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SOME APPLICATIONS OF ARAKÉLIAN’S APPROXIMATION 
THEOREMS TO THE THEORY OF CLUSTER SETS

The purpose of this short note is to display the great strength of 
Arakelian’s generalizations of Mergelian’s beautiful theorem [9] (see 
also [11]).

During the fifties F. Bagemihl and W. Seidel developed techniques 
for studying boundary behaviour based on approximation theory. The 
versatility of these techniques has been considerably enhanced by the 
introduction by K. Barth and W. Schneider of the “pole sweeping“ me
thod.

We believe that most of the cluster-set results proved thus far by 
these methods could be more easily obtained by the use of Arakelian’s 
theorems. We content ourselves with two examples. First we prove an 
extended version of the Bagemihl-Seidel-Rudin theorems on the exis
tence of holomorphic functions with prescribed asymptotic behaviour. 
Our second example, meant to show that Arakélian’s „theorem encom
passes the pole sweeping technique, is an extended version of Schnei
der’s theorem [12] on ,the ' existence of an unbounded holomorphic 
function bounded in a prescribed “Schneider noodle“.

§ 1. Arakélian’s theorems

Let (C, X) be the Riemann sphere endowed with the chordal met
ric. Let D be a proper domain in C, and let D* denote the one-point com
pactification of D. We denote by dD the boundary of D in C. Follo
wing Arakelian we introduce the following notion.

1.1. Definition. Let E be a relatively closed subset of D. E 
is said to satisfy conditon (.4) if for each z£D\E, there is a boundary 
curve t =■■ 7J in D\E which connects z to dD- i. e. there is a curve 
7(f), 0-Ct<^oo, in D\E such that 7 (0) = z and

X (7 (f), dD) ->-0, as t -*■ ao.
1.2. Definition (see [4, p. 422]). A domain Doc D is simply 

connected with respect to D if each finite family of Jordan curves in 
Do which bounds in D also bounds in Do.

1.3. Theorem. A compact set EcD satisfies condition (A) if and: 
only if D*\E is connected.
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Proof. If E satisfies condition (/1), then for each point z£D\E, 
there is a boundary curve 7 (z) as in Definition 1.1. Let co be the 
ideal point of the one-point compactification D*. Then 7 = 7U(°°}։ 
where 7 denotes the closure of 7 in D*. Since 7 is connected, so is 
its closure 7, and thus •

D*\E=U {7 (z) : z£D\E} 
is connected.

Conversely, suppose E is compact and D*\E is connected. Let 
z(^D\E and let G be the component of C\E which contains z. -Then 
dGc.E and we claim that G meets dD. For otherwise GcD\EcZ)*\E, 
and so G is open in D*\E. Moreover, since dGcE, then Gc D, whe
re G denotes the closure of G in C. Since G is compact, it is closed 
in E* and so

G = Gf]E*\E
is closed in D*\E. Thus G is both open and closed in D*\E, and 
since the latter is connected, it follows that G—D*'\E. But then G 
contains the ideal point, which is absurd, since G<=.D. Hence G meets 
dD as claimed.

To conclude the proof, let 7* be an arc in G from z to some 
point Gf\dD, and let z0 be the first point of dD which 7* meets. 
Now if we let 7 be that portion of 7* running from z to z0, then 7 
satisfies the requirements of Definition 1.1. This completes the proof.

We present an example to show that the above theorem does not 
hold for (relatively) closed sets. Let Ej be the graph of the curve

y =|(l/z) sin (l/x)|, 0<x<k֊>; E2=((0, I?): —l<y<+«>}, 
and let E3 be the straight line segment joining the points 5t~J and -i. 
Now let D=C and set E=E1UE2(jEs. Then D*\E is connected, but 
E does not satisfy condition (.4).

1.4. Theorem. X domain Doc.D is simply connected with re
spect to D if and only if D*\D0 is connected.

Proof. Suppose first that Do is simply connected with respect to 
D. Then if {£>„} is a normal exhaustion [4, p. 587] (see also [8, p. 300]) 
of Do, and if some component of C\D„ is in D, then it is also in Do’ 
Thus we may assume that no component of C\ D„ is in D. Hence 
each component of C\D„ meets dD, and so D*\D„ is connected. 
Now D* is compact Hausdorff and D*\Dn is a nested sequence of con
tinue. It follows that

D*\D0= n (D*\Dn) n-1
as a continuum, and in particular is connected.
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Suppose conversely that D*XD0 is connected and a„ is a
finite family of Jordan curves in Do which bounds in D i. e. there is a 
domain G such that

dG=®j+®2+ • • ■ +a«c:^o>
and G is precompact in D. We must show that GcD0. Since G is pre
compact in D, G is compact in D, and

G n (£>* x A) = G n (£>* \A)
is closed in D*\D0. Also G is open in D* and so G(](D*\D0) is open 
in Since D*\D0 is connected and GnDo=^=0, it follows that
Gn (D*\Z)o) = 0. Thus and the Proof is complete.

Motivated by the preceding theorems and the theorem to follow, 
we now extend Definition 1.2.

1.5. Definition. A subset EcD is said to be simply connected 
with respect to D if and only if is connected.

1.6. Definition. A subset EcD is said to be a set of uniform 
approximation (by functions holomorphic in D) provided that for each 
function g continuous on E and holomorphic on E" and for each e > 0, 
there exists a function f holomorphic in D such that

\f(*)-g WKe> for a11 Z€E-
The following theorem of Arakelian generalizes Mergelian’s theo

rem to arbitrary domains.
1.7. Theorem [1]. A compact set EcD is a set of uniform ap

proximation if and only if E is simply connected with respect to D.
Let us denote by co the ideal point in D*.
1.8. Definition. A set EcD is in Arakelian’s class K(D) if E 

satisfies condition (Z) and for each neighborhood U of <», there is a 
neighborhood V of co such that each point

z6(Dx£)n V
can be connected to co by a boundary curve 7 in U (compare Defi
nition 1.1).

We state another theorem of Arakelian which extends Mergelian’s 
theorem to closed sets.

1.9. Theorem [1]. A (relatively) closed set EcD is a set of 
uniform approximation if and only if E (K (D).

Let us now consider a much stronger sort of approximation.
1.10. Definition. A set EcD is a set of tangential approxi

mation (by functions holomorphic in D) provided that for each function 
g continuous on E and holomorphic on E° and each positive conti
nuous function e (f), 0<f <1, there is a function f holomorphic in D 
such that, for all z^E

The following result is also due to Arakelian [1].
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1.11. Theorem. Let E be a closed subset of D such that E£K(D) 
and EJ = 0. Then E is a set of tangential approximation.

With additional hypotheses it is sometimes possible to achieve 
tangential approximation even though E° may be quite large [7].

§ 2. Applications

In this section, with the aid of Arakelian’s theorems, we extend 
some known results on cluster sets. Moreover our proofs will be much 
shorter than the earlier proofs. We begin with the following two theo
rems originally proved by Bagemihl and Seidel [2, 3].

2.1. Theorem. Let D— (|z|<^ R), + co; let a1։ a։, •••, be a
countable family of disjoint simple boundary curves, and let g be de
fined and continuous on each a-n. Then there exists a function f holo
morphic in D such that for each n

|f (an (0)— g (’« (0)1 0, as t— co.

Proof. Let 0<^ rr<Z r2<C- • • < rn <Z՛ • ֊<C R> rn-> R, and set 
£ = U {a„ f] (|z| > rn)). Then E satisfies the conditions in Arakelian’s n
Theorem 1.11, and g is continuous on E. Thus f exists as claimed.

The above theorem is a special case of the next theorem, but we 
thought it worthwhile to present the preceding proof because of its 
brevity. The following theorem was originally proved for monotonic 
boundary curves in domains bounded by finitely many Jordan curves.

2.2. Theorem. Let D be a proper domain of the Riemann sphe
re-, let a.„, n = 1, 2,be a countable family of disjoint simple boun
dary curves; and let g be defined and continuous on each an. Then 
there exists a function f holomorphic on D such that for each n

If (“/> (0)—g (“« (0)1 0» as t — co.
Proof. Let {Dk} be a normal exhaustion of D; i. e. Z) = Z)1U 

U Ds U • • • U Dk U • • •, where each £>* is bounded by finitely many Jordan 
curves and DH^\, k=l, 2,---. We may also assume that each D* 
has the property that each component of C\Z)* meets dD (i. e. D* is 
simply connected with respect to D).

Let be the tail end of an starting from the last point at which 
nn leaves Dn, and set £,=P1UP2U UPnU We will show that E 
satisfies the conditions of Arakelian’s Theorem on tangential approxi
mation. First of all

£nB«=An u ₽*

is closed (perhaps empty) and thus E is closed in D and nowhere dense.
For e > 0, we write

V.m= {z^D:7. (z, d£>)<e).
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To show that E^K(D) it will be sufficient to show that for each 
s^>0, there is a 8^>0 such that for all z in

(D\£) fl K (dD), (1)
we can find a boundary curve 7 = 7 (z),

7 (z)c(£>\£) n V, (dD), 
which connects z to dD.

Suppose e and z are given as above. We claim there exists an /V 
such that

n > N =■> p„ c V, (dD). (2)
Indeed

Z)\ V. (dD) = (z^D : Z (z, dD) > s| = [z£C : Z (z, C\D)>z]

is closed in C and hence compact. This set is therefore contained in 
some Dk, and we may choose N— &+1 in (2).

For k=l, 2.---.N, let Zk be the last point at which a* leaves 
Dn, and let a” be the initial part of a* running from a* (0) to z* (if 
a*fl Dn = 0, we may set a^=0). We now choose so that

N *.■DN,Z3 U a*.

Let 8^>0 be chosen so that

Vi(dD)^D\ Dn,.

Suppose z lies in (1), and let G be the component of C\D„i which 
contains z. By the way in which the exhaustion [£)„} was chosen, it fol
lows that G meets dD. Let 7* be an arc from z to dD in G. if 7* f] E= 
= 0, we are through. If not, there is a first point p$7* which is 
in E. Thus p lies in some P„. Let k=y (p, £\p„)>0, and let 9 be the 
first point of 7* for which Z(9, p)^)-/2.

There are two cases to consider. If n>N, then pnc Z, (dD). Thus 
we may easily construct the required curve 7=7 (z) cz V, (dD) by run
ning along 7* from z to 9. Then 7 stays close to 8„ and follows Pn out 
to dD in such a way as to remain in V.(dD) and to remain disjoint 
from each Pt, k=l, 2-• ••

If n -C N, then p£Pn\ This means that p is past (further along) 
zn on pn and so Pn will never return to Dn after it passes p. Thus we 
may again construct 7 by going along 7* from z to 9, and then staying 
near pn as it runs out to dD, being careful to avoid each Pt and to re
main outside of Dn and therefore in V, (dD). Thus E^K(D), and the 
theorem follows from Arakelian’s Theorem on tangential approximation.

Under appropriate hypotheses it is also possible to specify boun
dary behaviour on uncountably many boundary curves. The following 
theorem is due to Bagemihl and Seidel [3] and Rudin [10]. The follo
wing version is stated in [5, p. 163].
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2.3. Theorem. Let g be an arbitrary continuous function in 
z|<l, let F be a set of first category on |z|=l, and let {L (6)) be a fami
ly of mutually disjoint boundary curves terminating at the points etB£F 
and such that \L (6)) is homeomorphic to a family of radial segments 
{a (6)| terminating at F. That is, there exists a homeomorphism of 
jz[<l onto itself which leaves each point of |z| = l fixed and such that 
L (&)=՛]* (a (&)). Then there exists a function f, holomorphic in |z| <. 1» 
such that for every e'8 £ F

f (z) — g (z) ~»0, as z — e'8 on L (6).

Proof, fc U Fn, where each Fn is closed and nowhere dense in

z| = l. S et

E = U En, n*=\
where

En = t (X (0) n (|z| > 1 -1/n): elB £ F„).
Then E satisfies the hypotheses of Arakelian’s Theorem on tangential 
approximation, and so f exists as claimed.

By a similar argument we could also prove the analogous theorem 
of Bagemihl and Seidel [3] on tresses. Also, we believe that the above 
theorems remain valid on arbitrary open Riemann surfaces, however it 
seems that the approximation theory for proving such theorems (easily) 
has yet to be developed.

The following theorem is due to Schneider [12] although he re
stricted his attention to monotonic j(in modulus) boundary curves for 
simplicity. The original proof made use of the pole sweeping method.

2.4. Theorem. Let D— (]z|<^^), Z?-^-|-co; and let a and P be 
two simple boundary arcs disjoint except for their common initial 
point, say a (0) ~ P (0)=0. Let EJt Ex be the two domains into which 
a U P separates D. Then there exists a function f, holomorphic in D, 
such that f is bounded in Eo and unbounded in Et.

Proof. Let {zn) be a sequence in E1 such that |z«| -» R, as n->oo, 
and set £=£’0U{zn}. We define a continuous function g on E by set
ting g equal to zero on Eo and g (z„) = n, for n=l, 2-->.*

As in the proof of Theorem 2.2 (but much more easily in this 
case) we see that E is relatively closed in D and is in K (D). From 
Arakelian’s Theorem 1.9, there exists a function f, holomorphic in D, 
such that |/(z)—g (z)|<^l, for all z£E. The proof is complete.

Remark: After submitting this paper, we have noticed that Theorem 2.2 of 
the present paper is essentially the same as Theorem 9 in W. Kaplan's paper, Appro
ximation by entire functions, Mich. Math. J., 3 (1955—1956), 43—52.
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Պ. ԴՈՕ՜Ցհ, Վ. քքԱՅԴԵԼ. Աոաքելյաեի մոտարկման թեորեմների որոշ կիրառություններ 
եզրային թարմությունների տեսության մեչ (ամփոփում)

Հոդվածում ցույց է արվում, որ տվյալ տիրույթում անսղիտիկ ֆունկցիաներով շոշս։ (լու
մային մոտավորության թեորեմները պարզեցնում են անալիտիկ ֆունկցիաների եզրային վար
քի վերաբերյալ որոշ հարցերի հետազոտումը։

Մ ոտարկումային թեորեմների օզնությամր միասնական ձևով ապացուցվում են Բազեմիլի 
և Հեյդելի, 1եուդինի, Շնեյզերի թեորեմների ընդհանրացված տարրերակները եզրային րազ- 
մությունների տեսությունից։

П. ГОТЬЕ, В. ЗЕЙДЕЛЬ. Некоторые приложения аппроксимационных 
теорем Аракеляна в теории предельных множеств (резюме)

В заметке показывается, что теоремы о возможности касательного приближе
ния аналитическими в данной области функциями упрощают изучение некоторых 
вопросов граничного поведения аналитических функций. С помощью аппроксима
ционных теорем единым способом доказываются обобщенные варианты некоторых 
теорем Багемиля и Зейделя, Рудина, Шнейдера из теории продельных множеств.

REFERENCES

1. N. U. Arakelian. Uniforn and tangential approximation by holomorphic function s 
Izvestija Akad. Nauk Armjan. SSR, Mat., 3. 1968, English summary, 273—286, 
(Russian), ZB 175 : 76.

2. F. Bagemlhl and IF. Seidel. Spiral and other asymptotic paths, and paths of comp
lete indétermination, of analitic and meromorphic functions, Proc. Nat. Acad. Sei., 
U.S.A., 39, 1953, 1251-1258, MR 15: 515.

3. F. Bagemlhl. Some boundary properties of analytic functions, Math. Z. 61, 1954, 
186-199, MR 16:460.

4. H. Behnke and F. Sommer. Theorie der analytischen Funktionen einer komplexen 
VerSnderlichen, 3rd ed. Springer—Verlag, Berlin, 1965.

5. E. F. Collingwood and A. J. Lohwater. The theory of cluster sets, Cambridge 
University Press., 1966, MR 38: 325.

6. IF. H. J. Fuche. Théorie de l’approximation des fonctions d’une variable complexe, 
Les Presses de l’Université de Montreal, Montréal, 1968.

7. P. M. Gauthier. Tangential approximation by entire functions and functions holo
morphic in a disc, Izvestija Akad. Nauk Armjan. SSR, Mat., 4, 1969, 319—326.

8. E. Hille. Analytic function theory. Vol. 11, Ginn, Boston, 1962. MR 34: 1490
9. S. N. Mergelian. Uniform approximations of functions of a complex variable, 

Uspehi Matem. Nauk (N. S.) 7, no 2 (48), 1952, 31—122 (Russian) MR 14 : 547. 
Amer. Math. Soc. translation, no. 101, 1954, 99 pp.

10. W. Rudin. Radial cluster sets of analytic functions, Bull. Amer. Math. Soc., 60, 
1954, 545,

11. IF. Rudin. Real and complex analysis, McGraw-Hill, New York, 1966. MR 35: 1420- 
12. IF. J. Schneider. An elementary proof and extension of an example of Valiron, 

Pacific J. Math, (to appear).


