Ф. А. ШАМОЯН

ОБ ОГРАНИЧЕННОСТИ ОДНОГО КЛАССА ОПЕРАТОРОВ, СВЯЗАННЫХ С ДЕЛИМОСТЬЮ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

1°. Пусть U— единичный круг, Γ — его граница, H^ρ — класс Харди аналитических функций с обычной L^ρ -нормой. Пусть $f\in H^\rho$, тогда f допускает каноническую факторизацию

$$f == BSQ$$

где B— произведение Бляшке, S— сингулярная внутренняя, O—внешняя функция. Следуя Бёрлингу, будем называть BS внутренней, Q— внешней частями функции f. Некоторая внутренняя функция $\widetilde{J} = \widetilde{BS}$ называется делителем функции f, если BSJ^{-1} является регулярной ограниченной функцией в U.

Пусть X— некоторое пространство функций, аналитических в круге $X \subset H^1$. При изучении инвариантных подпространств оператора умножения (Tf)(z) = zf(z), существенно иметь утверждение, устанавливающее, что если $f \in X$ и f = J—делитель функции f, то f = J—1 $\in X$.

Первые результаты подобного рода для пространств A, H^p и для пространств D — функций с конечным интегралом Дирихле содержатся в [1] и [14].

Для различных классов функций, аналитических в круге и гладких вплоть до единичной окружности, утверждения такого рода были получены в [5]-[10].

В статьях [8], [9] (см. также [6]) для некоторых классов аналитических функций доказано, что если $h \in H^*$, то функция

$$g(z) = P(\overline{h} f)(z) = \frac{1}{2\pi i} \int_{S} \frac{\overline{h}(\zeta) f(\zeta)}{\zeta - z} d\zeta$$

не "хуже" в смысле гладкости, чем f. В частности, в [8] доказано следующее утверждение.

Пусть H(U)—множество функций, аналитических в U, n— натуральное число, а

$$\begin{split} H_{n}^{p} &= \{f; f^{(n)} \in H^{p}, \|f\|_{H^{p}_{n}} = \max_{0 < k < n} \|f^{(k)}\|_{H^{p}}\}, \\ A_{n}^{p} &= \|f \in H(U); f \in L^{p}(U), \|f\|_{A^{p}_{n}} = \max_{0 < k < n} \|f^{(k)}\|_{L^{p}(U)}\} \;. \end{split}$$

Тогда, если $f \in H_1^p$ или $f \in A_1^p$ $(1 , то функция <math>g = P^p$ $(\bar{h} f)$ тоже принадлежит пространству H_1^p и, соответственно, пространству A_1^p ; аналогичные утверждения верны для пространства A_1^2 , H_2^2 при любом натуральном $n \ge 1$ (см. также [6]).

2°. В данной статье мы установим, что аналогичные утверждения верны также в пространствах A_n^p , H_n^p при всех n > 1, $1 (теоремы 1, 4) и для <math>A_n^1$ при всех n > 2 (теорема 3).

В то же время доказывается (теорема 2), что существуют функция $h \in H^{\infty}$ и множество M второй категории в $A^1 (A^1 = A^1)$ такие,

что для любого
$$\varphi \in M$$
 и $f(z) = \int\limits_0^x \varphi(t) \ dt = (J\varphi)(z)$ функция $g =$

 $= P(\bar{h} f) \in A_1$. Здесь же доказывается эквивалентность следующих утверждений:

a)
$$P(\bar{h}f) \in A_1^1$$
 для любого $f \in A_1^1$,

6)
$$\sup_{|z| < 1} \left[|h^{(1)}(z)| (1 - |z|) \log \frac{1}{1 - |z|} \right] < + \infty.$$

Таким образом, в последнем случае налицо новый вффект, состоящий из необходимости дополнительной "гладкости" функций h, $h \in H^*$ для того, чтобы для всех $f \in A^1$ имели $P(\overline{h} f) \in A^1$.

Отметим, что в работе существенно используется тот факт, что рассмотренные нами пространства можно "отождествить" с сопряженными пространствами некоторых пространств функций, аналитических в круге.

\S 1. Ограниченность оператора $P(\bar{h}\cdot)$ в пространствах $A_n^p \ (1\!<\!p\!<\!+\infty)$

Основным результатом этого параграфа является следующая T е о р е м а 1. Π усть $f \in A_n^p$, $h \in H^-$, тогда функция $g = P(\overline{h} f)$ принадлежит A_n^p

Доказательство теоремы опирается на следующие леммы.

 Λ емма 1. Пусть $f \in A_1$, тогда $f \in H^1$.

Доказательство. Положим $z_i^1 = r e^{i\phi}$, тогда

$$f(re^{l\varphi}) = f(0) + \int_{0}^{r} f^{(1)}(te^{l\varphi}) e^{l\varphi} dt.$$

Отсюда

$$\int_{-\pi}^{\pi} |f(re^{i\varphi})| d\varphi \leqslant |f(0)| + \int_{-\pi}^{1} \int_{-\pi}^{\pi} |f^{(1)}(te^{i\varphi})| dtd\varphi < +\infty.$$

Лемма доказана.

Следующие две леммы являются некоторым обобщением соответствующих теорем Литтльвуда-Пели (см. [3], стр. 316).

 λ емма 2. Пусть $f\in H^p$, 1 и <math>n- натуральное число. Положим

$$g_n(\theta, f) = \left(\int_0^1 (1-r)^{2n-1} |f^{(n)}(re^{i\theta})|^2 dr\right)^{\frac{1}{2}},$$

тогда существует постоянная С (п, р) такая, что

$$\left(\int\limits_{-\pi}^{\pi}g_{n}^{p}(\theta,f)\ d\theta\right)^{\frac{1}{p}}\leqslant C\left(n,p\right)\left\|f\right\|_{H^{p}}.$$

Доказательство. Отметим, что при n=0. $g_0(\theta,f)=g(\theta)$, $g(\theta)$ — известная функция Литтльвуда-Пели (см. [3], стр. 316). Выразим $f^{(n)}$ через ковтурный интеграл от функции $f^{(1)}$

$$f^{(n)}(re^{i\theta}) = \frac{(n-1)!}{2\pi i} \int_{\Gamma_0} \frac{f^{(1)}(t) dt}{(t-re^{i\tau})^n},$$

где Γ_{ρ} — окружность радиуса ρ , $\Gamma = \Gamma_{\rho}$ ($r < \rho < 1$). Имеем

$$|f^{(n)}(re^{i\theta})|^2 \leq \left(\frac{(n-1)!}{2\pi}\right)^2 \left(\int_{-\pi}^{\pi} \frac{|f^{(1)}(\rho e^{i(\theta-\tau)})|^2 d\tau}{|\rho-re^{i\tau}|^2 (n-1)}\right) \int_{-\pi}^{\pi} \frac{dt}{|\rho-re^{it}|^2} =$$

$$= \left(\frac{n-1)!}{2\pi}\right)^2 \left(\int_{-\pi}^{\pi} \frac{|f(\rho e^{t(\theta+t)})|^2 dt}{|\rho - re^{tt}|^2 (n-1)}\right) \left(\int_{-\pi}^{\pi} \frac{dt}{(\rho - r)^2 + 4r\rho \sin^2 \frac{t}{2}}\right).$$

Положим $\rho = \frac{1+r}{2}$. Легко видеть, что

$$\int_{-\pi}^{\pi} \frac{dt}{(1-r)^2} \frac{dt}{4} + 2(1+r) r \sin^2 \frac{t}{2} = 4 \int_{-\pi}^{\pi} \frac{dt}{(1-r)^2 + 8(1+r) \sin^2 \frac{t}{2}} \leq \frac{16}{(1-r)}$$

Заметим, что

$$\left|\frac{1+r}{2}-r\,e^{it}\,\right|^2 \gg \frac{1}{4}\left[(1-r)^2+4\,r\rho\sin^2\frac{t}{2}\right] =\,\frac{|1-re^{it}|^2}{4}\,.$$

Поэтому

$$||f^{(n)}(re^{i\theta})|^2 \leq \frac{4^n}{(1-r)} \left(\frac{(n-1)!}{\pi}\right)^2 \int_{-\pi}^{\pi} \frac{|f^{(1)}(\frac{(1+r)}{2}e^{i(\theta+t)})|^2 dt}{|1-re^{it}|^2(n-1)}$$

Отсюда получаем

$$g_n(\theta,f) \leqslant \frac{2^n(n-1)!}{\pi} \left(\int_0^1 (1-r)^{2n-2} \int_{-\pi}^{\pi} \frac{\left| f^{(1)}\left(\left(\frac{1+r}{2}\right)e^{i(\theta+t)}\right)^{\frac{1}{2}} dt dr}{|1-re^{it}|^{2n-2}} \right)^{\frac{1}{2}} dt dr \right)^{\frac{1}{2}},$$

или же

$$g_n(\theta,f) < \frac{2^n (n-1)!}{\pi} \left(\int_{\frac{1}{2}}^1 (1-\rho) \int_{-\pi}^{\pi} \frac{(1-\rho^2) |f^{(1)}(\rho e^{i(\theta+f)})|^2}{|1-(2\rho-1)|e^{it}|^2} \right)^{\frac{1}{2}},$$

так как

$$|1-(2\rho-1)|e^{it}|^2 \gg C_0 (1-\rho e^{it})^2, \quad \frac{1}{2} \leqslant \rho < 1,$$

где C_0 не зависит от t и ρ , то

$$g_{n}(\theta, f) \leqslant C(n, p) \left(\int_{0}^{1} (1-\rho) \int_{-\pi}^{\pi} \frac{|f^{(1)}(\rho e^{t})|^{2} (1-\rho^{2}) dt}{|1-\rho e^{t}|^{2}} d\rho \right)^{\frac{1}{2}} = g_{*}(\theta, f),$$

$$(1)$$

 g_* (θ , f) — известная функция A. Зигмунда. Доказательство леммы следует из неравенства (1) и соответствующего результата A. Зигмунда (см. [15]).

 Λ емма 3. Пусть 1 , <math>n— натуральное число, $f \in H^p$, $f^{(k)}(0) = 0$, $k = 0, 1, \dots, n-1$.

Тогда существует постоянная С (п, р) такая, что

$$\left(\int_{-\pi}^{\pi} |f\left(e^{i\theta_{\parallel}}\right)|^{p} d\theta\right)^{\frac{1}{p}} \leqslant C\left(n, p\right) \left(\int_{-\pi}^{\pi} g_{n}^{p}\left(\theta, f\right) d\theta\right)^{\frac{1}{p}}.$$

Доказательство втой леммы, по существу, не отличается от случая n=1, только нужно применить вместо теоремы Литтльвуда-Пели лемму 2.

 λ емма 4. Пусть $f \in A^p$, $1 , предположим <math>f^{(k)}(0) = 0$, $k = 0, 1, \dots, n-1$, положим $f_{\varrho}(z) = f(\varrho z)$, $0 < \varrho < 1$, тогда существуют положительные числа $C_1(n, p)$, $C_2(n, p)^*$ такие, что

$$C_1(n, p) \int\limits_0^1 \int\limits_{-\pi}^{\pi} |f(\rho e^{it})|^p \, \rho \, d\rho dt \leqslant \int\limits_0^1 \int\limits_{-\pi}^{\pi} g_n^p(t, f_\rho) \, \rho d\rho \, dt \leqslant$$

$$\leqslant C_2(n, p) \int\limits_0^1 \int\limits_{-\pi}^{\pi} |f(\rho e^{it})|^p \, \rho d\rho dt.$$

 $^{^{}ullet}$ В дальнейшем C_k () будет обозначать положительное число, значение которого не будет играть никакой роли. 816—4

Доказательство. В силу лемм 2, 3 существуют C_1 (n, p) C_2 (n, p) такие, что для любого $p \in (0,1)$

$$C_1(n, p) \int_{-\pi}^{\pi} |f(pe^{it})|^p dt \leqslant \int_{-\pi}^{\pi} g_n^p(t, f_p) dt \leqslant$$

$$\leqslant C_2(n, p) \int_{-\pi}^{\pi} |f(pe^{it})|^p dt.$$

Остается умножить это неравенство на p и проинтегрировать по p. Λ е м м а 5. Пусть T — линейный* функционал на A^{r} , $1 , предположим, что <math>g(z) = T\left(\frac{1}{1-\cdot z}\right)$, тогда $g \in A_{1}^{q}$, где $\frac{1}{p}$ + $\frac{1}{q}$ = 1, кроме того

$$T(f) = \lim_{\rho \to 1-0} \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\rho e^{i\theta}) g(e^{-i\theta}) d\theta, \qquad (2)$$

и обратно, для любых $f \in A^p$, $g \in A^q$ предел (2) существует и определяет линейный функционал на A^{p**} .

 \mathcal{A} оказательство. Предположим, что $T \in (A^p)^*$, докажем (2), для втого заметим, что $g(z) = \sum_{k=0}^{\infty} T(z^k) z^k$. Пусть $f \in A^p$ и $f(z) = \sum_{k=0}^{\infty} a_k z^k$

Легко видеть, что

$$\lim_{\rho \to 1-0} \|f_{\rho} - f\|_{A^{p}} = 0, \ f_{\rho}(z) = f(\rho z),$$

повтому

$$T(f) = \lim_{\rho \to 1-0} T(f_{\rho}) = \lim_{\rho \to 1-0} \sum_{k=0}^{\infty} a_k T(z^k) \rho^k.$$
 (3)

Поскольку A^p является подпространством $L_p(U)$, то по теореме Хана—Банаха функционал T можно с сохранением нормы продолжить до линейного функционала F, определенного на всем пространстве $L^p(U)$. Используя известный вид линейного функционала в $L^p(U)$, получим

$$g^{(1)}(z) = T\left(\frac{t}{(1-tz)^2}\right) = \iint_U \frac{th(t)}{(1-tz)^2}, \ d\xi d\eta,$$

$$t = \xi + i\eta, \ \|T\| = \|F\| = \|h\|_{L^2(U)}.$$

^{*} т. е. аддитивный ограниченный функционал.

^{**} В [11] дано другое представление линейных функционалов в A^p , однако для применений нам удобно представление (2).

Пусть

$$G(w) = \int_{|t| < +\infty} \frac{h_1(t) d^2 d \eta}{(t - w)^2},$$

$$h_1(t) = \begin{cases} th(t), |t| < 1\\ 0, |t| > 1 \end{cases}.$$
(4)

Сингулярный интеграл (4) принадлежит к типу интегралов, исследованных А. П. Кальдероном и А. Зигмундом (см. [4], стр. 207). Пользуясь их результатом, получим

$$\|g^{(1)}\|_{A^q} \le \|G^1\|_{L_q(C^*)} < +\infty$$
, r. e. $g \in A_1^q$.

Учитывая (3) и лемму 1, получаем (2). Предположим теперь, что $g \in A_1^q$, тогда по лемме 1 $g \in H^1$. Докажем, что предел (2) существует и определяет линейный функционал на A^p .

Пусть

$$\varphi (\rho) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\rho e^{i\theta}) g(e^{-i\theta}) d\theta,$$

заметим, что

$$p\varphi^{(1)}(p^2) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(pe^{i\theta}) g^{(1)}(pe^{-i\theta}) e^{-i\theta} d\theta.$$

Поэтому

$$\begin{split} &\int\limits_{0}^{1} \rho^{2} \left| \phi^{(1)} \left(\rho^{2} \right) \right| \, d\rho = \, \frac{1}{2} \int\limits_{0}^{1} \rho^{\frac{1}{2}} \left| \phi^{(1)} \left(\rho \right) \right| \, d\rho \leqslant \\ &\leqslant \frac{1}{2\pi} \int\limits_{-\infty}^{\pi} \int\limits_{0}^{1} \left| f \left(\rho e^{i\theta} \right) \, g^{(1)} \left(\rho e^{-i\theta} \right) \right| \, \rho d\rho d\theta \leqslant \| f \|_{A^{p}} \, \| g \|_{A_{1}^{q}} \, . \end{split}$$

Следовательно

$$T(f) = \lim_{\rho \to 1-0} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\rho e^{i\theta}) g(e^{-i\theta}) d\theta$$

существует и

$$|T\left(f\right)| \leqslant \|g\|_{A^q} \|f\|_{A^p}.$$

Лемма доказана.

Замечание. Из леммы 5 можно получить характеристику тех множеств $E \subset C^1/U$, для которых $\left\{\frac{1}{z-\zeta}\right\}_{:\in E}$ плотно в пространствах A^p .

Доказательство теоремы 1. Пусть $f \in A_n^p$, $1 , <math>h \in H^{\infty}$,

$$g^{(n)}(z) = \frac{n!}{2\pi i} \int_{z}^{z} \frac{f(t) \overline{h}(t) dt}{(t-z)^{n+1}}.$$

Пусть, далее, $\psi \in A^q$, $\frac{1}{p} + \frac{1}{q} = 1$ и

$$(J\psi)(x)=\int\limits_0^x\psi(t)\ dt.$$

 ${\mathcal M}$ з леммы 1 имеем $J\psi\in H^1$. Пусть $\phi=J\psi$, тогда

$$\int_{-\pi}^{\pi} g^{(n)} (re^{i\theta}) \overline{\varphi(e^{i\theta})} d\theta = \frac{n!}{2\pi i} \int_{-\pi}^{\pi} f(e^{it}) \overline{h(e^{it})} \int_{-\pi}^{\pi} \overline{\varphi(e^{i\theta})} \frac{d\theta}{\det e^{it}} de^{i\theta} d\theta$$

$$= -\frac{n!}{2\pi i} \int_{-\pi}^{\pi} f(e^{it}) \overline{h(e^{it})} \int_{-\pi}^{\pi} \frac{\varphi(e^{i\theta}) e^{in\theta} e^{int} de^{i\theta} dt}{(e^{i\theta} - re^{it})^{n+1}},$$

откуда

$$\int_{-\pi}^{\pi} g^{(n)} (re^{i\theta}) \overline{\varphi(e^{i\theta})} d\theta = \int_{-\pi}^{\pi} f(e^{it}) \overline{h(e^{it}) e^{int} (\varphi(z) z^n)^{(n)}} dt, \qquad (5)$$

$$z = re^{it}.$$

Интегрируя по частям, получаем

$$\int_{-\pi}^{\pi} f(e^{it}) \overline{h(e^{it}) e^{int} (\varphi(z) z^n)^{(n)}} dt = \int_{-\pi}^{\pi} f_{n-1}(e^{i\theta}) \overline{F_r(e^{i\theta})} e^{in\theta} d\theta,$$

$$z = re^{it}$$

TAE $f_{n-1}(z) = (f(z) z^{n-1})^{(n-1)}$,

$$F_{r}(z) = \int_{0}^{z} dt_{n-2} \int_{0}^{t_{n-2}} dt_{n-3} \cdots \int_{0}^{t_{1}} h(t) t^{n} \varphi_{n}(rt) dt =$$

$$= \frac{1}{(n-2)!} \int_{0}^{z} (z-t)^{n-2} h(t) t^{n} \varphi_{n}(rt) dt, \text{ rate } \varphi_{n}(z) = (\varphi(z) z^{n})^{(n)}.$$

По лемме 4 $f_r \in A^q$, $0 < r \le 1$, $f_{n-1} \in A^p_1$, кроме того $\|F_r\|_{A^q} \le C(g, n) \|h\|_{\infty} \|\psi\|_{A^q}$.

Следовательно

$$T\left(\varphi_{0}\right)=\lim_{\rho\to1-0}\int\limits_{-\infty}^{\infty}\varphi_{0}\left(\rho e^{it}\right)f_{n-1}\left(e^{it}\right)dt$$

определяет линейный функционал на A^q . Из леммы 4 следует, что

$$\lim_{r\to 1-0} |F_r - F_{i|_{A^q}} = 0,$$

 $F = F_1$. Поэтому

$$\lim_{r\to 1-0} T(F_r) = T(F) = \lim_{r\to 1-0} \frac{1}{2\pi} \int_{-\pi}^{\pi} F(\gamma e^{i\theta}) \overline{f_{\pi-1}(e^{i\theta})} d\theta,$$

$$|T(F)| \leqslant C(p, n) \|h\|_{\infty} \|\gamma\|_{A^q} \|f\|_{A^p}.$$

В силу втого

$$T_{1}(\psi) = \lim_{r \to 1-0} \frac{1}{2\pi} \int_{-\pi}^{\pi} (J\psi) (e^{ib}) \overline{g^{(n)}(re^{ib})} d\theta$$

представляет линейный функционал на A^q . По доказанному функция $G\left(z
ight) = T_1\left(rac{z}{(1-tz)^2}
ight)$ принадлежит A^p ,

$$J\left(\frac{z}{1-tz)^2}\right) = \int_{0}^{\infty} \frac{zdz}{(1-\tau z)^2} = \frac{1}{1-wz} -1.$$

В то же время

$$G(z) = -g^{(n)}(0) + \lim_{r \to 1^{-0}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\overline{g^{(n)}(re^{i\theta})} d^{ij}}{1 - zre^{i\theta}} d\theta =$$

$$= \overline{g^{(n)}(0)} + \lim_{r \to 1-0} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{it\theta} \overline{g^{(n)}(re^{i\theta})} d\theta z^k = \overline{g^{(n)}(z)} - \overline{g^{(n)}}(0), \text{ r. e. } g^{(n)} \in A^p.$$

Теорема доказана.

Следствие. Пусть $f \in A_n^p$, 1 , <math>f = JF, где J—внутренняя функция, $F \in H^1$, тогда $F \in A_n^p$.

\S 2. Случай пространства A_n^1

Теорема 2. Пусть $h \in H^*$, тогда

1. Следующие утверждения равносильны:

a)
$$\sup_{|z|<1} \left[|h^{(1)}(z)|(1-|z|)\log \frac{1}{1-|z|} \right] < +\infty,$$

6) $P(\overline{h}f)$ принадлежит A_1^1 для любого $f \in A_1^1$.

2. Если

$$\sup_{|z|<1} \left[|h^{(1)}(z)| (1-|z|) \log \frac{|z|}{1-|z|} \right] = +\infty,$$

то существует множество M второй категории в A_1 такое, что

для любого $\varphi \in M$ и $f(z) = \int\limits_0^z \varphi(t) \ dt \ \phi$ ункция

$$g = P(\overline{h} f) \in A_1^!$$

Доказательству теоремы предпошлем несколько лемм.

Пусть $\lambda^{(n)}$ — пространство функций, аналитических в U и таких, что $f^{(n)}\in C_A$ (C_A — множество функций, аналитических в U и непрерывных в \overline{U}),

$$|f^{(n)}(e^{i(\theta+t)}) - 2f^{(n)}(e^{i\theta}) + f^{(n)}(e^{i(\theta-t)})| = o(|t|)$$

равномерно по $\theta \in (-\pi, \pi]$.

 $\Delta^{(n)}$ —множество функций, аналитических в U и таких, что $f^{(n)} \in C_A$ и

$$|f^{(n)}(e^{i(\theta+t)}) - 2f^{(n)}(e^{i\theta}) + f^{(n)}(e^{i(\theta-t)})| = O(|t|)$$

равномерно по $\theta \in [-\pi, \pi)$.

Эти пространства превращаются в банахово пространство по норме

$$\|f\|_{\Lambda} = \|f\|_{\infty} + \sup_{\theta, t} \frac{|f^{(n)}(e^{t(\theta+t)}) - 2f^{(n)}(e^{t\theta}) + f^{(n)}(e^{t(\theta-t)})|}{|t|},$$

rae $\Lambda = \lambda^{(n)}, \ \Lambda^{(n)}$

Обозначим $\lambda = \lambda^{(0)}$, $\Lambda = \Lambda^{(r)}$.

Следующая лемма вытекает из теоремы А. Зигмунда (см. [12], стр. 76).

 Λ емма 6. Пусть $f \in C_A$, $f^{(k)}(0) = 0$, $k = 0, 1, \dots, n-1, n \ge 2$, тогда

1°.
$$f \in \Delta_* \iff f^{(n)}(z) = O\left(\frac{1}{(1-|z|)^{n-1}}\right)$$

2°.
$$f \in \lambda_* <=> f^{(n)}(z) = o\left(\frac{1}{(1-|z|)^{n-1}}\right),$$

3°.
$$||f||' = ||f||_{\infty} + \sup_{|z| < 1} [(1-|z|)|f^{(2)}(z)|]$$

9квивалентно норме $\|f\|_{\Lambda}$, $\Lambda=\Lambda_{*}$, λ_{*} .

Пусть 0 < r < 1, $h \in H^{\infty}$, $\psi \in \Lambda_{*}$. Обозначим

$$T_r(\psi)(z) = \frac{1}{z^2} \int_0^z h(t) t^2 \cdot \psi^{(1)}(rt) dt.$$

Из леммы 6 следует, что $T_r \in L(\Lambda_*, \Lambda_*)$, где $L(\Lambda_*, \Lambda_*)$ — пространство линейных операторов $\Lambda_* \to \Lambda_*$.

Лемма 7.

$$\sup_{0 < r < 1} \|T_r\| < + \infty \implies \sup_{|z| < 1} \left[|h^{(1)}(z)| (1 - |z|) \log \frac{1}{1 - |z|} \right] < + \infty,$$

где $||T_r||$ — норма T_r в $L(\Lambda_*, \Lambda_*)$.

Доказательство. (<-) Легко заметить, что

$$(T_r(\psi)(z))^{(2)} = \frac{6}{z^4} \int_0^z h(t) t^2 \psi^{(1)}(rt) dt + \frac{rh^{(1)}(z) \psi^{(1)}(rz)}{z} + rh(z) \psi^{(2)}(rz).$$
(6)

По лемме 6 и (6)

$$|(T, (\psi)(z))^{(2)}| \le C \left(\|h^{(1)}(z)\| \|\psi\|_{\Lambda_x} \log \frac{1}{1-|z|} + \frac{\|h\|_{\infty} \|\psi\|_{\Lambda_x}}{(1-|z|)} \right)$$

при |z| < 1, поэтому

$$||T_r(\psi)||_{\Lambda_*} \leq \left(C_1 ||h||_{\Lambda_*} ||\psi||_{\Lambda_*} + ||\psi||_{\Lambda_*} \left(\lg \frac{1}{1-|z|}\right) ||h^{(1)}(z)|\right),$$

то есть

$$\sup_{\|\psi\|_{\Lambda_{\bullet}}<1} \|T_{r}(\psi)\|_{\Lambda_{\bullet}} \leqslant C_{1} \|h\|_{-},$$

следовательно

$$\sup_{0$$

Предположим теперь, что

$$\sup_{|z|<1} \left| |h^{(1)}(z)| (1-|z|) \log \frac{1}{1-|z|} \right| = +\infty$$
 (7)

и докажем, что

$$\sup_{0 < r < 1} \|T_r\| = + \infty.$$

Из (7) следует существование последовательности $\{\lambda_k\}_{k=1}^{\infty}$, $|\lambda_k| < 1$, $|\lambda_k| \to 1 - 0$, при $k \to \infty$ такой, что

$$\sup_{k} \left[|h^{(1)}(\lambda_k)| (1-|\lambda_k|) \log \frac{1}{1-|\lambda_k|} \right] = +\infty.$$

Положим

$$\psi_k(z) = \int_0^z \log \frac{1}{1 - \overline{\lambda}_k t} dt,$$

тогда, как легко видеть, $\psi_k \in \Lambda_*$, $k=1,\ 2,\cdots$, и

$$\sup_{k} \|\psi_{k}\|_{\lambda_{-}} < + \infty. \tag{8}$$

Из (6) имеем

$$\left| h^{(1)}(z) \log \frac{1}{1 - \overline{\lambda_k} |z|} \right| \leqslant C_2 \|h\|_{\infty} \left[|(T_r(\psi_r)(z))^{(2)}| + \frac{\|\psi_k\|_{\Lambda_k}}{1 - |z|} \right].$$

Повтому для любого $z \in U$

$$(1-|z|) |h^{(1)}(z)| \log \frac{1}{1-\overline{\lambda}_k z \cdot r} | \leq C_3 ||h||_{-} [||T_r(\psi_k)||_{\lambda_k} + ||\psi_k||_{\lambda_k}],$$

отсюда

$$\sup_{0 < r < 1} \sup_{k} \|T_r(\psi_k)\|_{\Lambda_{\bullet}} = + \infty.$$

Из (8) получаем

$$\sup_{0 < r < 1} \|T_r\| = + \infty,$$

доказательство закончено.

Доказательство теоремы 2. Сначала докажем, что 1° . а) —> 6). Воспользуемся тем фактом, что сопряженное пространство $(\lambda_{*})^{*}$ эквивалентно пространству A^{1} (см. [13], теорему 11). Пусть $f \in A_{1}^{1}$ и

$$g^{(1)}\left(z\right) = \frac{1}{2\pi i} \int \frac{f\left(\zeta\right)}{\left(\zeta - z\right)^{2}} d\zeta.$$

Предположим, что $\psi \in \lambda_*$. Как и при доказательстве теоремы 1. получаем

$$\int_{-\pi}^{\pi} g^{(1)}(re^{it}) \, \overline{\psi(e^{it})} \, dt = r \int_{-\pi}^{\pi} f(e^{it}) \, \overline{h(e^{it})} \, \psi^{(1)}(re^{it}) \, e^{2it} \, dt +$$

$$+ r \int_{-\pi}^{\pi} f(e^{it}) \, \overline{h(e^{it})} \, \psi(re^{it}) \, e^{it} \, dt = r \lim_{\rho \to 1-0} \int_{-\pi}^{\pi} f^{(1)}(\rho e^{it}) \, \overline{T_r(\psi)(e^{it})} \, dt +$$

$$+ r \int_{-\pi}^{\pi} f(e^{it}) \, e^{it} \, \overline{T_r(\psi)(e^{it})} \, dt + r \int_{-\pi}^{\pi} f(e^{it}) \, \overline{h(e^{it})} \, \psi(re^{it}) \, e^{it} \, dt.$$
 (9)

Докажем теперь, что для любого \$ ().

$$||T_r(\psi) - T_1(\psi)||_{\lambda_0} \to 0 \text{ при } r \to 1 - 0.$$
 (10)

Очевидно (10) выполняется для любого $P \in P_A$, (P_A — множество всех многочленов), но так как $P_A = \lambda$, то (10) следует из леммы 7 и теоремы Банаха-Штейнгауза (см. [2], стр. 232). Пусть Φ —линейный функционал в λ , порожденный функцией $f^{(1)}$. Ввиду (9) и (10), предел

$$\lim_{r\to 1-0}\int_{-\infty}^{\infty}\overline{g^{(1)}(re^{it})}\,\psi\left(e^{it}\right)\,dt$$

существует и равен

$$\Phi (T_{1}(\psi)) + \int_{-\pi}^{\pi} \overline{f(e^{it}) e^{it}} T_{1}(\psi) (e^{it}) dt + \int_{-\pi}^{\pi} \overline{f(e^{it})} h(e^{it}) \psi(e^{it}) e^{it} dt.$$

Повтому, если

$$T_{g^{(1)}}(\psi) = \lim_{r \to 1-0} \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{g^{(1)}(re^{it})} \psi(e^{it}) dt,$$

TO

$$|T_{g^{(1)}}(\psi)| \leqslant C_0 \|h\|_{*} \|f\|_{A^{\frac{1}{4}}} \|\psi\|_{*}.$$

Следовательно $T_{g^{(1)}}$ — линейный функционал в λ_* . Из результатов работы [13] получим

$$T\left(\frac{1}{1-\zeta z}\right) = \lim_{t\to 1-0} \frac{1}{2\pi} \frac{1}{1-re^{t}z} \bar{g}^{(1)}(re^{t}t) dt = \bar{g}^{(1)}(z),$$

 $g^{(1)}$ принадлежит A^1 . Легко заметить, что из 2 следует 6) —> a). Поэтому докажем пункт 2 теоремы.

В силу леммы 7, имеем

$$\sup_{0\leq r\leq 1}\|T_r\|_{L(\Lambda_o,\ \Lambda_o)}=+\infty.$$

Поэтому по принципу равномерной ограниченности существует функция $\psi \in \Lambda_*$ такая, что

$$\sup_{0 < r < 1} \|T_r(\psi)\|_{A_{\bullet}} = +\infty. \tag{11}$$

Пусть

$$F_r(z) = T_r(\psi)(z).$$

Предположим Φ_r — функционал в A^1 , порожденный функцией F_r . Ввизу вквивалентности норм $\|F_r\|_{\Lambda_0}$ и $\|\Phi_r\|$ (см. [13]), по (11) получаем

$$\sup_{0< r<1} \|\Phi_r\| = +\infty.$$

Снова применяя принцип равномерной ограниченности, докажем сущетвование множества M второй категории в A^1 такого, что

$$\sup_{0 < r - 1} |\Phi_r(f)| = + \infty$$

иля любого $f \in M$. Пусть $f_0 \in M$.

$$f = J f_0, \ g = P(\overline{h}f).$$

Тогда из (9) получим

$$\int_{-\pi}^{\pi} g^{(1)} (re^{it}) \overline{\psi(e^{it})} dt = r\Phi_r (f_0) +$$

$$+ r \int_{-\pi}^{\pi} f(e^{it}) \overline{e^{it}} \overline{T_r (\psi) (e^{it})} dt +$$

$$+ r \int_{-\pi}^{\pi} f(e^{it}) \overline{h(e^{it})} \psi(re^{it}) e^{it} dt .$$

Очевидно последние два слагаемых равномерно ограничены на 0 < r < откуда имеем

$$\sup_{0 < r < 1} \left| \int_{-\pi}^{\pi} g^{(1)}(re^{it}) \overline{\psi(e^{it})} dt \right| = \sup_{0 < r < 1} |\Phi_r(f_0)| + O(1) = + \infty.$$

Из результатов работы [13] следует, что $g^{(1)} \in A^1$. Теорема доказан Следствие. Пусть f = JF принадлежит пространству A где J— внутренняя функция и $F \in H^1$, тогда если

$$\sup_{z\in U} \left| \left| f^{(1)}\left(z\right) \right| \left(1-|z|\right) \log \frac{1}{1-|z|} \right| < + \infty,$$

то функция F тоже принадлежит A^1 .

Замечание. Отметим, что существует достаточно широки класс функций, удовлетворяющих условию 2. Простым примеро функции с таким свойством является

$$S(z) = \exp\left(\frac{z+1}{z-1}\right).$$

Для производных высших порядков справедлива следующая Теорема 3. Пусть $f \in A_n^1$, n > 2, тогда для любого $h \in F$ функция g = P(hf) принадлежит пространству A_n^1 , кроме того

$$\|g\|_{A^1} \leqslant C(n) \|h\|_{\infty} \|f\|_{A^1}.$$

Доказательство. Пусть

$$T_{r}(\psi)(z) = \int_{0}^{z} dt_{n-1} \int_{0}^{t_{n-1}} dt_{n-2} \cdot \cdot \cdot \int_{0}^{t_{n}} h(t) t^{n} (\psi(\tau) \tau^{n})_{x=rt}^{(n)} dt =$$

$$= \frac{1}{(n-1)!} \int_{0}^{z} (z-t)^{n-1} t^{n} h(t) (\psi(\tau) \tau^{n})_{x=rt}^{(n)} dt, \ \psi(\lambda_{*}).$$

Сначала докажем, что

$$T_r \in L(\lambda_*, \lambda_*)$$

И

$$\sup_{0\leqslant r-1}\|T_r\|\leqslant C(n)\|h\|_{\infty}.$$

(1:

Для втого используем лемму б

$$(T_r(\psi)(z))^{(n)} = h(z) z^n (\psi(t) t^n)^{(n)}_{t=rz}$$

По лемме б $T_r(\psi) \in \lambda_*$, кроме того

$$\|T_r(\psi)h_* \leqslant C(n)\|h\|_{\infty}\|\psi\|_{\infty}$$

т. е. $T_r \in L(\lambda_*, \lambda_*)$ и (12) выполняется. Пусть теперь $f \in A_n^1$, $g = P(\overline{h} f)$ тогда учитывая (5), получаем

$$\int g^{(n)}(re^{it}) \frac{1}{\sqrt[n]{(e^{it})}} dt = \lim_{\gamma \to 1-0} \frac{1}{2\pi} \int (f(\gamma e^{it}) (\gamma e^{it})^n)^{(n)} e^{int} \overline{T_r(\gamma)(e^{it})} dt.$$

Предположим Φ — линейный функционал на λ_* , порожденный функцией $(f(z) z^n)^{(n)} z^n$. Тогда имеем

$$\int_{-\pi}^{\pi} \overline{g^{(n)}(re^{it})} \psi(e^{it}) dt = \Phi(T_r(\psi)).$$

Аналогично, как и при доказательстве (10), получаем

$$\lim_{r\to 1-0} \|T_r(\psi)-T_1(\psi)\|_{\bullet}=0$$

для любого 🖞 🥻 🛵 . Следовательно предел

$$\lim_{r\to 1-0}\int_{-\infty}^{\pi}\overline{g^{(n)}(re^{it})}\,\psi\left(e^{it}\right)\,dt$$

существует и равен Φ (T_1 (ψ)).

Учитывая (12) и результаты работы [13] получаем, что если

$$T_{g(n)}(\psi) = \lim_{r \to 1-0} \int_{-\pi}^{\pi} \overline{g^{(n)}(re^{it})} \psi(e^{it}) dt,$$

TO

$$\|T_{g(n)}(\dot{\gamma})\| \leqslant C(n) \|h\|_{\infty} \|f\|_{A_n^1} \|\dot{\gamma}\|_{\bullet},$$

поэтому из [13] следует, что $g^{(n)} \in A^1$ и

$$\|g\|_{A_n^1} \leqslant C(n) \|h\|_{\infty} \|f\|_{A_n^1}.$$

Доказательство закончено.

Для пространств H_n^p (1) имеет место аналог теорегы 1, а именю:

T е о р е м а 4. Пусть $f \in H^p_n$ и $h \in H^n$, тогда функция $g = P(\overline{h}f)$ гринадлежит пространству H^p_n и

$$\|g^{(n)}\|_{H^{p}} \leqslant C(n) \|h\|_{\infty} \|f\|_{H^{p}}.$$

Доказательство. Пусть $f \in H^{\nu}$, $h \in H^{\infty}$, $g = P(\overline{h}f)$. Из теолемы М. Рисса (см. [12], стр. 55) и теоремы Ф. Рисса (см. [2], стр. 90) следует, что

$$\left(\int_{-\pi}^{\pi}|g^{(n)}\left(re^{lt}\right)|^{p}dt\right)^{\frac{1}{p}} \leqslant A_{q} \sup_{\theta \leqslant 1}\left|\int_{-\pi}^{\pi}g^{(n)}\left(re^{l\theta}\right)\overline{\psi\left(e^{l\theta}\right)}d\theta\right|, \tag{13}$$

 $r_{Ae} = \frac{1}{p} + \frac{1}{q} = 1$, $A_q -$ постоянная из теоремы М. Рисса. Пус $\psi \in H^q$, тогда (см. (5))

$$\int g^{(n)}(re^{it}) \overline{\psi(e^{it})} dt = \int (f(e^{it}) e^{int})^{(n)} e^{int} \overline{F_r(e^{it})} dt,$$

где

$$F_r(z) = \frac{1}{(n-1)!} \int_0^z (z-t)^{n-1} t^n (\psi(w) w^n)_{w=rt}^{(n)}.$$

Теперь, используя леммы 2 и 3, получаем

$$\left|\int_{-\pi}^{\pi} g^{(n)}(re^{it}) \overline{\psi(e^{it})} dt\right| \ll C(n) \|h\|_{\infty} \|\psi\|_{H^{q}} \|f\|_{H^{p}_{n}},$$

отсюда и из (13) следует, что

$$\left(\int_{-\pi}^{\pi}|g^{(n)}\left(re^{tt}\right)|^{p}\ dt\right)^{\frac{1}{p}}\leqslant C\left(n,\ p\right)\|h\|_{\infty}\|f\|_{H_{n}^{p}}.$$

Теорема доказана.

Следствие. Пусть X совпадает с одним из следующих пр странств: H_n^p , $n \gg 0$, $1 , <math>A_n^1$ при $n \gg 2$. Предположим f = J где J— внутренняя функция, а $F \in H^1$, тогда функция F тоже приналежит пространству X.

Замечание. После того как статья была готова к печаавтор узнал о недавно опубликованной заметке Н. А. Широкова [10 где без доказательства анонсирована теорема 4. Н. А. Широко сообщил мне; что леммы 2 и 3 другим методом ранее были доказан в статье [16].

Институт математики АН Армянской ССР

Поступила 12.ПП.197

Ֆ. Ա. ՇԱՄՈՑԱՆ. Մի դասի օպե**ւատունե**րի մասին, կապված անալիտիկ ֆունկցիանեւ րաժանելության նետ *(ամփոփում)*

Դիցուք A^p_n , H^p_n այն ֆունվցիաների դասերն են, որոնը անալիտիկ են $\mathbb U$ միավոր շրջանում, և որոնց $\mathbf n$ -րդ կարգի ածանցյալը պատկանում է $L_p\left(U\right)$ -ին համապատասխանարս H^p -ին։

Հոդվածում ապացուցվում է, որ եթե ի Հ H և X-ը համընկնում է հետևյալ դասերից մեկ ու մենի հետ.

$$A_n^p$$
, H_n^p , $n \ge 1$, $1 , A_n^1 , $n \ge 2$,$

ե երեն ƒ = X, տպա P (k̄ ƒ)-ը նույնպես պատկանում է X-ին, որտեղ P-ն Մ. Ռիսսի պրոեկտորն է։ A l̄-ի համար ապացուցվում է հետևյալ երկու պնդումների էկվիվալենտությունը.

w)
$$P(\overline{h}f) \in A_1^1$$
, gwehngus $f \in A_1^1$ guned

$$p = \sup_{|z| < 1} \left[|h^{(1)}(z)| (1 - |z|) \log \frac{1}{1 - |z|} \right] < + \infty$$

F. A. SHAMOIAN. On a bounded class of operators in the theory of divisibility of analytical functions (summary)

Let X denote one of the spaces A_n^p , H_n^p $n \ge 1$, $1 , <math>A_n^1$, $n \ge 2$, where A_n^p (H_n^p) are the spaces of functions analytical in the unit disc U with n-th derivative belonging to L^p (U) (H^p) .

The papers main result is the following: $f \in X$ and $h \in H^{\infty}$ implies $P(\overline{hf}) \in X$, P is the projector of M. Riss.

For A_1^I space the following statements a) and b) have been proved to be equivalent:

a) $P(h\bar{f}) \in A_1^1$ for every $f \in A_1^1$,

b)
$$\sup_{|z| \le 1} \left[|h^{(1)}(z)| (1-|z|) \log \frac{1}{1-|z|} \right] < +\infty.$$

ЛИТЕРАТУРА

- 1. К. Гофман. Банаховы пространства аналитических функций, М., 1963.
- Л. В. Канторович, Г. П. Акилов. Функциональный анализ в нормированных пространствах, М., 1958.
- 3. А. Зигмунд. Тригонометрические ряды, т. П., "Мир", М., 1965.
- 4. Н. Данфоря, Дж. Шварц. Аннейные операторы, т. II, 1966.
- Б. И. Коренблюм. Об одном экстремальном свойстве внешних функций, Мата заметки, 10, № 1, 1971, 53—56.
- Б. И. Коренблюм, В. М. Файвишевский. Об одном классе сжимающих операторов, связанных с делимостью аналитических функций, УМЖ, 24, № 5, 1972, 692—694.
- 7. С. А. Виноградов, Н. А. Широков. О факторизации функций с производной из H^p , Зап. научи. семинар., ЛОМИ, 22, 1971, 8—27.
- 8. В. П. Хавин. О факторизации аналитических функций, гладких вплоть до границы, Зап. научи. семинар. ЛОМИ, 22, 1971, 202—205.
- Ф. А. Шамоям. Деление на внутреннюю функцию в некоторых пространствах функций, аналитических в круге, Зап. научн. семинаров, ЛОМИ, 22, 1972, 206—208.
- 10. Н. А. Широков. Обобщение теоремы Анттарвуда-Пван, Зап. научн. семинаров АОМИ, 30, 1972, 179—180.
- 11. В. П. Захарюта и В. И. Юдович. Общий вид линейного функционала в H_p^1 , УМН, 19, вып. 2 (16), 1964.

- 12. P. L. Duren. Theory of HP spaces, Acad. Press, New York, 1970.
- 13. P. L. Duren, B. W. Romberg, A. L. Shilds. Linear functionals on Hp space with 0 , Journ. reine und angew, Math. Bd. 238, 1969, 32-60.
- 14. L. Carleson. A representation formula the Dirichlet integral, Math. Z., 73, 1960
- 15. A. Zugmund. On certain integrals, Trans. Amer. Math. Soc. 55, 1944, 170-204
- 16. T. M. Flatt. On an exstension of absolute summability and some theorems Littlewood and Paley, Proc. London Math. Soc., 7, No 25, 1957, 113-149.