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Abstract. Homogeneous isotropic Poisson s-flats in Euclidean 
d-dimensional space Ed (0-^s<^d) are defined as a natural generali­
sation of the standard linear Poisson process, for which s = 0, d =1. 
Invariant densities of integral geometry enter naturally into the ergodic 
theory of n-subsets of s — flats in such systems. A wide class of 
ergodic gamma-type probability distributions, in a sense dual to the 
Poisson distributions for numbers of hits, is derived. Extensions of the 
theory to more general systems incorporating mixtures, anisotropy, and 
associated cylinder sets are discussed, and mention is made of the fun­
damental role of the anisotropic case as a local limit when random 
s — dimensional varieties are superposed in Ed. Finally, the ergodic pro­
bability distributions of several associated random tessellations of con­
vex polytopes are investigated.

Introduction. The present paper is based on two lectures 
given by the author at the Symposium on Integral Geometry and Geomet­
rical Probability held at Oberwolfach in June, 1969. The main object 
then was to present, within the limits of a paper of reasonable length, 
a wide-ranging account of Poisson flats in Euculidean spaces. Emphasis 
was placed on the underlying connection with integral geometry, and on 
the wide range of possible random geometric models encompassed by 
such a structure. As inevitable costs of such an ambitious project, the 
material was somewhat selective with few examples being included, full 
proofs were for the most part omitted, and questions of rigour were 
glossed over or even ignored. This paper has much the same defects, 
but on the other hand it is hoped it offers a relatively effortless and 
illuminating introduction to this area of random geometry.

Much of the material relating to the random tessellations deter­
mined by Poisson hyperplanes is taken from the author’s unpublished 
Ph. D. thesis [13], while Theorem 2 was announced in [14]. Specialised 
accounts of the planar cases s = 0, d =2 and s =1, d =2 are to be 
found in Miles [15, 17]. The author is preparing a series of papers in 
which the contents of the present paper are developed in full detail. 
The first of these is [16].

Preliminaries. First we introduce the Poisson and gamma pro­
bability distributions which are of fundamental importance in this work. 
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264 R. JE. Miles

The Poisson distribution with parameter (= its expectation — its- varian­
ce) X has p.m.f.

pt—e~y՝\lli\ (z = 0,l,---). (1)
The family of gamma distributions To (v, X) (9, X, v all >0) has pxiJ.

/ (x) = 9X’'8 x’֊։ e-Xj8/r(y) > °)* (2)

and kth order moment

P* = / r (֊^iv (4-)IX-*'8 (k = 1, 2, • • •) - (3)
I \ ° / \ & /)

If v/0 is a positive integer, then the d.f. of r։(v, X) is

where the tails of the Poisson (X) distribution fgiven by (1) are de­
fined by

p (i, X} = 1 ֊ q {f, X] = e֊Hl+ ֊ • • + (>•' AO}- (5)
The cases 9=1 and 9=1, v =1 yield the standard gamma distribution 
r (v, X) of index v and parameter X, and the exponential distribution of 
parameter X, respectively.

The random systems we consider lie in Ed, in which x, y,-• ■ are 
points and o the origin (d = 1, 2,• • •)• The notation | - • - | is used for the 
modulus of a real number, the length of a vector, full dimensional Le­
besgue measure, and for determinants; the interpretation will be appa­
rent from the context. The ball |x| q of centre 0 and radius 
q is denoted by then its boundary dQql is the sphere lx| = q. The 
volume d-cotent |Q?| of Qq is uaqd, where (-֊--|-1^ ;

the surface (d—1) — content |dQg| of Qq is *, where oa =

. The weighted linear sum of the subsets Xi c: Ed with
weights X/ (1 < z < n) is

n , n <
Xi = ltxi: xt £ Xi, 1 <։ < ri j • (6)

We abbreviate ’Zn Y+ 0’ to 'X] Y\ in words ’X hits Y*. The range 
space of a variable-• ■ is often denoted by [•••], while the subset 
comprising the single point-•• is {•••}. Finally, {xj is shorthand for 
{x/} over the full range of i.

§1. Theory

An s-flat is the translate Js — [x| + Js(0) of an s-dimensio- 
nal linear subspace, or s-subspace, Js (0) in Ed (0< s < d).. Examples:

= 2^/։/P —
\2
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—s: 0~ point, 1 ~ line, 2~plane, 3~ (ordinary) space, d—1~ 
~ hyperplane. Thus, for a system of random s — flats in Ed, there are 
six cases of practical importance, viz. 0<^s<^d֊C3; and ten if ’time’ 
is included. Since an s-subspace in Ed has s (d — s) degrees of free­
dom, an s-flat* has (s + l)(d— s) degrees of freedom and hence may 
be parametrized by a point 6 £ [6] c This parametrization is
trivial when s = 0. An s-flat hitting Jfc Ed is termed an s-Secant of 
X. Thus an arbitrary probability distribution concentrated on

Bx = {b:Js(b) ]X^Ed} (7)
(supposed measurable) ’is’ the distribution of a randoms-secant of X. 

Suppose, for each measurable subset B of [6], j f(b) db is inva- 

riant with respecf to the group of Euclidean motions in Ed; that is, 
\ f (b) db = f(b') db' for all such motions. The existence and uni- 

fl a*
queness, up to a contsant factor, of / is ensured by the general theory. 
See, for example, Santal6 [21; Part III] or Nachbin [18; Chapter III]. 
According to Nachbin (Example 6, pp. 143—4), the s-flats of Ed form 
a locally compact homogeneous space under the Euclidean group, on 
which there is an invariant measure, unique up to a constant factor. 
We describe f (6) as the invariant density in B with respect to the pa­
rametrization b, and E(jB)=j f (b) db as the corresponding invariant 

a
measure. An explicit form of the nivariant density was first given by 
Blaschke, in a short monograph [2] which marked the birth of integral 
geometry as such; see also Petkantschin [19] and Santal6 [21; § 24]. 
Suppose ux, • ■ ■, Ud are orthonormal vectors in Ed; is spanned by 
Bi> •••>“•»; d0s represents an (s—l)-dimensional volume element of 
the s-dimensional unit sphere with centre o throngh ult • • •, us (d0d, which 
may be equated with ’du՝, is often written below simply as dO); and 
dx^-s represents a (d—s)-dimensional volume element of the orthogo­
nal complement of /$(0). In terms of these quantities, we have the intui­
tively apparent and convenient exterior differential relation

/ (6) db= djsm = dJS((l)dxd~sl Jd/^o) (8)

where
djs(o) dO* ■ ■ • dO1 = d0d • • ■ 1 (9)

(dO1 represents the ’volume element’ of a measure concentrating unit 
mass on both ±1), which implies

= Orf - ■ -Orf-ju-i/as- ■ -ov (10)
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Apart from the constant factor J dfS(0), this is the form given by San- 

talô [22]. Examples:—s=0: / (x) = 1; s = d—1: if, in polar coordinates, 
(p, u) is the foot of the perpendicular from 0 to the hyperplane, then 
f (p, u) =2/ad, the corresponding element being (2/atf)cfyx/0. Integrating 
(8) over Bx, and defining Xa-s to be the orthogonal projection of X 
onto the orthogonal complement of /f(o), we obtain

F {Bx) = J d/s(0)/ J dJiW = Md-S {A|, (11)

the mean (d—s)-projection of X. Examples (see [16; §2, 3]): — 
-Md\X} = |A|; for convex X, Md-i \X} = jr (-֊-) /2«^ r(֊ 

M0{X} = 1. For 0<Afd_,{X) <«>, the p.d.f.

f zM= {X\ (b£Bx)
I o {b^Bx)

(12)

determines a uniform isotropic (random) s-secant of X. Such secants 
possess rather natural properties. Thus, if Js is a uniform isotropic 
s-secant of X, then

(i) P {]s\ Y a X) = Md-S {Y\/Md-s {A}, independent of the’ position’ 
of Y within X;

(ii) given Js f Ya X, then Js is uniform isotropic in Y; further,
(iii) given that the flat of intersection of independent uniform iso­

tropic secants in X hits X, this flat is a uniform isotropic secant of X 
of appropriate dimension.

Consider the random system comprising N independent uniform 
isotropic s-secants of X. The distribution of # y, the number of se­
cants hitting Ya X, is binomial (N, Md-S {Y]/Md-S {AT})- As N, Md-։ {A} 
both-» co in such a way that NfMd-s {X\ —»p, the distribution of 

tends to Poisson (p Md-S {/}), in the usual way. This and the 
relation (II) suggest the consideration of the stochastic flat process 
SR (p; s, d) in Ed corrseponding to the (inhomogeneous) Poisson point 
process in [6] of intensity (b). This definition ensures that SR (p; s, d) 
is stochastically invariant with respect to Euclidean motions. Thus it is 
both homogeneous (sometimes described as ’strict stationarity’), i. e. 
stochastically invariant under translations; and isotropic, i. e. stochasti­
cally invariant under rotations. Accordingly, we describe SR (p; s, d) as 
the isotropic homogeneous Poisson S-flat process of intensity p in Ed. 
Immediate from (II) and the Poisson structure is

Theorem 1. The number of s-flats os SR (p; s, d) hitting 
XaEd has a Poisson (p Md_s {A]) distribution. Further, given that 
#x = A, these N s-secants of X are independent uniform random 
s-secants of X. It is left to the reader to derive the p.g.f. of the mul-
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tivariate Poisson distribution of ( x<m)) for arbitrary X(i)czEd.
Examples: HR (p; 0,1) is the standard linear Poisson point process, and 
SR (p; 0, d) the corresponding d-dimensional point process. For clarity, 
the 0-flats of HR (p; 0, d) are termed particles. Since a hyperplane par­
titions Ed into two separated half-spaces, SR (p; d—1, d) (which inclu­
des SR (p; 0, 1)) has the effect of partitioning Ed into a tessellation P 
of random convex polytopes (see § 3). (Thus a 1-dimensional convex 
polytope is an interval). The intensity p is also characterized as the 
mean s-content of s-flat of SR (p; s, d) per unit volume in Ed. We 
now. state two of the fundamental properties of isotropic Poisson flat 
systems.

Independent Superposition. If SR (p։; s, d),- -, SR (pm; s, d) are in- 
m ■ / m \

dependent, then j SR (pi; s, d) is a SR ( p/; s, d )•
<=։ \/=i '

Arbitrary Section. If Jt is an arbitrary t-flat in Ed (d— s-<^<^d), 
then Jt 0 SR (p; s, d) is a SR (p';s֊M — d, t), where

p' s+f—d+1 
2 P- (13)

Henceforth, since p is mostly fixed, 'p' is usually omitted from ’SR (p;s, d)’.
In this paragraph we forget HR (s, d) for the moment, and return 

to the integral geometry of s-flats in Ed. An n-figure of s-flats is 
defined to be an ordered set of n distinct s-flats (an un-ordered such 
set is termed an n-set). Parametrically,

c = (b„- --.b,.)^ [c] a . (14)
The corresponding invariant density in [c] is clearly 

/(c)=f]/(M «[c]). (15)
i C

However, we shall use instead a special ’structural’ parametrization c 
of an n-figure, best illustrated by an example. Taking s=0, d=2, and 
6 = (x, y), set

(*i. Vi) = (*. y)
(*s, ^։) = (x + / cos 6, y -I- I sin 6)

(xi, yi ) = (x 4֊ >•/ I cos , y 4-1/ / sin 64՜$/ )
(16)

(3<;/-<n).

Then

C=(X2_V! e: l> S. 4V • 0«) (17)
location orientation scale shape

is structural, the components contributing to the four elements of stru­
cture of the n-figure being indicated. Since in this case f (c) =1,
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/(c) jdcLI f(c)=l2n-3 (18)

For general (s, d), the intersection of the n component s-flats of an 
n-figure is in general an |ns—(n—1) — flat. Attention is here restric­
ted to the case in which this flat is either void or at most a point, 
i. e. n>dl(d—s). Then a centre z£Ed specifying the location of the 
n-figure can be defined, and we may write c= (z, a). Thus z=(z, y) 

in (17). Clearly the invariant density factorises to give /(c) = 1 •/(։)• 
For n^>d/{d— s), there is in general a unique non-degenerate sphere 
hitting all n component s-flats an of minimal radius — the minimal 
sphere of the n-figure. In the minimal sphere has radius I, then we 
may write a = (Z, ₽), in which the {n (s 4֊ l)(d — s) — (d +l)}-tuple ? 
specifies shape and orientation. The ’characteristic length’ I determines 
the scale of the n-figure. The reader should envisage the sequential 
construction of an n-figure by (i) z; (ii) P; (iii) Z. Finally, integral geo­
metric argument, which for reasons of space must be omitted, serves to 
generalise (18) to

f(c) = 1-/ (a) =1 ■/ (Z, p) = Zn(d-J) '(rf+1)/ (1, P), (19)
where f (I, ₽)S[/(1, ?)],.,.

Now re-consider SR (s, d). Define SRn (s, d) to be the aggeregate 
of n-figures generated by SR (s, d) (n=l, 2,•••). Thus each n-set 
consisting of members of SR (s, d) gives rise to nl members of SRn(s, d), 
and SRn (s, d) may be regarded as a stochastic point process in [c] or 

[c]. The a.s. (almost sure) countability of the members of SR (s, d) im­
plies the same property for SRn (s, d). Define Hn {X, Sa} to be the num­
ber of members of SRrt (s, d) with centre z£X c Ed and with a —value 
lying in the notionally small {n (s4֊l)(fZ—s)—d}-dimensional interval 
’oa’ in [a] with opposite vertices a and a ֊1֊ Sa. In addition to its normal 
meaning as an increment in a, Ba is also used for the Sabove-mentioned 
interval and the {n (s-f-lX*^— s)—<Z}-content of this interval; the in­
terpretation intended will be apparent from the context. The corres­
ponding normalized ’empiric average’ is

hii *= Hn {Qq, oa}/|Q$|. (20)
Then

E{hq) = |Q9|-։eJ Hn {dz, Sa} = |Q,|-> EHn {dz, Ba}. (21) 

Qq
Appealing to the extreme ’Poisson’ independence, and the relation 
/ (c) dc=f (c) de, we have

E [//„ {dz, 6a}*] = pn f (a.) dz Ba {l-^-O (Sa)} (22)
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for an arbitrary positive integer k. Combining (21) and (22) with k=l 
and applying the homogeneity of SR (s, d), we obtain

£(A,) = p"/(a) 8a {1+0 (8a)}. (23)
Henceforth, for brevity, factors like (1 + 0 (6a)| are usually omitted. 
Similarly,

Var hq =|Q?I՜1 ( f \E {#« (^x> 3a) Uy, (dx, Sa) EHn(dy, oa)]

(24)

j J g(x—y, 8a) dx dy,

say. Now g is zero except on a subset S of Qq X Qq, where |S|/|Q«| -* 
— a (Sa) oo as q—*oc. Further, application of Schwartz’s Inequality 
and (22) with k = 2 shows that g-C6(6a)<^oo on S. It follows that 
Var hq -* 0 as q -♦ <r>, and so hq -* p՞ f (a) Sa, a constant, as q-*<x>.

m.s.
But, since SR (s, d) is homogeneous, Wiener's d-parameter ergodic theo­
rem [30; Theorem H"J applies, giving hq —» a random variable, h say, a.s.
as q -» co. Since m.s. and a.s. limits coincide ( = in probability limit), 
we have hq —* pn / (a) oa as q—• oo. In fact, more generally 

a.s. a.s.

Hn {X, Saj/IX]-.ff (a) Sa {1+0 (Sa)} (25)
a.s.

as X—*"», where X = Xq = qXz, X-, is a bounded region of Ed contai­
ning o with (^>0, and Z-»oo is equivalent to q —* co. The signifi­
cance of (25) is emphasised by

Hn {X'^IHn {X, M ֊*/(«1) 8+ (1+0 (§+)!//(«a) 8as {1+0 (8a։)} (26)
a.s.

as |X| —* oo. That is, f (a) is moreover the (a.s.) ergodic density of a 
for SRn(s, d). Ergodic densities, like invariant densities, are only de­
fined up to a constant factor. It may be said that the ergodic density 
/ (a) is the ’quotient’ of the invariant density by the uniform density

of the centre: f (a) = f (c)/f (z). Factorization of the ergodic density 
for disjoint sets of components of a means that these sets are ergodi- 
cally independent (providing also, of course, that the joint range is the 
corresponding product range, as is usually the case). Thus I and £ are er- 
godically independent. The ergodic density of I is not normalizable over 
its full range [0, oo), although it may of course be normalized over a 
truncated range. Generally speaking, as in (18), the orientation compo­
nents of P are normalizable, whereas the shape components are not.

We now show the ergodic density /<> (<*—■»)may be normalized 
into an ergodic probability density in a rather natural manner. Consider 
a mapping
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a —► y՜ (a) cz £’d (27)
where Y(a) may possibly be 0, and it is supposed (writing, for brevi­
ty, for Md-> (K (a)|):

(i) exists and is finite on [a];
(ii) M (a) and, in a suitable sense, K(®) itself are continuous in 

[a], except possibly on sub-varieties of [a];
(iii) /lz={a: M (a.) is positive and continuous} has positive Lebes­

gue measure in [a].
The corresponding mapping

c = (z, a) -* (z| h K(a) (28)
is translation invariant. We shall be concerned with the aggregate

Y„ = {(z) + r(a); (z, a): £S0?„ (s, d)} (29)
of random ’associated sets’ generated by SD?a (s, d). Now define, for 
//J,՞1’ \X, 6a) to be the number of the Hn (X, Ba) members of S0?„ (s, d) with 
centre in Xand a-value in Ba, whose associated set is hit by exactly m s-flats 
of SO? (s, d), excluding the m component s-flats. Finally, write S0?(B'n) (s, d), 
YJ,՞1՝ for the corresponding sub-aggregates of SO? (s, d), Y„.

The preceding ergodic theory may be repeated, utilising the extreme 
Poisson independence properties of SO? (s, d), the assumed continuity 
of Y (a), and Theorem 1, to show that

[A, fa]/Hn |A, Ba) - (pAf (a))'" e-^W/ml (aCA) (30) a.s.
as |A| -♦ oo. Thus the ergodic density of S0?(rtm) (s, d) is

/*) (a) = f (a) M (a) (< A). (31)
The exponential factor clearly has a powerful effect rendering normali­
zable hitherto non-normalizable ergodic densities.

In applications, Y (a) is usually homothelically invariant in A, i. e.
K(a) = Y(l, ₽) =IY(1, p), (32)

which implies
Af (a) = Z*-’Af (1, P). ՛ (33)

In this case, we may substitute M (a) for / in (19) and (31), i. e- 
(Z, P) = a —• a' = (M, P). There results.

H[m\X, B (M, p)} 
1*1 '

?m+n f (1, P)
m\(d—s) Af(l,

m+n -I— -—

M BA7op

/<«’(₽) /՝m)(Af).
/(m) (M, P)

(34)
Thus M and P are ergodically independent, with densities as indicated.
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The ergodic distribution of ? is in general rather complex, but on 
the other hand we have

Theorem 2. In the homothetically invariant case, the ergodic 
distribution of the mean projections Md-s of the members of gi­
ven any 'meaningful condition on ?, and thus in particular no condition, 
is T (m+n---- , p Y Theorem 2 yields a wide class of distributions

X d — s /
corresponding to varying choices of s, d, Y (a) and conditions on 3. 
Note that Theorems 1 and 2 are in a sense dual, since they give res­
pectively P (#\Md-s) and P (ikld-J tf). In fact, Theorem 2 follows heu­
ristically from the Bayes’ relation

P (Md-!.\m, n) a P (Afrf-Jn) P {m\Md-s, ri)
Examples of Theorem 2:- (s, d) =

(0,1): the total lengths of sets of n consecutive inter-particle 
intervals are T (n, p);

(0,2): the areas of the ’empty’ convex n-gons with particle verti­
ces are T (n—1, f>);

(1,2): the in-radii of the polygons of the random tessellation P are 
exponential (2p);

(1,2): the perimeters of the n-gons of P are T (n—2, p/x).
The reader, is advised to verify these examples and perhaps con­

struct others of his own. Note that, in applications of Theorem 2, Y (a) 
is usually order invariant, i. e. has the same value for all n! n-figures 
corresponding to each n-set.

§ 2. Generalisations

We now consider three distinct generalisations of 2R (s, d), which 
may all be simultaneously incorporated. As moreover s and d are arbit­
rary, a rather wide class of possible random models results.

1°. Mixtures. The mixture

SK (p0, • • •, Pd-i; d) = u ' 2R (p,; s, d), 
, s=0

where the 2R (ps; s, d) are supposed independent. Theorem 1 generalises 
trivially, as do the results in § 1 regarding independent superpositions 
and arbitrary sections. More interesting now is an n—figure, which 
comprises ns s-flats (0<s<d; S^onf=n). Varga [27] gave invariant 
densities (which he termed ’Crofton formulae’) for some such mixed 
n-figures in E2 and E3. The n component flats intersect in a [£j(snf)— 
(n—1) d)-flat, and there is a characteristic length I when -s(d — 
—s)n,^>d. The invariant/ergodic density is

f U, ?) = *3’(d-,) n'"(d+I) / (i. ₽)• (36)
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Since in general {K(a)|, ■ • ( F (a)] are not simply inter-related,
there is no satisfactory extension of Theorem 2. However, an important 
exception is the choice of K (®) as a ball, in which case Md-s ^d-sX. 
y.rd~s (0 -Cs •C d, r = radius). For example, the locally maximal empty 
balls in the interstices between the members of SR (po»'''> P*-*> *0 are 
’tangential’ to exactly d-f-1 flats; the radii of such balls touching ns 
s-flats; (0<s<y; d-)~l) has ergodic p.d.f.

f (r) a A (a~s) "֊' ^+1’exp [- E, p, *d-s rd՜'], (37)
a generalised gamma distribution. The radius distribution for the entire 
class of locally maximal empty balls is a weighted sum of distributions 
(37); the weights being

lT(nJ= C lim [//<„.> {X, <W№|]. (38)
J ixi - ~ 

locally 
maximal

Clearly lT(nJ=np"s.
J

2° Anisotropy. Since a point has no orientation, this extension is 
lonly possible for 1 Parametrizing an s-subspace by the s (d—s) 
tuple a, we have b = (a, xd~s). Consider the anisotropic analogue

F (db) = 0 (da) dxd֊s (39)
of (8), in which 0 is a general probability measure on [a]. The impor­

tant property preserved from § 1 is that F (B) is invariant under trans- 
ations. The analogue of (11) is

F (Bx) = J \Xd-s (a)| 0 (</a)s Mn-S (X|. (40)

A uniform 0 (random) s-secant of X has probability element

F (db) IMd-s {X\ (b£Bx). SR (p; s, d; 0) is now defined in the natural 

way, having a Poisson (pMd-s {A}) distribution (Theorem 1). The 
independent superposition

U SR (pc, s, d; 0,) = SR (E p/; s, d; E 0,/E pz), (41)

and in general the section Jt R SR (p; s, d; 0) is a DR (p'; s + t —d, t; 0'). 
One difference from the isotropic case should be noted. In SR (s, d), 
almost surely no two s-flats are parallel. But here, if a0 is an ,ptom of 
0, then a ’fraction’ (in an ergodic sense) 0 ((a0|) of the members of 
SR (s, d; 0) have orientation a0. The translational invariance means that 
DR (s, d; 0) is homogeneous, and so admits an ergodic theory. Turning 
to n-figures, the ’nth product* of (39) admits a similar decomposition 
to that in (19), in the sense that the independent ln (rf—J)-(d+J) density 
carries over. Consequently Theorem 2 extends, f (m+ n-----֊—, p '(now 
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being the ergodic distribution of Md-s for Yn՞0 in the homothetically in-
A

variant case. In particular, since M {C?) ergodic ’ball’ dist­
ributions are unchanged. Thus (37) extends unchanged when 1° and 2° 
are combined.

It emerges from § 1 that the isotropic SO? (s, d) is fundamental in 
the sense of integral geometry; on the other hand, SO? (s, d; 0) is of 
fundamental importance as a local limit, as we now explain. Suppose 
Ko is a movable smooth s-dimensional variety in Ed, whose position 
is determined by a centre z£Ed and a d-frame {u1։-• ■, Ud} of ortho­
normal vectors emanating from z, fixed with respect to Ko. Randomi­
sing by giving (z, u*) thd distribution D (z, u*) furnishes the random 
image V of Ko. We suppse D (z|u*) is continuous for all (u*| for 
which it is defined, and set

Y={x^Ed-. 0<lim q*֊d P\V] {x} + Q,]<oo). (42)
<7-0

Consider n independent random images K1, •••, VN of Ko. It may be 
shown that, under the above conditions, the local limit of the system in 
the neighbourhood of x£Y as TV—>co, under the local dilation (y—x)' = 
N (y—x) at x, is 3)? (px; s, d; 0X). Both px and 0X depend on Koand<D, 
as well as x.

Suppose that z is independent of {u*} and is uniform over some 
region R of Ed. Then, assuming edge effects near dR have been elimi­
nated, the local limit is the same at all points of R. If, moreover, |u*} 
is uniform (i. e. normalized Haar measure on the d-dimensional rota­
tion group) then the local limit is 30? (s, d). The conditions for the local 
limit at x to be SO? (p։; s, d; 0X) may be widened by, for instance, 
sampling the s-varieties from some distribution, and allowing them a 
certain degree of mutual dependence. Actually, 30? (0, d) is equally fun­
damental as a local limit, having been discussed by Goldman [8].

3° Cylinders. For each member Js of 30? (s, d), associate a random 
set Wd-s in the (d — s)-subspace orthogonal to Js, the association 
being stochastically invariant with respect to. translations of Js. Consi­
der the system of cylinder sets

c = {/,+ Wd-<: £ 50? (S, d)J. (43)
The case s = 0 has been considered by TakAcs [26] and Giger and Had- 
wiger [5], amongst others. If the l&d-s are independently and identical­
ly distributed, then the number of cylinders containing xfEd has a 
Poisson (pjE| lF<i_i|) distribution. It is then an ergodic result that the 
’fraction of Ed’ which is z-covered (in the sense of the limiting frac­
tion of Qq as q -* co) is

pi = (p£[IFd-J)' exp [—p£]lFtf_xQ/z՜! (z = 0,1,• • •). (44)
If the random sets I₽</_j are almost surely convex, then mutual inter­
section probabilities of the members of C hitting arbitrary fixed con­
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vex sets of Ed may be investigated by means of iteration of the comp­
lete system of kinematic formulae of integral geometry see Streit [25]. 
This technique serves also to generalise Theorem 1 when, moreover, X 
itself is convex. Clearly independent superpositions and arbitrary sec­
tions yield corresponding Poisson cylinder systems, but equally clearly 
Theorem 2 does not extend. We conclude § 2 by exploring a special 
case of 3°.

Coverage and concentration. Consider /V arbitrary subsets of a set X 
in a general space. Suppose xQX lies in H (x) of these subsets, 
and define

//y = min H (x), Hx — max 7/(x). (45)
— x^x • xex

That is, the least—and most-covered regions of X are respectively 
and Hx— covered. Alternatively, Hx and Hx determine the overall 

coverage of X by the subsets, and the maximal concentration of the 
subsets in X, respectively. If the subsets are random, then we should 
like to know the jount p.m.f. of (Hx, Hx).

Poisson discs. We now sketch the derivation of asymptotic proba­
bilities of coverage and concentration for the special case of C in which 
discs of fixed radius r are centred at each particle of SO? (0,2).

(i) Coverage. A disc in E2 is a loc. maxSi՜^ disc with respect to 
SO? (0,2) if it contains j +2 particles, 3 of which lie in its perimeter 
circle in the form of an acute—angled triangle. Ignoring edge effects, 
which may be shown to be of negligible importance as |Af| -> oo, it is a 
geometrical identity that f/ > j iff every loc. max.O՜՜1) disc with centre 
in X has radius <[ r. Write fX, 3r} for the number of loc.
max.w“։) discs with centre in X and radius in (r, r + or). By a specia­
lisation of the theory of § 1, it may be shown [17; § 13] that, as 
|A]- co,

H>֊^ {X, 8r)/|AT| - 2p (KP)/+lr։,+։e -։₽r’ M(y-Z)! (j =1, 2, • • •). (46) 
a.s.

Thus, asymptotically as |Af| — oo, the aggregate of loc. max.W՜') radii in 
AT’behaves like’an independent sample of size yp|Af|from a r2(2y-j֊2, ~p) 
distribution. Falsely assuming such behaviour we should have, for arbit­
rary positive &,

P (Hx > j) = (1 — p (j, itpr*])^!-*։ e՜8 (47)
as |A1 — co, provided fp]X\ p {j, rcpr*} = 6. This suggests 
P(Hx>y)~exp[-֊/p|X|e-«f>^[14-...-|- (y=0,l,--) (48)

> I p J I

as |A]—oo. In fact, a rigorous spatial investigation of the homogeneous 
stochastic point process of loc. max.^-՛’ centres and their associated 
radii shows that our ’dependent sampling’ is ’asymptotically sufficiently 
independent’ for supr>o|(left side—right side) in (48)j — 0 as |Af| — oo. 
The main argument is similar to that of Watson [28]. The formula (48) 
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with /—1 appears to be quite accurate even when P |A] is as small as 
100 see Gilbert [7; p. 330] for the results of a computer simulation.

(ii) Concentration. Since the method applying here may be regar­
ded as the dual of that of (i), we give even sketchier details. A disc 
in E~ is a loc. min.a-i) disc with respect to 2R (0,2) if it contains £-f֊l 
particles, 2 of which lie in the perimeter circle at the ends of a dia­
meter. Ignoring edge effects, Hx-^k iff every loc. min.(*-i) and loc. 
max.՝'* 2) disc with centre in X has radius r. Write H(k-i) {X, Sr) for 
the total number of either of these types with radius in (r, r ■+ Sr). 
Further specialisation of § 1 (17; § 13] shows that, as |A] —* oo,

{X, ir}l\X\ - 2 (Jk+D p (q>)*r^e-^or/ik-iy (k=1, 2, • ••). 
a.s.

(49)
Thus //(*_|) {X, Sr} approximates to a (& + l)p|A]—sample from a 
T։ (2jt, ~p) distribution. In analogy with (47),

P (Hx<k)=(l-q{k-l, «p))(*+i’p|X|, (50)
suggesting

/’(/Zx'CA:)—exp >r‘)* 
Æ!

(£=1,2;

(51)
This is in fact true in the same sense as (48), and with a similar justi­
fication.

These results generalise to higher dimensions. For Poisson spheres 
in E*,

P (Hx>j) ~ exp [— (3k2/32) j (;+l) p lA'I p {j +1, 4«pr։/3)]
P (/7x<£)~exp [-{4+(3/8)(k2+16)(Æ֊1)+(3k732)(Æ—l)(fc-2)}X (52)

X P (À] q (£ —l,4-pr’/3)].
It is hoped (48), (51) and (52) may prove useful in statistical applica­
tions; for instance, in testing the hypothesis of independent uniformity 
for point process data. A corresponding pair of formulae for general d 
may be derived. The interesting derivation utilises relations (66) and 
(67) below together with iteration of the general kinematic formulae 
for spaces of constant curvature, given by Santal6 [23]. Incidentally, 
this iteration implies Wendel's [29] formula giving the probability that 
N independent isotropic random hemispheres on a sphere in Ed comp­
letely cover that sphere (TV—2, 3,••■).

§ 3. Random Tessellations

A tessellation in Ed is defined to be an aggregate of convex poly­
topes which cover Ed without overlapping. (Henceforth we omit ’con­
vex’, since all polytopes considered are in fact convex). In this final
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section we investigate certain natural random tessellations generated by 
homogeneous Poisson flat systems.

But first consider a general random tessellation T in Ed for which 
a probability space with all necessary regularity properties has been 
established. Our examples are all of this type, since each depends in a 
simple way upon its underlying SR (s, d). A natural desirable property 
of T is homogeneity, i. e. stochastic invariance under translations. This 
is implied by isotropy, i. e. stochastic invariance under rotations. Note 
that arbitrary sections by a flat are random tessellations with corres­
ponding properties. For a polytope T, let Z~- (Z1։ •••, Zm) be a partial 
(or even complete) description of its Euclidean,invariant properties. For 
us, important possible components of Z are |A*}, where Ns is
the number of s-facets (s-dimensional polytope facets) in oT\ [£*}, 
where /.,■ is the sum of the s-contents of the Ns s—facets; and I, 
the in-radius. It is convenient to write V=Ld (= Md), S?=Ld-i and 
N s== No (= jLp). The polytope T is the convex hull of its set of N 
0-facets or vertices. The standard reference on convex polytopes is 
Grtlnbaum [9].

We now sketch the general procedure required to establish ergo­
dic distributions for T. Suppose Z is an arbitrary description, and that 
Z' is a ’particular value’ in [Zj. Define Hq to be the number of poly­
topes of T ’within’ Qq, and Hq (Z) to be the number of these for which 
Zt-^. Zt (l^zXm). We write “’within’“ here on the supposition that 
edge effects due to polytopes which hit may be shown by ad hoc 
means to be of negligible importance as <7-* °o. The homogeneity of T 
implies the homogeneity of stochastic processes ot the type {Y (x)] 
(x£Ed), where Y (x) is the value of the description Y for the polytope 
Tx of T containing x. The homogeneity allows the application of Wie­
ner's d—parameter ergodic theorem [30; Theorem 11"] to the 

empiric averages I Y (x)dx/\Qq\ of such processes. Such application to

/j (x) = 1/1/(x) and F2 (x) = Kz։ (x)/Z(x), where the indicator random 
variable Kz՛ (x) indicates the event [Zz (x) -^.Zi (1-C im)] ensures the 
existence of/ the almost sure limits H, H(Z) of Hq (Z')/iQJ,
respectively, as g-»co. In the important metrically transitive case these 
limits, which are in general random, degenerate to constants. However, 
although in practice metrical transitivity ;is difficult to prove directly, 
the demonstration of the ’asymptotic independence of T in distant lo­
calities of Ed’, a sort of d-dimensional mixing condition, suffices to 
ensure the constancy of H and H (Z'). Then

Hq (Z')/Hq - H(Z))H^=F (Z'\ (53)
a.s.

the value of the ergodic d.f. of Z for T at the particular value Z.
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The general problem is the determination of F (Z) for the impor­
tant and natural descriptions Z. Write G (Z) for the usually well-de­
fined d.f. of Z for the polytope containing an arbitrary point of Ed, 
e.g. To. A by-product of the above ergodic theory is the basic relation

F(dV, dZ) = G(dV, dZ)/V fl/-1 G (dlr), (54)

which may be derived heuristically by regarding, on account of homo­
geneity, the origin o to be a ’random point in Ed>. This relation is 
important, if only because G is usually more accessible than F. Another 
way of expressing (54) is to say that To is a 'Vf’ polytope, where / 
represents the ’density’ (i.e. combined p.m.f./p.d.f.) of F. Then a ’ran­
dom polytope of T’ is an ’/’ polytope. Another re-assuring by-pro­
duct of the ergodic theory is that the empiric mean of scalar Z (the 
quotient of the empiric averages of K։ (x) = Z(x)f V (x) and (x)) con­
verges to the ergodic mean:

Eq (Z) — E(Z) = ^ZF(dZ) as (55)
a..*, J

Example: For d=2, £ (2V) =2’Z/(X—2) where x is the mean number of 
sides meeting at each vertex of T (for further details, see Matschinski 
[11] and Miles [17; § 10]).

The random tessellation P. Let us combine the elements 2°, 3° in 
the case s = d—1. Suppose (6, w) represents the hyperslab containing 
all points of Ed whose perpendicular distance from the hyperplane b 
is at most w; b, w are its mid-hyperplane and semi-thickness, res­
pectively. Let $ be a general probability distribution in (a, w) for 
which E (w)<Z °° and the marginal distribution of a is 0. Generate in 
the usual way the system SR (p; d—1, d; <t>) of hyperslabs. Thus its 
members are [(pi, ui, w/)}(i‘=l, 2, •••), where

(i) the perpendiculars [pi} from o to the mid-hyperplanes consti­
tute a SR (0, 1) of intensity 2p on [0, co);

(ii) independently of (i), {(ut, w<)l are independently sampled 
from <t>. Write P+ for the aggregate of polytope interstices between 
these hyperslabs. The system of mid—hyperplanes, which constitutes a 
SR (p; d—1, d; 0), has the effect of partitioning Ed into a random tes­
sellation, P say. (Clearly, for P+ and P to exist, it is necessary that 
0 be not ’too degenerate’). Using Grtlnbaum’s [9] terminology, almost 
surely every polytope of P+ and P is simple, i. e. each s-facet 
lies in the intersection of d — s (d—l)-facets (0-Cs<d). Further, 
each s-facet of P lies in the boundaries of 2d~s members of P (0-C 
^Cs<^d). Now, given that o is not covered by any member of 
SR (d— 1, d; $), let To՜ be the member of P+ containing it. It may be 
shown that To՜ (under this condition) and To (with no conditions im­
posed) have the same stochastic construction. Consequently, since (54) 
applies to both P+ and P, the ergodic distributions of P+ and P are 
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identical). Thus, for example, Theorem 2 and 2° imply that, for 1*+, the 
ergodic distribution of I is exponential (2p), and the conditional ergo­

dic distribution of Md-s given Nd-s is T (Nd-s—d, p).
Although attention is restricted henceforth to P generated by SR (d— 1, 

d), it should be borne in mind that the following results apply equally 
to associated P+. The invariant density element for a hyperplane in E 
is f(h) db = (2/ad) dpdQ. Hence the invariant density element for a 
d-figure of hyperplanes is (2/od)d fl? dpi dOi. If z is their common 
point, then pi = z.m (1 C i d), and so

dp* 
dz

= modulus of |u։- • • ud\ = (“♦) (56)

say, the d-content of the parallelotope with edges {u»J- Thus the 
invariant density element is alternatively (2/orf)d (u#) dz flj dO/, from 
which it follows that the ergodic p.d.f. of |u») at the vertices of P is

0(o») = Ad (u#)/ [,Arf(o»)d01..-d0<<. (57)

The invariant density for a (d + l)-figure of hyperplanes is 
(2/a</)</+1 flu dpi dOi. Write y, I for the in-centre and in-radius of the 
simplex so formed. Define ui = ± ui so that the feet of the perpendi­
culars from y to the hyperplanes are [y + lu՛}. Then |pz | = y.ui+1 (0<^ 
•Cz-Cd), and so

dp* 
d(y, 1)

— modulus of
1... 1

Uq• • • Ud
= Vd (U.) (58)

say, which is di times the d-content (u.) of the simplex with 
vertices at the points u\ Thus the invariant density
element is alternatively (2/3d)</+l (u.) dy di flo dOi, from which it fol­
lows that the in-simplices of P have ergodic p.d.f.

f(I, «») =2p e֊^-Vd («»)/ J («») dOo- • dOd (59)
K

restricted to AT={{u»}: there is no hemisphere of dQj containing all 
the m). An ՝f polytope may be constructed about its in«centre by 
means of (59), the remaining [Nd-\ — (d-|-l)| (d—l)-facets being de­
termined by a SR (d—1, d) restricted so that none of its members hit 
the already determined in-ball. Actually, the joint orientation densities 
of (57) and (59) extend to the anisotropic case upon weighting by 
110 (du<).

Suppose v is an arbitrary unit vector. Almost surely the relation 
’extreme point of a polytope in the direction v’ sets up a (1,1) corres­
pondence between the vertices and the members of P. Hence, since 
each vertex is almost surely a vertex of 2d polytopes, it is clear that 
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E(N) ~2d. This essentially geometrical property extends to the aniso­
tropic case. The stochastic construction of an 'f polytope with respect 
to its ’extreme v point’ is clear:

(i) construct SR (d — 1, d);
(ii) independently construct d random hyperplanes through 0 with 

joint distribution (57) and, of the 2d convex polyiopal cones into which 
Ed is thereby partitioned, let C3 be the a.s. unique one having 0 as 
extreme v point;

(iii) To f) Co is then an polytope.
Given the 2d cones up to a random, rotation (normalised Haar 

measure), they do not have equal chances of being Co. Define the polar 
angle of the convex cone C (apex o) to be the angle of the convex 
polar cone Cp = [xp :x^-x>0, all x£C). Then the chance a given one 
of these cones is selected as Cn in the random rotation is proportional 
to its polar angle. For example, when d=2, the angle at a vertex have 

common p.d.f. sin 9, whereas the polygon angles at its extreme v

point has p.d.f. (1—(9/՜)} sin 9 (0<^9<Ct).
Denote the t-facets of a polytope T by Tt, i, (l^l ֊C A/i )• Denote 

the mean s-projection of Tt, i, with respect to the t-flat containing 
it, by Ms, t f Tt, t ), and define

”t
Ys.t{T} = ^Ms.l{Tt.l\ (0<s<f<d). (60).

l-l

Then the edge elements of the triangular array {Y,, /} are
Ys.s = Ls, Ys.d = Ms, YUls = Ns (0<s<d). (61)

Miles [13] has shown that, for P with respect to SR (p; d—1, d),

(0<s<f<d), (62)
and

E(LrLs)= r/r+l \r/s+n 

\ 2 / \ 2 /

(63)

The first and second order ergodic moments (62) and (63) allow the va­
riance-covariance matrix of (Zq,and thus in particular (N, S, V), 
to be evaluated. The moments E (N*) in (62) may be obtained by a 
131-8
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(K),

limiting process from a result of Cover and Efron [4;Theorem 1 ]. 
Note that, for the mixture 3R (p0> d),

P (a ’random polygon of P’ contains no particles) —
0 I

(64) 
the Laplace—Stieltjes transform of the ergodic d.f. of K for P. This 
offers a possible combinatorial method of investigating this perhaps 
most important ergodic distribution of P.

See [15] for a more detailed discussion of the planar case, and 
[24] for the generalisation of this to the hyperbolic plane.

The random tessellations V, D and V„, V„ (n = 1,2,-'') genera­
ted by SR (0, d).. V: Label the particles of SR (0, d) by y*; for example, 
yi might be the J th nearest particle to o(i=l, 2,•••).

Ti = \x£Ed-. |x — y/[<lx — y/\, j=h i} (65)
is almost surely a simple polytope, and V = [ T*} is a random tessel­
lation—the Voronoi tessellation generated by SR (0, d) (see Rogers [20; 
Chapter 7]). Each s-facet lies in the s-flai of points which are 
equidistant from a set of d.— s-|-l particles. Thus, unlike P, each 
s-facet lies in the boundaries of d—s+1 members of V. In the 
’practical’ cases d =2, 3, the first order ergodic moments of V, S and 
|7Vt) were determined by Meijering [12], while Gilbert [6] evaluated the 
second order moments of K by computer calculation of definite integrals. 

Blaschke [3] and Petkantschin [19] independently obtained the form 

dx0- • -dxs = ys (x*)d-s djs dxo • ■ • dxs (66) 

of the density of (s+1)—figures of points in Ed. Here Vs (x*) is si 
times the s-content A.։ (xj of the s-simplex with vertices 
I**}, /։ *8 the s-flat containing (x*|, and [x*] are the coordinates 
of these points with respect to Js. This served as the basis of 
a study by Kingman [10] of the random s-flat containing s 4-1 
independent uniform random points of a convex body jn Ed; in particular, 
he solved Sylvester's classical .problem for a d-ball. In fact, by means 
of (66), all the moments E (^ks) of the s-content Af of the simplicial 
convex hull of an (s-f-l)-sample from certain spherically symmetric 
d-dimensional probability distributions (and distributions obtained by 
affine transformation from such distributions) may be determined; the 
s4֊l sample points may even be dependent, but full spherical symmet­
ry in Ed must be preserved. For example, if xu •••, xr+i (r >0, s>0, 
2<r4֊s-<d4֊l) are independent, x1։ ■■•,xr and x,+i,-• •, xJ+, being 
'uniformly distributed in՜ Qq and dQq, respectively, then
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r / (r 4- s)(d + k)
+J-1 1 ( n

/k+i 
\ 2

Again, if x0, •••, x.r is an independent (s-f-l)-sample from the general 
d-dimensional normal distribution N (p. E), then

E (A*) = {(s +1)*/։ (2 |S|V^/S!}* ! T (V fs< rf)-

s (y, I, u*) dy di [J d0t, 
1=0

/-<-,+> I \ 2 / \2/f (68)

A useful variant of (66) is

dx։ • • • dx.։ — Ad (x*)d~s dj„ (o; dx\ • • -dxs ■ (69)
in which A5(x*) is the s-content of the parallelotope with sides (x#|, 
/, (o) is the s-subspace spanning {x*}, and (x*} are the coordinates of 
these points with respect to Js (o> . Using (69), it may similarly be 
□roved that, if {xt| is an s-sample from N (p-, £), (s d;l)։/2 times the 
•'-content of the simplicial convex hull of o and {x*] also has the 
noments (68). Although this latter result is well-known, (68) itself seems 
lew. Of course (see, for example, Anderson [1; § 7.5]) the distribution 
s also the distribution of the 'generalised sample variance’ common of 
i (d+l)-sample from an s-dimensional normal distribution. The 
distributions of AT and As in (68) are khown. They are P2 (d, l/4|£|։/</) 
ind T (d —1, 2/]/ 3 |S|,,rf) respectively.

We shall now show that
dx0 ■ ■ • dxd = R^ (“♦) dz dR dOo- • • dOrf, (70)

where z, R are the circum-centre and circum-radius of (x*}: xi =z+ 
+■ Rui (0 < i -Cd). If the foot of the perpendicular from Oto the hyper- 
□lane (pi, ui) is xi, then

dx0- • • dxd = fl P‘ ' dpidQt which, by (58) (71)

= n P‘ (y> h u*)d-' dQi -bd (Ui,) dy dl 
1=0

where y, 1 are the in-centre and in-radius, respectively, of the simp- 
ex formed by ](p#, u*)),
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say. But clearly
d

dx0- ■ ■ dxa = '■!* (*, “*) dz dR ]՜] dOi, (72)
1-0

for some function i, since z must be uniform and independent of (R, ««)• 
Now y = 0 iff z =0, in which case I = R. Moreover, dy = dz and 
di — dR at y = z = 0. (This may be demonstrated geometrically in the 
case in which an arbitrary pi is adjusted by dpi, leaving the remaining 
pi and all the ui fixed. It follows that it is also true when all the pi 
are adjusted by dpi together.) Hence, by (71) and (72),

<|» (R, mJ = 0 (0, R, u*) = R“*-' Vd (u J, (73)
which completes the derivation of (70)

Combining (66) and (70), we obtain
dxQ- • -dxs— Vj 1 Rds՜' dzdjsio) dRdQu- • -d0s, (74)

where z, R are the circum-centre and circum-radius of (xj in the 
s-flat [z] 4֊ y,(Q) containing these points. This relation, assisted by 
(67), is tailor-made for the determination of the ergodic moments

rf—5 d ՛ 4-

2d-s+\^2 s + -^ rf—+1) dv(d— s-r—
E(L.) = ______- _ 2 / \ 2 '_______ 2_______ d /

(d - s)l d r ( 4s + s\ r (^±iy՜5 r (p^
\ 2 / \ 2 / \ 2 /

(0Cs<d) (75)
of V.

D: Each vertex of V is the circum-centre of a set of parti­
cles of SR (0, d), the convex hull of which is a simplex. The aggregate 
of such random simplices is a tessellation—the Delaunay tessellation 
D (for a verification, see Rogers (20; Chapter 8]). On account of (70), 
the ergodic p.d.f. of D

/(/?; u0։-• ■, Ud) = e~f‘<’f<d R“1՜1 4J«,). (76)

Thus R is independent of {uj and has a I'd (cP, psj distribution. . By 
means of (76), the formula V = Rd &d (u*) and the moments (67), we 
obtain all the ergodic moments

E (Vk) =

(d-i)i r r (4L±*h.\ r (4±h+l\d+1 ( d-x v 
\ 2 / \ 2 ) \ 2 ) k 2~p)

(k = l, 2,...) (77)
of V for D. For d= 1, D s P and V is exponential (p).
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Ул, Vn (n=l, 2, •••): An arbitrary point of Ed almost surely pos­
sesses a set of n nearest particles; the points possessing the same set 
of n nearest particles form a simple polytope; the aggregate of such 
polytopes is defined to be VThe random tessellation V„ is rather 
similar to V = V։, in that each s—facet is a facet of d—s-|-l polytopes 
of V„. In fact, (74) implies that the joient orientation p.d.f. of the 
d—s 4-1 particles equidistant from an s—facet of Vn is given by

/(at*, •• •» սէՀ)=Հ<։-> (Հ՜*)“' (0<տ<ժ-2) (78)

The joint orientation of the շ (</—l)-facets meeting at this 

s-facet may in theory be deduced from (78).
Taking into account the order of the n nearest particles, we 

obtain Vn, a ’refinement’, of, and more complex than, Vn. In fact, de­
noting the union of polytope boundaries of a tessellation T by dT, we 
have

dkn—dV։ U • • • U dV,։. (79)

It may be shown that the local limit (see § 2) as n -> co of Vn at an 
arbitrary point of Ed is P with respect to 30? (prt; d—1, d), where

ря = ^2м֊М Г 4-Й /r^(2d)\ p1'" n ■ (80)

The values of each of E(V), E(S) and E(N) in the case d =2 are 
given in [17; § 10].
Dept, of statistics, R.S.S.S.,

Canberra, Australia Поступило 15.X. 1969

Ռ. b. ՄԱՅԼԱ. Հարթությունների սյուասոնյան պաշտեր էվկլիդյան տարածություններում 
( ամփոփում)

ըձ-ում Տ-հարթությունների համասեռ իզոտրոպ պուասոնյան դաշտերը սահմանվում են որ» 
պես ուղղի վրա (Տ = Օ, (1 = 1) ստանդատ պուասոնյան պրոցեսի բնական ընդհանրացումներ։ 
Դիտարկվում է ^֊հարթությունների Ո-ենթաբազմությունների կրգոդիկ տեսությունը այդպիսի 
դաշտերում։ Դուրս է բերվում Г տիպի բաշխումների մի լայն դաս։

Այդ տեսության այլ ընդհանրացումների թվում դիտարկվում են որոշ պատահական մոզաի­
կաներ ուռուցիկ պոլիտեններից։

Р. Е. МАЙЛС. Пуассоновские поля плоскостей в евклидовых пространствах 
(резюме)

Однородные изотропные пуассоновские поля 1-плоскостей в Е'1 определяются 
хак естественные обобщения стандартного пуассоновского процесса на прямой (»=0, 
<1 = 1). Рассматривается эргодическая теория п-подмножеств е — плоскостей в таких 
полях. Выводится широкий класс распределений типа Г.

В числе других обобщений этой теории рассматриваются некоторые случайные 
мозаики из выпуклых полигонов.
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