обозначим через π ортогональное проектирование пространства H на ортогональное дополнение подпространства L.

Так как x, $y \in U$, и потому каждая из точек x, y лежит в r-окрестности множества X и, значит, в 2r-окрестности подпространства L, то $\|\pi(x)\| \le 2r$, $\|\pi(y)\| \le 2r$. Следовательно

$$\|w\| = \|\pi(x-y)\| = \|\pi(x) - \pi(y)\| \le \|\pi(x)\| + \|\pi(y)\| \le 4r$$
, и потому (в силу (3))

$$|x-y| \leqslant 2 |w| \leqslant 8r. \tag{4}$$

Так как $x \in U$, то найдется такая точка $x' \in X$, что |x-x'| < r. Далее, так как $X \subset \overline{U}$, то найдется такое число $k = 1, 2, \cdots, s$, что $x' \in U(x_k)$, т. е. $|x'-x_k| < r(x_k)$. Вспоминая, что

$$9r < r = \min (r(x_1), r(x_2), \dots, r(x_s)) \le r(x_k),$$

находим (см. (4)):

$$||x - x_k|| \le ||x - x'|| + ||x' - x_k|| < r + r (x_k) < 9r + r (x_k) < 2r (x_k),$$

$$||y - x_k|| \le ||y - x|| + ||x - x'|| + ||x' - x_k|| < 8r + r + r (x_k) < 2r (x_k).$$

Таким образом, обе точки x, y лежат в $2r(x_k)$ -окрестности точки x_k , и потому x, $y \in V(x_k) \cap W(x_k)$. Отсюда вытекает (поскольку угол между вектором x-y и подпространством $L \supset L(x_k)$ не меньше $\pi/2-\delta$), что выполнено неравенство (2). Кроме того, так как $x \in V(x_k)$, то

$$|\lambda_f(x) - \lambda_f(x_k)| < \frac{\epsilon}{2}. \tag{5}$$

Следовательно, в силу (2) и (5)

$$||f(x) - f(y) - \lambda_f(x)(x - y)|| \le ||f(x) - f(y) - \lambda_f(x_k)(x - y)|| + ||f(x) - \lambda_f(x_k)(x - y)|| \le \frac{\epsilon}{2} ||x - y|| + \frac{\epsilon}{2} ||x - y||,$$

т. е. справедливо неравенство (1). Таким образом, предложение 1 доказано.

Перейдем теперь к определению степени отображения. Прежде всего введем следующее обозначение. Пусть $L \subset H$ — конечномерное подпространство, $a \in L$ и h— положительное число. Через $E_{a,h}(L)$ будем обозначать шар радиуса h с центром a, ортогональный подпространству L. Иначе говоря, $E_{a,h}(L)$ есть множество всех точек $x \in H$, удовлетворяющих условиям $x - a \perp L$ и $||x - a|| \leq h$.

Предложение 2. Пусть $f: M \to H$ — отображение класса K_0 и $X \subset M$ — компактное множество, перехолящее при отображении f в одну точку $f(X) = b \in H$. Предположим, что терминальная производная $\lambda_f(x)$ на множестве X отлична от нуля. Тогда существует такое конечномерное подпространство L, содержащее точку b, такая окрестность $V \subset M$ компакта X и такое положительное число h, что для любого конечномерного подпространства $L^* \supset L$ и любой точки $a \in \overline{V} \cap L^*$ множество $f(E_a, h(L^*))$ пересекается c L^* ровно в одной точке.

Доказательство. Так как функция $I_f(x)$ непрерывна и отлична от нуля на компакте X, то существует такое $\epsilon > 0$, что $|I_f(x)| > 4\epsilon$ на X. Следовательно, неравенство $|I_f(x)| > 2\epsilon$ определяет

открытое множество $G \subset M$, содержащее X.

Выберем L, U и δ как указано в предложении 1. Пусть, далее, h>0 — такое число, что 2h-окрестность множества X содержится в $G\cap U$. Через V обозначим σ -окрестность множества X, где число σ меньше чем h и настолько мало, что $\|f(x)-b\| < h^{\varepsilon}$ для любой точки $x\in \overline{V}$ (напомним, что множество X компактно и f(X)=b). Мы можем при этом предполагать (заменив, если нужно, L большим подпространством), что $b\in L$ и, кроме того, множество X находится в $\sigma/4$ -окрестности подпространства L.

Пусть $L^*\supset L$. Докажем, что для любой точки $a\in V\cap L^*$ пересечение $L^*\cap f(E_{a,h}(L^*))$ состоит не больше, чем из одной точки. Допустим противное, т. е. предположим, что найдется точка $a\in V\cap L^*$, для которой это пересечение содержит более одной точки. Иными словами, существуют такие точки $x,y\in H$, что выполнены соотношения

$$x-a\perp L^*, \ y-a\perp L^*, \ \|x-a\| \leqslant h, \ \|y-a\| \leqslant h,$$

$$f(x)\in L^*, \ f(y)\in L^*,$$
(6)

причем $x \neq y$. Так как $a \in V$, то a лежит в h-окрестности множества X, и потому, в силу (6) обе точки x, y лежат в 2h-окрестности множества X, т. е. x, $y \in G \cap U \subset U$. Далее, в силу (6), $x-y \perp L^*$, так что $x-y \perp L$, и потому справедливо соотношение (1).

Из (6) следует, что $f(x) - f(y) \in L^*$, и потому имеем (x - y) (t(x) - f(y)) = 0 (так как $x - y \perp L^*$). Следовательно

$$|\lambda_{f}(x)| \cdot ||x - y||^{2} = |\lambda_{f}(x)(x - y)(x - y)| = |(x - y)(f(x) - f(y) - \lambda_{f}(x)(x - y))| \le ||x - y|| \cdot ||f(x) - f(y) - \lambda_{f}(x)(x - y)|| \le ||x - y|| \cdot ||x - y||^{2},$$

откуда вытекает, что $|\lambda_f(x)| \le \varepsilon$. Но тогда (поскольку $x \in G$) $2\varepsilon < |\lambda_f(x)| \le \varepsilon$, что противоречиво. Полученное противоречие и доказывает, что пересечение $L^* \cap f(E_{a,h}(L^*))$ содержит не более одной точки.

Остается доказать, что это пересечение непусто (для любой точки $a \in \overline{V} \cap L^*$). Пусть

$$b - f(a) = x' + z', \tag{7}$$

где $x' \perp L^*$, $z' \in L^*$. Мы имеем: $\|x'\| \leqslant \|b-f(a)\| \leqslant h\epsilon$. Положим

$$q_1 = \frac{x'}{\lambda_f(a)} ,$$

тогда

$$\|q_1\| = \frac{\|x'\|}{|\lambda_f(a)|} < \frac{\|x'\|}{2\varepsilon} < \frac{h\varepsilon}{2\varepsilon} = \frac{h}{2}.$$

Кроме того, $q_1 \perp L^*$, и потому $a + q_1 \in E_{a, h}(L^*)$. Далее

$$||f(a+q_1)-f(a)-x'|| = ||f(a+q_1)-f(a)-\lambda_f(a)| \times \\ \times ((a+q_1)-a)|| \leqslant \varepsilon ||(a+q_1)-a|| = \varepsilon ||q_1|| < \frac{\varepsilon h}{2}.$$

Таким образом, положив $f(a)+x'=b_1$, мы получим

$$||f(a+q_1)-b_1||<\frac{\varepsilon h}{2},$$

причем, в силу (7), $b_1 = b - z' \in L^*$. Отсюда следует, что точка $f(a+q_1)$ отстоит от плоскости L^* менее чем на $\epsilon h/2$.

Пусть уже построены такие векторы $q_1, q_2, \cdots, q_k \in H$, что выполнены соотношения

$$|q_k| < \frac{h}{2^k}$$
, $|q_1 + q_2 + \dots + q_k| < h\left(1 - \frac{1}{2^k}\right)$, $q_1 + q_2 + \dots + q_k \perp L^*$, (8)

$$||f(a+q_1+q_2+\cdots+q_k)-b_k||<\frac{sh}{2^k}, \text{ rate } b_k\in L^*.$$
 (9)

Из (8) следует, что $\|(a+q_1+q_2+\cdots+q_k)-a\|< h$, и потому $a+q_1+\cdots+q_k\in E_{a,h}(L^*)$. Пусть

$$-f(a+q_1+q_2+\cdots+q_k)+b_k=x_k+z_k,$$
 (10)

гле $x_k \perp L^*$, $z_k \in L^*$. Тогда (в силу (9))

$$\|\mathbf{x}_k\| \leqslant \|f(\alpha + q_1 + q_2 + \dots + q_k) - b_k\| \leqslant \frac{\varepsilon h}{2^k}$$
 (11)

Положим

$$q_{k+1} = \frac{x_k}{\lambda_t(a+q_1+\cdots+q_k)}$$
 (12)

Так как $a \in V$, то точка a находится в h-окрестности множества X и потому точка $a+a_1+\cdots+q_k$ находится в 2h-окрестности множества X (см. (8)). Следовательно, $a+q_1+\cdots+q_k\in G$, т. е.

$$|\lambda_f(\alpha+q_1+\cdots+q_k)| > 2s.$$

Отсюда находим

$$||q_{k+1}|| = \frac{||x_k||}{|\lambda_f(\alpha + q_1 + q_2 + \dots + q_k)|} < \frac{||x_k||}{2^{\epsilon}} < \frac{\epsilon h}{2^k} \cdot \frac{1}{2^{\epsilon}} = \frac{h}{2^{k+1}}$$
(13)

(см. (11)). Таким образом

$$||q_1 + \dots + q_k + q_{k+1}|| \le ||q_1 + \dots + q_k|| + ||q_{k+1}|| \le h\left(1 - \frac{1}{2^k}\right) + \frac{h}{2^{k+1}} = h\left(1 - \frac{1}{2^{k+1}}\right).$$

Кроме того, $q_{k+1} \perp L^*$ (так как $x_k \perp L^*$), и потому $q_1 + \cdots + q_k + q_{k+1} \perp L^*$ (см. (8)). Мы видим, что при замене k на k+1 соотношение (8) остается справедливым. Далее, так как весь шар $E_{6,h}(L^*)$ находится в 2h-окрестности множества X (и, значит, в U), то

$$||f(a+q_1+\cdots+q_k+q_{k+1})-f(a+q_1+\cdots+q_k)-|$$

$$-\lambda_f(a+q_1+\cdots+q_k)\cdot q_{k+1}|| \leq \varepsilon ||q_{k+1}||,$$

т. е. (см. (12), (13))

$$||f(a+q_1+\cdots+q_{k+1})-f(a+q_1+\cdots+q_k)-x_k||<\frac{sh}{2^{k+1}}|$$

В силу (10) вто соотношение можно переписать в виде

$$||f(a+q_1+\cdots+q_{k+1})-(b_k-z_k)|| < \frac{zh}{2^{k+1}}$$

Так как $b_k \in L^*$ (см. (9)) и $z_k \in L^*$, то $b_k - z_k \in L^*$. Таким образом, положив $b_{k+1} = b_k - z_k$, мы найдем, что соотношения (9) остаются справедливыми при замене k на k+1.

Проведенная индукция показывает, что можно выбрать такие последовательности $q_1, q_2, \dots, q_k, \dots$ и $b_1, b_2, \dots, b_k, \dots$, которые при всех $k=1, 2, \dots$ удовлетворяют соотношениям (8), (9).

Соотношение (8) показывает, что ряд $q_1 + q_2 + \cdots + q_r + \cdots$ сходится. Обозначим через q сумму этого ряда. Тогда, согласно (8) q < h и $q \perp L^a$. Следовательно, $a + q \in E_{a,h}(L^a)$, и потому $f(a + q) \in f(E_{a,h}(L^a))$. В силу непрерывности

$$f(a+q) = \lim_{k \to \infty} f(a+q_1+\cdots+q_k) = \lim_{k \to \infty} b_k$$

(см. (9)), и потому $f(\alpha+q) \in L^*$ (так как $b_k \in L^*$ при всех k, см. (9)). Итак, $f(\alpha+q)$ принадлежит пересечению $L^* \cap f(E_{\sigma,h}(L^*))$, т. е. вто пересечение непусто. Тем самым предложение 2 полностью доказано.

Сформулированное предложение позволяет (для любого конечномерного подпространства $L^* \supset L$) построить отображение $\varphi \colon \overline{V} \cap L^* \to L^*$, положив

$$\varphi(\alpha) = L^* \cap f(E_{a,h}(L^*))$$
 при $\alpha \in \overline{V} \cap L^*$. (14)

Это отображение φ (заданное, если выбраны f, X, L, V, h, указанные в предложении 2) и лежит в основе определения степени отображения.

Предложение 3. Пусть $f: M \to H$ — отображение класса K_0 и $b \in f(M)$ — такая точка, что ее прообраз $X = f^{-1}(b)$ компактен. Предположим, что терминальная производная $i \cdot f(x)$ на множестве X отлична от нуля. Тогда существует такое конечномерное подпространство L, содержащее точку b, такая окрестность $V \subset M$ компакта X и такое положительное число h, что (при $L^* \supset L$) граница открытого в L^* множества $V \cap L^*$ переходит при отображении φ (см. (14)) в множество, не содержащее точки b.

Доказательство. Сохраним обозначения, введенные при доказательстве предложения 2. Пусть $L^* \supset L$ и $a \in V \cap L^*$ — такая точка, что $\mathfrak{P}(a) = b$, т. е. $f(E_{a,h}(L^*)) \cap L^* = b$. Тогда $b \in f(E_{a,h}(L^*))$, т. е. $E_{a,h}(L^*) \cap X \neq \emptyset$ (поскольку $X = f^{-1}(b)$). Пусть $x \in E_{a,h}(L^*) \cap X$. Тогда $x = a \perp L^*$ (по определению шара $E_{a,h}(L^*)$), и потому |x-a| есть расстояние от точки x до подпространства L^* . Но множество X содержится в \mathfrak{P} -окрестности подпространства L^* (так как $L^* \supset L$). Следовательно, расстояние от точки $\mathfrak{P}(a)$ до подпространства L^* меньше $\mathfrak{P}(a)$, т. е. |x-a| < 1. Так как $x \in X$, то это означает, что точка a удалена от X менее, чем на $\mathfrak{P}(a)$. В то же время все точки границы множества $V \cap L^*$ удалены от множества X не менее чем на $\mathfrak{P}(a)$ (так как X есть X окрестность множества X), и потому точка X не принадлежит границе множества $X \cap L^*$. Но это и означает, что на границе множества $X \cap L^*$ нет точек, переходящих в X при отображении X. Предложение X доказано.

Ясно, что при выполнении условий предложения 3 определена степень отображения $\varphi\colon (V\cap L^*)\to L^*$ в точке b. Ясно также, что эта степень отображения не зависит от ориентации пространства L^* (если

мы условимся ориентировать L^* и $V \cap L^*$ одинаково). Оказывается (и в втом заключается наше следующее предложение), что L, V и h можно выбрать таким образом, чтобы для всех $L^*\supset L$ степень отображения $\varphi\colon (V\cap L^*)\to L^*$ была одной и той же. Более того, эта степень отображения не зависит от случайного выбора элементов L, V и h, участвующих в построении, а всецело определяется отображением f и точкой b. Иными словами, справедливо следующее

Предложение 4. Пусть $f: M \to H$ — отображение класса K_0 и $b \in f(M)$ — такая точка, что ее прообраз $x = f^{-1}(b)$ компактен. Предположим, что терминальная производная $I_f(x)$ на множестве X отлична от нуля. Тогда существует такое число c = c(f, b) (называемое степенью отображения $f: M \to H$ в точке b), которое обладает следующим свойством: если L, V и h выбраны так, что степень отображения ϕ (см. (14)) одна и та же для всех конечномерных подпространств $L^* \supset L$, то эта степень отображения равна c(f, b).

Доказательство. Выберем L, V и h, как это сделано при доказательстве предложения 3, и пусть L^* и L_1^* — конечномерные подпространства, удовлетворяющие условию $L_1 \supset L^* \supset L$. Подпространству L^* соответствует отображение φ (см. (14)), подпространству L_1^* — аналогичное отображение $\varphi_1\colon \overline{V}\cap L_1^*\to L_1^*$. Мы прежде всего покажем, что степени отображений φ и φ_1 в точке b совпадают. Достаточно установить это для случая, когда $\dim L_1^*=\dim L^*+1$.

Пусть $a, a' \in \overline{V} \cap L_1$, причем $a - a' \perp L^*$. Положим $u = \varphi_1(a)$, $v = \varphi_1(a')$. Тогда u = f(x), v = f(y), где $x \in E_{a,h}(L_1)$ $y = E_{a',h}(L_1)$. Мы имеем: $x - a \perp L_1$, $y - a' \perp L_1$, и потому $x - a \perp L^*$, $y - a' \perp L^*$, откуда следует, что вектор

$$x-y = (x-a) + (a-a') - (y-a')$$

ортогонален подпространству L^* . Так как каждая из точек x, y накодится в h-окрестности множества \overline{V} , т. е. в 2h-окрестности множества X (см. доказательство предложения 2), то x, $y \in U \cap G$ и потому справедливо соотношение (1), т. е.

$$||u-v-\lambda_f(x)(x-y)|| \leqslant \varepsilon ||x-y||.$$

Из этого следует (в силу соотношения $\lambda_f(x)\neq 0$), что угол между векторами $\varphi_1(a)-\varphi_1(a')=u-v$ и x-y не превосходит

$$\arcsin \frac{\varepsilon}{|\lambda_f(x)|} < \arcsin \frac{\varepsilon}{2\varepsilon} = \frac{\pi}{6}.$$

Так как обе точки φ_1 (a), φ_1 (a') лежат в подпространстве L^{\bullet} (см. (14)), а вектор a-a' является проекцией вектора x-y на это подпространство, то угол между векторами

$$\varphi_1(a) - \varphi_1(a') \text{ if } a - a' \tag{15}$$

подавно меньше $\frac{\pi}{6}$. Итак, если α , $\alpha' \in \overline{V} \cap L_1$, причем $\alpha - \alpha' \perp L^*$, то угол между векторами (15) меньше $\frac{\pi}{6}$.

Пусть теперь e-eдиничный вектор подпространства L_1^* , ортогональный подпространству L^* . Далее, пусть c- произвольная точка подпространства L^* и l_c- прямая, проходящая через точку c и параллельная вектору e. Для произвольной точки $a \in l_c$ положим $b = e \ (a-c)$ и будем рассматривать $b \in b$ как координату точки $b \in b$ ной $b \in b$ положим обной прямой $b \in b$ координаты точек $b \in b$ по обе точки $b \in b$ на одной прямой $b \in b$ координаты точек $b \in b$ на этой прямой обозначим через $b \in b$. Будем считать для определенности, что $b \in b$, $b \in b$, b

$$e(a-a') = e(a-c) - e(a'-c) = \xi - \xi' > 0.$$

Тогда вектор a-a' будет иметь то же направление, что и вектор е. Так как угол между векторами (15) меньше $\pi/6$, то угол между векторами $\varphi_1(a)-\varphi_1(a')$ и е меньше $\pi/6$, и потому е $(\varphi_1(a)-\varphi_1(a'))>0$.

Иными словами, при монотонном возрастании координаты ξ точки $a \in l_c \cap \overline{V}$ скалярное произведение $e \varphi_1$ (a) (т. е. взятое со знаком расстояние от точки φ_1 (a) до подпространства L^*) также возрастает монотонно. В частности, отсюда следует, что множество $l_c \cap \overline{V}$ го мео морфно отображается в L_1^* , при помощи отображения φ_1 .

Пусть теперь $c \in \overline{V} \cap L^*$. Так как $\varphi(c) \in f(E_c, h(L^*))$, то суще ствует (единственная точка $\psi(c) \in E_c, h(L^*)$), для которой $f(\psi(c)) = \varphi(c)$. Легко видеть, что точка $\psi(c)$ непрерывно зависит от c (см. доказательство предложения 2). Проекцию точки $\psi(c)$ на плоскость L_1^* обозначим через $\omega(c)$. Тогда $\omega(c) \in L_1^*$ и $\omega(c) - c \perp L^*$, т. е. $\omega(c) \in l_c$. Координату точки $\omega(c)$ на прямой l_c обозначим через $\mu(c)$.

Далее, через V_1 обозначим $\sigma/2$ -окрестность множества X, а через Θ — множество всех точек $c \in V_1 \cap L^*$, для которых выполнено неравенство $|\mu(c)| < \sigma/4$. Так как функция $\mu(c)$ непрерывна, то множество Θ открыто в подпространстве L^* .

Если $c \in (V \cap L^*) \setminus (V_1 \cap L^*)$, то точка c удалена от множества X не менее чем на $\sigma/2$. Следовательно, точка c удалена от множества X^* более чем на $\sigma/4$, где X^* —ортогональная проекция множества X на подпространство L^* (напомним, что X находится в $\sigma/4$ -окрестности подпространства $L \subset L^*$). Отсюда вытекает, что любая точка шара $E_{c,h}(L^*)$ удалена от множества X^* более чем на $\sigma/4$, и потому шар $E_{c,h}(L^*)$ не пересекается c множеством X. В частности, $\psi(c) \in X = f^{-1}(b)$, т. е. $\varphi(c) = f(\psi(c)) \neq b$. Итак, образ множества $(V \cap L^*) \setminus (V_1 \cap L^*)$ при отображении φ не содержит точки b.

Далее, если $c \in (V_1 \cap L^*) \setminus \Theta$, то $|\mu(c)| \geqslant \sigma/4$, т. е. $|\omega(c) - c| \geqslant \sigma/4$. Следовательно, $|c - \psi(c)| \geqslant |c - \omega(c)| \geqslant \sigma/4$, т. е. точка $|\psi(c)|$ удалена от подпространства L^* не менее чем на $\sigma/4$. Любая же точка множе-

ства X удалена от подпространства L^* менее чем на $\pi/4$. Поэтому $\psi(c) = X$, т. е. и в этом случае $\varphi(c)' = f(\psi(c)) = b$. Итак, образ множества $(V_1 \cap L^*) \setminus \Theta_l^*$ при отображении π также не содержит точки b, а потому образ множества

$$(V \cap L^*) \setminus \Theta = ((V \cap L^*) \setminus (V_1 \cap L^*)) \cup ((V_1 \cap L^*) \setminus \Theta)$$

при отображении \mathfrak{P} не содержит точки b. Следовательно, степени отображений

 $z: V \cap L^* \to L^* \text{ if } \varphi: H \to L^*$ (16)

в точке b совпадают.

Для точки $c \in \Theta$ обозначим через I_c интервал прямой l_c . состоящий из точек, координаты которых удовлетворяют условию $|\xi| < \sigma/2$. Так как при $c \in \Theta$ справедливо неравенство $|\mu(c)| < \sigma/4$, то $\omega(c) \in I_c$. Заметим, что $I_c \subset V$ (при $c \in \Theta$). Действительно, при $c \in \Theta$ точка c находится в $\sigma/2$ -окрестности множества X, а так как для любой точки $a \in I_c$ мы имеем $|a-c| < \frac{\sigma}{2}$, то любая точка $a \in I_c$ находится (при

 $c \in \Theta$) в о-окрестности множества X, т. е. $a \in V$.

Множество $W=\bigcup_{c\in H}I_c$ открыто в пространстве L_1^* , причем $W\subset V$. Повтому отображение \mathfrak{P}_1 определено, в частности, на множестве W. Пусть $a\in (V\cap L_1^*)\setminus W$. Докажем, что шар $E_{a,h}$ (L_1^*) не пересекается с множеством X. Допустим, напротив, что существует точка $x\in E_{a,h}$ $(L_1^*)\cap X$. Тогда a является проекцией точки x на подпространство L_1^* . Обозначим через c проекцию точки x на подпространство L^* . Так как $x\in X$, то расстояние точки x от подпространства L^* меньше \mathfrak{P}_1 , \mathfrak{P}_2 . \mathfrak{P}_3 . Следовательно, $c\in V_1$, \mathfrak{T}_3 . \mathfrak{P}_4 . Далее

$$||a-c|| \leqslant ||x-c|| < \frac{\sigma}{4},$$

и потому $a \in I_c$. Кроме того, так как $x \in X$, то $f(x) = b \in L^*$, и потому, в силу включения $x \in E_c$, $h(L^*)$, мы имеем: $x = \psi(c)$. Неравенство x - c < 1/4 показывает теперь, что $c \in \Theta$. Но тогда $I_c \subset W$, т. е. $a \in W$ что однако противоречит выбору точки a. Полученное противоречие показывает, что при $a \in (V \cap L_1^*) \setminus W$ шар $E_{a,h}(L_1^*)$ не пересекается c множеством $C_a \in C_a$, $C_a \in C_a$.

Итак, образ множества ($V \cap L_1^*$) $\vee W$ при отображении φ_1 не содержит точки b. Поэтому граница (относительно L_1^*) множества W переходит при отображении φ_1 в множество, не содержащее точки b, и степени отображений

$$\varphi_1 \colon (V \cap L_1^*) \to L_1^* \ \text{if} \ \varphi_1 \colon W \to L_1^* \tag{17}$$

в точке в совпадают.

Теперь для доказательства того, что степени отображений

$$\varphi$$
: $(V \cap L^*) \rightarrow L^*$ и φ_1 : $(V \cap L_1) \rightarrow L_2^*$

в точке b совпадают, достаточно (в силу (16), (17)) доказать, что совпадают (в точке b) степени отображений

$$φ: \Theta \rightarrow L^* \quad μ \quad φ_1: \quad W \rightarrow L^*$$
 (18)

Докажем это. Каждую точку $a \in W$ можно записать в виде (c, ε) , где $c \in \Theta$, а ε — координата точки a на прямой l_c ; при этом число ε пробегает (независимо от $c \in \Theta$) интервал $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Обозначим теперь через $g_e^{(0)}$ отображение интервала $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ на себя, определенное соотношением

$$g_{e}^{(0)}(\xi) = \begin{cases} \mu(c) + \xi \cdot \frac{\sigma - 2\mu(c)}{\sigma} & \text{при } 0 \leqslant \xi < \frac{\sigma}{2}, \\ \mu(c) + \xi \cdot \frac{\sigma + 2\mu(c)}{\sigma} & \text{при } -\frac{\sigma}{2} < \xi \leqslant 0. \end{cases}$$

Отображение $g_c^{(0)}$ монотонно (т. е. гомеоморфно отображает интервал $\left(-\frac{\sigma}{2},\frac{\sigma}{2}\right)$ на себя), и при этом $g_c^{(0)}\left(0\right)=\mu\left(c\right)$. Положим теперь $g_c^{(1)}\left(\xi\right)=t\xi+\left(1-t\right)$ $g_c^{(0)}\left(\xi\right)$, $0\leqslant t\leqslant 1$.

Отображение $g_c^{(1)}$ интервала $\left(-\frac{\sigma}{2}, \frac{\sigma}{2}\right)$ на себя также монотонно, причем $g_c^{(1)}$ есть тождественное отображение. Далее, так как функция $\mu(c)$ непрерывна, то $g_c^{(1)}(\xi)$ непрерывно по совокупности переменных c, ξ , t.

Таким образом, положив

$$G^{(t)}(c, \xi) = (c, g_{c}^{(t)}(\xi)),$$

мы получаем гомеоморфное отображение $G^{(I)}$ множества W на себя, причем $G^{(I)}$ — тождественное отображение. Так как при гомотопии $G^{(I)}$: $W \to W$ граница множества W остается неподвижной, то степени отображений

$$\varphi_1: W \to L_1^* \ \text{if} \ \varphi_1 \circ G^{(0)}: W \to L_1^*$$
 (19)

в точке в совпадают.

Заметим теперь, что отображение $\varphi_1 \circ G^{(0)}$ переводит точку $c = (c, 0) \in \Theta$ в точку

$$\varphi_{1}\left(G^{(0)}\left(c,\ 0\right)\right) = \varphi_{1}\left(c,\ g_{c}^{(0)}\left(0\right)\right) = \varphi_{1}\left(0,\ \mu\left(c\right)\right) = \varphi_{1}\left(\omega\left(c\right)\right) = \\
= f\left(E_{\omega\left(c\right),\ h}\left(L_{1}^{\bullet}\right)\right) \cap L_{1}^{\bullet} = f\left(\varphi\left(c\right)\right) = \varphi\left(c\right)$$

(поскольку $f(\psi(c)) \in L^* \subset L_1^*$ и, кроме того, $\psi(c) - \omega(c) \perp L_1^*$, т. е. $\psi(c) \in E_{\infty(c), h}(L_1^*)$). Таким образом, на множестве $\theta \subset W$ отображение $\varphi_1 \circ G^{(0)}$ совпадает с φ , так что $\varphi_1 \circ G^{(0)}$) $(\theta) \subset L^*$.

Далее, при $\xi > 0$ мы имеем (в силу монотонности отображения $g_c^{(0)}$) $g_c^{(0)}(\xi) > g_c^{(0)}(0)$, т. е. $g_c^{(0)}(\xi) > \mu(c)$. Иначе говоря, при $\xi > 0$ координата точки $G^{(0)}(c, \xi)$ на прямой l_c больше координаты точки $G^{(0)}(c, 0)$, и потому

$$e (\varphi_1 (G^{(0)}(c, \xi)) - \varphi_1 (G^{(0)}(c, 0))) > 0,$$

т. е.

$$e(\varphi_1(G^{(0)}(c,\xi)) - \varphi(c)) > 0.$$
 (20)

Иными словами, если мы условимся считать, что вектор e определяет направление "вверх" в подпространстве L_1^* , то, когда точка $\alpha=(c,\xi)$ расположена в W выше подпространства L^* (т. е. при $\xi>0$), точка $\varphi_1\left(G^{(0)}\left(c,\xi\right)\right)$ также расположена выше L^* (в силу соотношения (20) и включения $\varphi(c)\in L^*$). Аналогично, если точка $\alpha=(c,\xi)$ расположена в W ниже L^* (т. е. $\xi<0$), то и точка $\varphi_1\left(G^{(0)}\left(c,\xi\right)\right)$ расположена ниже L^* .

Из этого следует, что степени отображений

$$\varphi_1 \circ G^{(0)} \colon W \to L_1^*$$
 и $\varphi \colon \Theta \to L^*$

в точке b совпадают, и потому, в силу (19), совпадают в точке b и степени отображений (18).

Тем самым полностью доказано, что при $L_1^* \supset L^* \supset L$ степени отображений $\varphi \colon V \cap L^* \to L^*$ и $\varphi_1 \colon V \cap L_1^* \to L_1^*$ в точке b совпадают. Однако вто доказано лишь для случая, когда L, V и h выбраны вполне определеным образом (а именно, так как вто было сделано при доказательстве предложения 2).

Пусть теперь L', V' и h' выбраны иначе, но так, что при $L^*\supset L'$ определено отображение $\varphi'\colon \overline{V'}\cap L^*\to L^*$ (ср. (14)), причем определена степень этого отображения в точке b и эта степень не зависит от выбора подпространства $L^*\supset L'$. Для завершения доказательства предложения 4 остается установить, что при $L^*\supset L$ и $L^*\supset L'$ степени отображений

$$φ: V \cap L^* \to L^* \text{ if } φ': V' \cap L^* \to L^*$$
(21)

в точке в совпадают.

Выберем положительное число h_1 , меньшее каждого из чисел h, h'. Тогда

$$E_{a, h_1}(L^*) \subset E_{a, h}(L^*), E_{a, h_1}(L^*) \subset E_{a, h'}(L^*) \quad (\alpha \in L^*).$$

Далее, построим такую окрестность $V_1 \subset V \cap V'$ множества X и такое конечномерное подпространство $L_1 \supset L \cup L'$, что для любого конечномерного подпространства $L^* \supset L_1$ и любой точки $a \in V_1 \cap L^*$ пересечение $f(E_{a,h_1}(L^*)) \cap L^*$ состоит ровно из одной точки (см. предложение 2). Тогда при $L^* \supset L_1$ определено отображение $\varphi_1 \colon V \cap L^* \to L^*$ (ср. (14)). Согласно предложению 3, подпространство L_1 можно выбрать так, что при $L^* \supset L_1$ определена степень этого отображения в точке b. Мы можем при этом считать, что V_1 есть r-окрестность множества X

(где r — некоторое положительное число) и что множество X содержится в r-окрестности подпространства L_1 .

Мы докажем, что при $L^{\bullet}\supset L_1$ степени отображений

$$\varphi_{\mathbf{I}} \colon (V_{\mathbf{1}} \cap L^*) \to L^* \quad \mathsf{u} \quad \varphi \colon (V \cap L^*) \to L^* \tag{22}$$

в точке b совпадают и, точно так же, степени отображений

$$\varphi_i \colon (V_1 \cap L^*) \to L^* \quad \text{if} \quad \varphi' \colon (V' \cap L^*) \to L^* \tag{23}$$

в точке b совпадают. Этим и будет доказано совпадение степеней отображений (21).

Итак, пусть $L^* \supset L_1$. Пусть, далее, $a \in (V \setminus V_1) \cap L^*$. Покажем, что шар $E_{a,h}(L^*)$ не пересекается с множеством X. Допустим, напротив. что существует точка $x \in E_{a,h}(L^*) \cap X$. Тогда расстояние $\|x-a\|$ точки x от подпространства L^* меньше r (так как $x \in X$). Следовательно, точка a находится в r-окрестности множества X, и потому $a \in V_1$, что однако противоречит выбору точки a. Таким образом, при $a \in (V \setminus V_1) \cap L^*$ шар $E_{a,h}(L^*)$ не пересекается с множеством X. Это означает, что $b \in f(E_{a,h}(L^*))$. Поэтому при $a \in (V \setminus V_1) \cap L^*$ мы имеем $\varphi(a) \neq b$. Иными словами, образ множества $(V \setminus V_1) \cap L^*$ при отображении φ не содержит точки b. Отсюда следует, что степени отображений

$$\varphi \colon (V \cap L^*) \to L^* \text{ if } \varphi \colon (V_1 \cap L^*) \to L^* \tag{24}$$

в точке в совпадают.

Теперь для доказательства того, что степени отображений (22) совпадают, достаточно установить, что совпадают степени отображений

$$\varphi: (V_1 \cap L^*) \to L^* \text{ in } \varphi_1: (V_1 \cap L^*) \to L^*.$$
 (25)

Мы покажем, что отображения (25) просто совпадают между собой В самом деле, пусть $\alpha \in V_1 \cap L^*$. Тогда

$$\varphi_{a}(\alpha) = f(E_{a,h},(L^{*})) \cap L^{*} \subset f(E_{a,h}(L^{*})) \cap L^{*}.$$

Но последнее пересечение содержит ровно одну точку, а именно точку $\varphi(a)$. Следовательно, $\varphi_1(a) = \varphi(a)$ (при $a \in V_1 \cap L^*$), т. е. отображения (25) совпадают.

Этим доказано совпадение степеней отображений (22). Аналогично доказывается совпадение степеней отображений (23). Таким образом. предложение 4 полностью доказано.

Этим и завершается построение степени отображения. Именно, если $f: M \to H$ — такое отображение класса K_θ , что прообраз $f^{-1}(b)$ любой точки $b \in f(M)$ компактен, то определена степень отображения c(f, b). Если при этом множество M связно, то можно доказать, что степень отображения c(f, b) одинакова для всех точек $b \in f(M)$. В случае же, когда множество $f^{-1}(b)$ компактно не для всех $b \in f(M)$, степень отображения определена лишь в тех точках $b \in f(M)$, для которых

прообраз $f^{-1}(b)$ компактен. Если при этом $N \subset f(M)$ — множество всех точек $b \in f(M)$, для которых прообраз $f^{-1}(b)$ компактен, то на каждой компоненте множества N степень отображения c(f, b) постоянна. Далее, если f_0 и f_1 — гомотопные (в классе K_0) отображения класса K_0 , заданные на множестве M, и f_t , 0 < t < 1 — соединяющая их гомотопия и если при этом для всех $t \in [0, 1]$ выполнено включение $b \in f_t(M)$ и прообраз $f_0^{-1}(b)$ компактен, то $c(f_0, b) = c(f_1, b)$.

Математический институт им. В. А. Стеклова АН СССР,

Институт математики АН Армянской ССР

Поступная 17.VII.1973

Վ. Գ. ԲՈԼՏՅԱՆՍԿԻ, Է. Ա. ՄԻՐՋԱԽԱՆՅԱՆ. Արտապատկերման աստիճանի կառուցումը հիլթերայան տարածությունում (ամփոփում)

Հոդվածում կառուցվում է արտապատկերման տոպոլոգիական աստիճանը K₀ դասին ([6], [7]) պատկանող ու լրացուցիչ պայմաններին թավարարող արտապատկերումների հաժարս Գաղափարական տեսակետից այդ կառուցումը մոտ է Լերե-Շաուդերի ([1]) կլասիկ սամմանմանը, թայց ունի իր տարբերությունները և առանձնանատկությունները։

V. G. BOLTJANSKII, E. A. MIRSAKHANIAN. Construction of the power of a mapping in a Hilbert space (summary)

The paper constructs topological powers of mappings from the K_a class ([6], [7]), under some additional conditions.

ЛИТЕРАТУРА

- 1. Ж. Лере и Ю. Шаудер. УМН, 1. вып. 3-4, 1946.
- F. E. Browder. On a generalization of the Shauder fixed point theorem, Duke Math. Journal, 26, 1959, 291-304.
- М. А. Красносельский. Топологические методы в теории неамнейных интегральных уравнений, Гостехиздат, 1956.
- 4. Р. Л. Фрум-Кетков. Об отображениях в гильбертовом пространстве, ДАН СССР, 192, № 6, 1970, 1231—1234.
- 5. В. Г. Болтянский в Э. А. Мирваханян. Степень отображения в гильбертовом пространстве, ДАН Арм.ССР, 51, № 4, 1970, 193—195.
- 6. В. Г. Болтянский. Об одном классе отображений гильбертова пространства, ДАН Арм.ССР, 51, № 3, 1970, 129—131.
- 7. В. Г. Болтянский. Об одном влассе отображений подмножеств гильбертова пространства, Изв. АН Арм.ССР, сер. матем., IX, № 2, 1974, 107—120.