Մաթեմատիկա

VI, № 5, 1971

Математика

В. В. ВОСКАНЯН

ОБ ОДНОЙ ЭКСТРЕМАЛЬНОЙ ЗАДАЧЕ В ТЕОРИИ БАНАХОВЫХ ПРОСТРАНСТВ АНАЛИТИЧЕСКИХ В КОЛЬЦЕ ФУНКЦИЙ

Пусть K есть открытое кольцо в комплексной плоскости, ограниченное окружностями $\Gamma_1 = \{z: |z| = 1\}$ и $\Gamma_2 = \{z: |z| = p\}$, $0 . Обозначим через <math>H^p(K)$, 1 , банахово пространство функций <math>f(z), аналитических (и однозначных) в K, таких, что

$$||f||^p = \sup_{p \in r^{-1}} \int_0^{2\pi} |f(re^{it})|^p dt < \infty,$$

с нормой $\|f\|$. Функции из $H^p(K)$ имеют почти всюду на $\Gamma = \Gamma_1 \cup \Gamma_p$ граничные значения $f(e^{tt})$ и $f(pe^{tt})$, суммируемые с p-й степенью (см., например, [1]). Впредь нам будет удобнее пользоваться другой нормой $f\|_p$, эквивалентной основной норме

$$||f||_{p} = \left[\int_{r} |f(x)|^{p} ds\right]^{1/p} = \left[\int_{0}^{2\pi} |f(e^{it})|^{p} dt + \int_{0}^{2\pi} |f(e^{it})|^{p} dt\right]^{1/p}.$$

Аналогично, $H^{-}(K)$ будет обозначать банахово пространство аналитических и ограниченных в K функций с нормой

$$||f||_{\infty} = \sup_{z \in K} |f(z)| = V \operatorname{rai \ max} |f(x)|.$$

Пусть на Γ задана функция ω (x) $\in L^q$ (Γ), где 1/q+1/p=1. Тогда она по формуле ω (f)= $\int_{\Gamma} f(x)\omega(x) \, dx$ порождает на H^p (K) функцио-

нал ω . Обозначим через S_p единичный шар в пространстве $H^p(K)$ $1 \le p \le \infty$. В нашей заметке мы хотим построить вкстремальную функцию $f^*(H^p(K))$, дающую норму, функционала ω , т. е. такую, что

$$||f^*||_p = 1$$
 if $||\omega|| = \sup_{f \in S_p} |\omega(f)| = |\omega(f^*)|,$

в случае, когда $\omega(x)$ есть граничное значение мероморфной в \overline{K} с полюсами в K функции $\omega(z)$.

В работе [5] решалась та же задача для круга. Систематическое изучение экстремальных задач такого типа для круга и многосвязных областей было проведено в работах С. Я. Хавинсона (см., например, [2], [3], [4] и другие) на основе принципа двойственности. Из этого принципа, в частности, следует, что

$$\lambda = \sup_{f \in S_p} \left| \int_{\Gamma} \omega(x) f(x) dx \right| = \inf_{\varphi \in H^q(K)} \left[\int_{\Gamma} |\omega(x) - \varphi(x)|^q ds \right]^{1/q}, 1
$$\lambda = \sup_{f \in S_1} \left| \int_{\Gamma} \omega(x) f(x) dx \right| = \inf_{\varphi \in H^\infty(K)} V_{\text{rai max}} |\omega(x) - \varphi(x)|$$

$$(1)$$$$

(см. [3], гл. II, § 1, пп 2, 3, 4).

Результаты, применяемые в нашем (мероморфном) случае, утверждают (там же, гл. II, 2-1, 3-1, 4-1, 2, 3):

а) При $1 \leqslant p \leqslant \infty$ существуют экстремальные функции $f^*(z)$ и

 z^* (z), для которых равенство (1) достигается.

б) Функция $\varphi^*(z)$ единственна, когда $f^*(z)$ не постоянна. При $1 функция <math>f^*(z)$ единственна с точностью до постоянного множителя e^{tz} , а при p=1 может и не быть единственной в втом смысле

в) Для того чтобы $f^*(z)$ и $\phi^*(z)$ были экстремальными, необходимо и достаточно, чтобы почти всюду на Γ выполнялись равенства $f^*(x)[\omega(x)-\phi^*(x)] dx = e^{ix} h^{1-q}|\omega(x)-\phi^*(x)|^q ds$ при 1 (2) и

$$f^*(x) [\omega(x) - z^*(x)] dx = e^{iz} \lambda |f^*(x)| ds \text{ при } p=1.$$
 (3)

Впредь мы будем рассматривать ту экстремальную функцию $f^*(z)$, для которой $e^{iz}=i$ в равенствах (2) и (3).

Теорема. Пусть $1 \leqslant p \leqslant \infty$, и пусть функция ω (z) аналитична в K за исключением п полюсов β_i , лежащих в K, причем каждый полюс засчитывается столько раз, какова его кратность. Тогда для функций f^* (z) и ϕ^* (z), дающих решение экстремальной задачи (1), справедливы следующие утверждения: существует п чисел $\alpha_i \in K$ таких, что

I. $\mathcal{D}_{\mathcal{Y}}$ нкция $R(z) = \omega(z) - \varphi^*(z)$ имеет единственное представ-

$$R(z) = Mz^{k} \prod_{\frac{1}{a_{i}}(z)}^{\prime} \cdot \prod_{1}^{A_{a_{i}}(z)} \cdot \prod_{1}^{n} \frac{A_{\frac{1}{b_{i}}}(z)}{A_{\beta_{i}}(z)} \prod_{1}^{n} \left[\frac{A_{\frac{1}{a_{i}}}(z)}{A_{\frac{1}{b_{i}}}(z)} \right]^{2/q}, \qquad (4)$$

где знак произведения Π' распространяется на все индексы і такие, что $a_i \in \Gamma$, и на некоторую часть оставшихся индексов;

$$A_{\alpha}(z) = (z-\alpha) \prod_{m=1}^{\infty} \left(1-\rho^{2m} \cdot \frac{z}{\alpha}\right) \left(1-\rho^{2m} \cdot \frac{\alpha}{z}\right); \ k-ye soe.$$

II. Функция $f^*(z)$ экстремальна тогда и только тогда, когда $||f^*||_p=1$ и имеет вид

$$f^{*}(z) = Nz^{-k-1} \prod_{\substack{n = 1 \ \frac{1}{\overline{\alpha_{l}}}}} \frac{A_{\alpha_{l}}(z)}{A_{1}(z)} \cdot \prod_{l} \left[\frac{A_{\frac{1}{\overline{\alpha_{l}}}}(z)}{A_{\frac{1}{\overline{\beta_{l}}}}(z)} \right]^{2lp} . \tag{5}$$

Здесь Π'' есть дополнение к Π' по всем п индексам i. В формулах (4) и (5) с нецелыми степенями 2/q и 2/p взято то значение степенной функции z, которое равно 1 при z=1.

III. a)
$$\prod_{l=1}^{n} \frac{\alpha_{l}}{\beta_{l}} < 0 \quad u \quad 6) \quad \prod_{l=1}^{n} \left| \frac{\beta_{l}}{\alpha_{l}} \right|^{1/p} \prod^{n} |x_{l}| = p^{\frac{n}{2} + 1/q}.$$

Замечание. Из соотношения (4) видно, что при p=1 возможен случай, когда не все α_l будут участвовать в представлении R(z). Эти оставшиеся параметры в формуле (5) могут быть выбраны произвольно, и функция $f^*(z)$ окажется неединственной.

 λ еммв. Если $f^*(z)$ и $\varphi^*(z)$ —экстремальные функции, то существует п чисел $\alpha_l \in \overline{K}$ таких, что имеет место представление

$$L(z) = zf^*(z) \cdot R(z) = C \frac{\prod_{i=1}^{n} A_{\beta_i}(z) \cdot A_{\frac{1}{\alpha_i}}(z)}{\prod_{i=1}^{n} A_{\beta_i}(z) \cdot A_{\frac{1}{\beta_i}}(z)}, \qquad (6)$$

где С-константа.

Доказательство. Так как φ^* $(z) \in H^q$ (K), то для $1 \leqslant q < \infty$ $\|R(x) - R(rx)\|_{L^q(\Gamma_1)} \to 0$ при $r \to 1-$, $x \in \Gamma_1$

И

$$||R(x) - R(rx)||_{L^{q}(\Gamma_{\rho})} \rightarrow 0$$
 при $r \rightarrow 1+$, $x \in \Gamma_{\rho}$.

B случае $q=\infty$

$$\lim_{r\to 1-} \sup_{x\in\Gamma_1} |R(rx)| < \infty$$
 при $x\in\Gamma_1$

И

$$\overline{\lim_{r \to 1+}} \sup_{x \in I_p} |R(rx)| < \infty$$
 при $x \in \Gamma_p$.

Точно такие же соотношения с показателем p вместо q (для $1 \le p < \infty$ и $p = \infty$) имеют место для функции $f^*(z)$ ввиду того, что $f^*(z) \in H^p(K)$. Отсюда следует, что

$$\|L(x) - L(rx)\|_{L^{1}(\Gamma_{\rho})} \to 0 \text{ при } r \to 1-, x \in \Gamma_{1},$$

$$\|L(x) - L(rx)\|_{L^{1}(\Gamma_{\rho})} \to 0 \text{ при } r \to 1+, x \in \Gamma_{\rho}$$
(7)

С другой стороны, равенства (2) и (3) показывают, что

$$L(x)\geqslant 0$$
 п. в. на Γ_1 , $L(x)\leqslant 0$ п. в на Γ_p . (8)

Соотношения (7) и (8) позволяют сохранить классическое доказательство принципа симметрии Шварца. Функцию L(z) можно продолжить до функции, мероморфной в кольце $K(\rho^z, 1/\rho)$ с радиусами ρ^z и $1/\rho$. Далее, продолжая L(z) по симметрии с одного кольца на другое следующим образом:

$$K(\rho^2, 1) \to K(1, 1/\rho^2), K(\rho, 1/\rho^2) \to K(\rho^4, \rho), K(\rho^4, 1) \to K(1, 1/\rho^4)...,$$

мы получим в итоге функцию, мероморфную на всей плоскости. за исключением точек 0 и ∞ накопления полюсов.

Если 2 есть нуль функции $L\left(z\right)$ в \overline{K} , то она будет иметь нулями и точки

$$\frac{1}{\overline{a}}, \frac{1}{\rho^2 \overline{a}}, \frac{\rho^2}{\overline{a}}, \rho^2 a, \frac{\alpha}{\rho^2}, \cdots, \frac{1}{\rho^{2m} \overline{a}}, \frac{\rho^{2m}}{\overline{a}}, \rho^{2m} a, \frac{\alpha}{\rho^{2m}}, \cdots$$

Поэтому функция L(z) должна содержать множитель

$$(z-\alpha)\left(z-\frac{1}{\alpha}\right)\prod_{1}^{\infty}\left(1-\rho^{2m}\frac{z}{\alpha}\right)\left(1-\rho^{2m}\frac{\alpha}{z}\right)\left(1-\rho^{2m}\frac{1}{\tilde{\alpha}z}\right)\left(1-\rho^{2m}\tilde{\alpha}z\right)=$$

$$=A_{z}\left(z\right)\cdot A_{\frac{1}{\alpha}}\left(z\right).$$

Полюсы β_i функции L(z) порождяют такие же множители в знаменателе. По принципу аргумента число нулей в \overline{K} должно быть равно n. (Заметим, что кратность нуля α , лежащего на Γ , есть четное число 2s, но в ряду нулей функции L(z) в \overline{K} α участвует s раз).

Таким образом, функция

$$l(z) = \frac{\prod_{1}^{n} A_{\alpha_{I}}(z) \cdot A_{\frac{1}{\alpha_{I}}}(z)}{\prod_{1}^{n} A_{\beta_{I}}(s) A_{\frac{1}{\beta_{I}}}(z)} \cdot \prod_{1}^{n} \frac{\beta_{I}}{\alpha_{I}}$$

имеет те же нули и полюсы в \overline{K} , что и L(z). Заметив, что

$$A_{z}(x) = -\alpha x \overline{A_{\frac{1}{2}}(x)} \text{ на } \Gamma_{1}$$

$$A_{z}(x) = \alpha^{2} \overline{A_{\frac{1}{2}}(x)} \text{ на } \Gamma_{\rho}$$
(9)

легко показать, что

$$l(x) \geqslant 0$$
 при $x \in \Gamma_1$

И

arg
$$l(x) = \arg \prod_{i=1}^{n} \frac{\alpha_{i}}{\beta_{i}} = \theta$$
 πρυ $x \in \Gamma_{\rho}$.

Поэтому функция $h\left(z
ight)=L\left(z
ight)\!/\!l\left(z
ight)$ не имеет ни особенностей, ни нулей в \overline{K} и

$$g(x) > 0$$
, $x \in \Gamma_1$ u arg $g(x) = \pi - \theta$, $x \in \Gamma_9$. (10)

Aля одновначности аналитической в K функции $g\left(z\right)$ необходимо выполнение равенства

$$\int_{0}^{2\pi} \text{Im} [g (e^{ls})] ds = \int_{0}^{2\pi} \text{Im} [g (\rho e^{ls})] ds.$$
 (11)

Действительно, величина

$$\int_{0}^{2\pi} g(re^{is}) ds = \frac{1}{i} \int \frac{g(z)}{z} dz,$$

где интеграл справа берется по окружности радиуса $r(\rho < r < 1)$ с центром в точке z=0, очевидно, не зависит от r. Тем же свойством обладает и мнимая часть написанного интеграла. Отсюда, приближая вначале r к 1, а затем к ρ , и замечая, что в интеграле

$$\int_{0}^{2\pi} \operatorname{Im}\left[g\left(re^{ls}\right)\right] ds$$

можно сделать требуемые предельные переходы, получим (11). Из (10) и (11) следует, что

$$0 = \int_{0}^{2\pi} \operatorname{Im} \left[g \left(e^{ls} \right) \right] ds = \int_{0}^{2\pi} \operatorname{Im} \left[g \left(\rho e^{ls} \right) \right] ds = \int_{0}^{2\pi} \left| g \left(\rho e^{ls} \right) \right| \sin \left(\pi - \theta \right) ds.$$

Повтому $\sin (\pi - \theta) = 0$, и из соотношений (10) вытехает, что

Im
$$g(x) = 0$$
 ha Γ_i , Im $g(x) = |g(x)| \cdot \sin(\pi - \theta) = 0$ ha $\Gamma_i = 0$

$$\equiv$$
 Im $g(z)\equiv 0$ на $K\equiv g(z)=$ const, откуда и следует (6).

Лемма доказана, и попутно установлено утверждение III а) теоремы.

 \mathcal{A} оказательство теоремы. Из соотношений (2) и (3) легко вывести раяенство

$$|R(x)|^{1/p} = \lambda^{1/p} |f^*(x)|^{1/q}$$

и отсюда

$$\begin{aligned} ||R(x)| &= i^{1/p} |L(x)/x|^{1/q}, \\ ||f^*(x)| &= i^{-1/p} |L(x)/x|^{1/p} \end{aligned} \quad \text{на } \Gamma \quad \text{при } 1 \leqslant p \leqslant \infty. \end{aligned} \tag{12}$$

Точки $\alpha_l \in K$ в (6) подразделяются на нули f^* (z) и R (z) в K. Рассмотрим функцию

$$\Phi(z) = \frac{M}{z} \cdot \prod'' \frac{A_{a_{l}}(z)}{\bar{A}_{l}(z)} \prod_{1}^{n} \left[\frac{A_{1}(z)}{\bar{a}_{l}(z)} \frac{1}{\bar{a}_{l}(z)} \right]^{2/p}, \qquad (13)$$

где знак произведения Π'' распространяется на те индексы i, для которых α_l являются нулями функции f^* (z) в K. Приняв во внимание формулы (6) и (9) и выбирая надлежащим образом число M

$$\left(M=\lambda^{-1/p}\cdot C^{1/p}\cdot \prod_{|\alpha_l|} \frac{1}{|\alpha_l|}\cdot \prod_{i} \left|\frac{\alpha_l}{\beta_l}\right|^{1/p}\right),$$

легко показать, что

$$|\Phi(x)| = \lambda^{-1/p} |L(x)/x|^{1/p} = |f^*(x)| \quad \text{Ha } \Gamma_1$$

$$|\Phi(x)| = \prod_{l=1}^{n} \left| \frac{\beta_l}{\alpha_l} \right|^{1/q} \cdot \rho^{-1/l} \cdot \prod^{n} |\alpha_l| \cdot |f^*(x)| = B |f^*(x)| \quad \text{Ha } \Gamma_p$$
(14)

В работе [4] (см. доказательство теоремы 10 из § 5) было показано, что $\ln |f^*(z)|$ представляется по формуле Грина в кольцеобразных областях, примыкающих к Γ и не содержащих нулей $f^*(z)$. Так как $\Phi(z)$ имеет в E(z) то отсюда вытекает, что функция $\ln |f^*(z)/\Phi(z)|$ представляется по формуле Грина во всем E(z). По этой формуле представится тогда и функция $\ln |z|^{\log_p B} f^*(z)/\Phi(z)|$. Но она равна нулю на Γ , ввиду равенств (14), поэтому

$$|z^{\log_{\theta} B} f^*(z)/\Phi(z)| = 1$$
 на K .

Так как функция $f^*(z)/\Phi(z)$ однозначна, то $\log_{\rho} B = k$ есть целое число. Из вида B следует утверждение III 6). Таким образом, $f^*(z) = \text{сonst} \cdot \Phi(z) \cdot z^{-k}$ и доказано II. Функция R(z) в I определяется теперь из II и формулы (6).

Теорема доказана.

Замечание. Если рассматривать банахово пространство A(K) функций, аналитических в K и непрерывных вплоть до границы, с \sup —нормой, и функционал w на нем, то принцип двойственности приводит к раненству

$$\sup_{f \in S} \left| \int_{\mathbb{R}^{N}} \omega(x) f(x) dx \right| = \inf_{\pi \in H^{1}(K)} \int_{\mathbb{R}^{N}} |\omega(x) - \pi(x)| ds = \sup_{f \in S_{\infty}} \left| \int_{\mathbb{R}^{N}} \omega(x) f(x) dx \right|.$$

Так как экстремальная функция $f^*(z)$ для пространства $H^*(K)$ в условиях теоремы оказалась непрерывной вплоть до границы, то она будет решением экстремальной задачи и для пространства A(K). Таким образом, все рассуждения теоремы для $H^*(K)$ переносятся на пространство A(K).

Московский государственный университет им. М. В. Ломоносова

Ереванский государственный университет

Поступнае 25.І.71

Վ.Վ.ՈՍԿԱՆՑԱՆ. Օղակում անալիաիկ ֆունկցիաների բանախի տառածությունների տեսության մի էքստունմալ խնդրի մասին *(ամփոփում)*

Դիցուք K-ն կոմպլեքս հարթության վրա Γ եզրագիծ ունեցող մի օղակ է։ $H^p(K),\ 1< p<\infty,\ k\ A(K)$ բանախի տարածություններում սահմանված է $\omega\left(\varpi\left(f\right)=\int_{\Gamma}\omega\left(z\right)f\left(z\right)dz\right)$ ֆունկցիոնայը, որտեղ $\omega\left(z\right)-$ ը մի ֆունկցիա է, որն անալիտիկ է

K-ում բացառությամբ վերջավոր թվով ընեռներից K-ում։

Ներկա աշխատանքում գտնվում է այդ ֆունկցիոնալի նորմը տվող $f^* \in H^p(K)$, A(K) էջստրեմալ ֆունկցիայի տեսջը և $\phi^*(z)$ էջստրեմալ ֆունկցիայի ներկայացումը երկակի խնդրում,

V. V. VOSKANIAN. On an extremal problem in the Banach space of analytical in an annulus functions (summary)

Let K be an annulus in a complex plane with boundary Γ . In Banach spaces $H^p(K)$, $1 , and A (K) the functional <math>\omega$ (ω (f) = $\int_{\Gamma} \omega$ (z) f (z) dz), is defined when

re ω(z) is an analytical function in K except for a finite number of poles in K.

In the present paper the extremal function $f^* \in H^p(K)$, A(K) which gives the norm of this functional, is found along with the representation of the extremal function $\varphi^*(z)$ in the dual problem.

ЛИТЕРАТУРА

- 1. Г. Ц. Тумаркин, С. Я. Хавинсон. Классы аналитических функций в многосвязных областях, Исследования по современным проблемам, ТФКП, 1960.
- С. Я. Хавинсон. О некоторых экстремальных задачах теорин аналитических функций, Уч. записки МГУ, вып. 148, т. 4, 1951.
- 3. С. Я. Хавинсон. Экстремальные задачи для некоторых классов аналитических функций в конечно-связных областях, Мат. сб., 36 (78), вып. 3, 1955.
- 4. Г. Ц. Тумаркин, С. Я. Хавинсон. Исследование свойств экстремальных функций с помощью соотношений двойственности в экстремальных задачах для классов аналитических функций в многосвязных областях, Мат. сб., 46, (89), вып. 2, 1958.
- 5. W. W. Rogosinsky, H. S. Shapiro. On certain problems for analytic functions, Acta Math., 90, No. 3-4, 1953.